1
|
Karasu N, Acer H, Akalin H, Turkgenc B, Demir M, Sahin IO, Gokce N, Gulec A, Ciplakligil A, Sarilar AC, Cuce I, Gumus H, Per H, Canpolat M, Dundar M. Molecular analysis of SMN2, NAIP, and GTF2H2 gene deletions and relationships with clinical subtypes of spinal muscular atrophy. J Neurogenet 2024:1-10. [PMID: 39321203 DOI: 10.1080/01677063.2024.2407332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
SMA (spinal muscular atrophy) is an autosomal recessive neuromuscular disease that causes muscle atrophy and weakness. SMA is diagnosed by a homozygous deletion in exon 7 of the SMN1 gene. However, mutations in genes located in the SMA region, such as SMN2, NAIP, SERF1, and GTF2H2, may also contribute to the severity of the disease. Within our study's scope, 58 SMA patients who applied in 2018-2021 and 40 healthy controls were analyzed. The study retrospectively included the SMN1 and SMN2 copy numbers previously determined by the MLPA method. Then, NAIP gene analyses with the multiplex PCR method and GTF2H2 gene analyses with the RFLP method were performed. There was a significant correlation (p = 0.00001) between SMN2 copy numbers and SMA subtypes. Also, the NAIP gene (p = 0.01) and the GTF2H2 gene (p = 0.0049) revealed a significant difference between healthy and SMA subjects, whereas the SMA subtypes indicated no significant differences. We detected a significant correlation between clinical subtypes and HFMSE scores in 32 pediatric SMA patients compared (p = 0.01). While pediatric patients with GTF2H2 deletions demonstrated higher motor functions, and those with NAIP deletions demonstrated lower motor functions. In this study, we examined the relationship between NAIP and GTF2H2, called SMN region modifier genes, and the clinical severity of the disease in Turkish SMA patients. Despite its small scale, this research will benefit future investigations into the pathogenesis of SMA disease.
Collapse
Affiliation(s)
- Nilgun Karasu
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
- Faculty of Medicine, Department of Medical Genetics, Uskudar University, Istanbul, Turkey
| | - Hamit Acer
- Department of Pediatric Neurology, Denizli State Hospital, Denizli, Turkey
| | - Hilal Akalin
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Burcu Turkgenc
- Faculty of Medicine, Department of Medical Biology, Uskudar University, Istanbul, Turkey
| | - Mikail Demir
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Izem Olcay Sahin
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Nuriye Gokce
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Ayten Gulec
- Faculty of Medicine, Department of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Asli Ciplakligil
- Faculty of Medicine, Department of Neurology, Erciyes University, Kayseri, Turkey
| | - Ayse Caglar Sarilar
- Faculty of Medicine, Department of Neurology, Erciyes University, Kayseri, Turkey
| | - Isa Cuce
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Erciyes University, Kayseri, Turkey
| | - Hakan Gumus
- Faculty of Medicine, Department of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Huseyin Per
- Faculty of Medicine, Department of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Mehmet Canpolat
- Faculty of Medicine, Department of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Sharifi Z, Taheri M, Fallah MS, Abiri M, Golnabi F, Bagherian H, Zeinali R, Farahzadi H, Alborji M, Tehrani PG, Amini M, Asnavandi S, Hashemi M, Forouzesh F, Zeinali S. Comprehensive Mutation Analysis and Report of 12 Novel Mutations in a Cohort of Patients with Spinal Muscular Atrophy in Iran. J Mol Neurosci 2021; 71:2281-2298. [PMID: 33481221 DOI: 10.1007/s12031-020-01789-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophies (SMAs) are a heterogeneous group of neuromuscular diseases characterized by loss of motor neurons, muscle weakness, hypotonia and muscle atrophy, with different modes of inheritance; however, the survival motor neuron 1 (SMN1) gene is predominantly involved. The aims of the current study were to clarify the genetic basis of SMA and determine the mutation spectrum of SMN1 and other associated genes, in order to provide molecular information for more accurate diagnosis and future prospects for treatment. We performed a comprehensive analysis of 5q SMA in 1765 individuals including 528 patients from 432 unrelated families with at least one child with suspected clinical presentation of SMA. Copy number variations of the SMN1 and SMN2 genes and linkage analysis were performed using multiplex ligation-dependent probe amplification (MLPA) and short tandem repeat (STR) markers linked to the SMN1 gene. Cases without mutation in the SMA locus on 5q were analyzed for the DNAJB2, IGHMBP2, SIGMAR1 and PLEKHG5 genes using linked STR markers. Sanger sequencing of whole genes was performed for cases with homozygous haplotypes. Whole-genome sequencing (WGS) and whole-exome analysis was conducted for some of the remaining cases. Mutations in the SMN1 gene were identified in 287 (66.43%) families including 269 patients (62.26%) with homozygous deletion of the entire SMN1 gene. Only one of the patients had a homozygous point mutation in the SMN1 gene. Among the remaining families, three families showed mutations in either the DNAJB2, SIGMAR1 or PLEKHG5 genes, which were linked using STR analysis and Sanger sequencing. From 10 families who underwent WGS, we found six homozygous point mutations in six families for either the TNNT1, TPM3, TTN, SACS or COL6A2 genes. Two mutations in the PLA2G6 gene were also found in another patient as compound heterozygous. This rather large cohort allowed us to identify genotype patterns in Iranian 5q SMA patients. The process of identifying 11 mutations (9 novel) in 9 different genes among non-5q SMA patients shows the diversity of genes involved in non-5q SMA in Iranians. Genotyping of patients with SMA is essential for prenatal and preimplantation genetic diagnosis (PGD), and may be very helpful for guiding treatment, with the advent of new, more effective, albeit very expensive, therapies. Also, combining linkage analysis was shown to be beneficial in many ways, including sample authenticity and segregation analysis, and for ruling out maternal cell contamination during prenatal diagnosis (PND).
Collapse
Affiliation(s)
- Zohreh Sharifi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Sadegh Fallah
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Maryam Abiri
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Golnabi
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Hamideh Bagherian
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Razieh Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Hossein Farahzadi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Alborji
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | | | - Masoume Amini
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Sadaf Asnavandi
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sirous Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran. .,Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
RASHNONEJAD A, ONAY H, ATIK T, ATAN SAHIN O, GOKBEN S, TEKGUL H, OZKINAY F. Molecular Genetic Analysis of Survival Motor Neuron Gene in 460 Turkish Cases with Suspicious Spinal Muscular Atrophy Disease. IRANIAN JOURNAL OF CHILD NEUROLOGY 2016; 10:30-35. [PMID: 27843464 PMCID: PMC5100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To describe 12 yr experience of molecular genetic diagnosis of Spinal Muscular Atrophy (SMA) in 460 cases of Turkish patients. MATERIALS & METHODS A retrospective analysis was performed on data from 460 cases, referred to Medical Genetics Laboratory, Ege University's Hospital, Izmir, Turkey, prediagnosed as SMA or with family history of SMA between 2003 and 2014. The PCR-restriction fragment length polymorphism (RFLP) and the Multiplex ligation-dependent probe amplification (MLPA) analysis were performed to detect the survival motor neuron (SMN)1 deletions and to estimate SMN1 and SMN2 gene copy numbers. RESULTS Using PCR-RFLP test, 159 of 324 postnatal and 18 of 77 prenatal cases were detected to have SMN1 deletions. From positive samples, 88.13% had a homozygous deletion in both exon 7 and exon 8 of SMN1. Using MLPA, 54.5% of families revealed heterozygous deletions of SMN1, and 2 or 3 copies of SMN2, suggesting a healthy SMA carrier. Among patients referred for SMA testing, the annual percentage of patients diagnosed as SMA has decreased gradually from 90.62% (2003) down to 20.83% (2014). CONCLUSION Although PCR-RFLP method is a reliable test for SMA screening, MLPA is a necessary additional test and provide relevant data for genetic counseling of families having previously affected child. The gradual decrease in the percentage of patients molecularly diagnosed as SMA shows that clinicians have begun to use genetic tests in the differential diagnosis of muscular atrophies. Cost and availability of these genetic tests has greatly attributed to their use.
Collapse
Affiliation(s)
- Afrooz RASHNONEJAD
- 1.Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Huseyin ONAY
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Tahir ATIK
- Department of Pediatrics, Faculty of medicine, Ege University, Izmir, Turkey
| | - Ozlem ATAN SAHIN
- Department of molecular biology and biochemistry, health Sciences Institute, Acibadem University, Istanbul, Tureky
| | - Sarenur GOKBEN
- Division of Child Neurology, Department of Pediatrics, faculty of medicine, Ege University, Izmir, Turkey
| | - Hasan TEKGUL
- Division of Child Neurology, Department of Pediatrics, faculty of medicine, Ege University, Izmir, Turkey
| | - Ferda OZKINAY
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey,Department of Pediatrics, Faculty of medicine, Ege University, Izmir, Turkey
| |
Collapse
|