1
|
Feng Y, Huang Z, Ma X, Zong X, Tesic V, Ding B, Wu CYC, Lee RHC, Zhang Q. Photobiomodulation Inhibits Ischemia-Induced Brain Endothelial Senescence via Endothelial Nitric Oxide Synthase. Antioxidants (Basel) 2024; 13:633. [PMID: 38929072 PMCID: PMC11200452 DOI: 10.3390/antiox13060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent research suggests that photobiomodulation therapy (PBMT) positively impacts the vascular function associated with various cerebrovascular diseases. Nevertheless, the specific mechanisms by which PBMT improves vascular function remain ambiguous. Since endothelial nitric oxide synthase (eNOS) is crucial in regulating vascular function following cerebral ischemia, we investigated whether eNOS is a key element controlling cerebrovascular function and the senescence of vascular endothelial cells following PBMT treatment. Both rat photothrombotic (PT) stroke and in vitro oxygen-glucose deprivation (OGD)-induced vascular endothelial injury models were utilized. We demonstrated that treatment with PBMT (808 nm, 350 mW/cm2, 2 min/day) for 7 days significantly reduced PT-stroke-induced vascular permeability. Additionally, PBMT inhibited the levels of endothelial senescence markers (senescence green and p21) and antiangiogenic factor (endostatin), while increasing the phospho-eNOS (Ser1177) in the peri-infarct region following PT stroke. In vitro study further indicated that OGD increased p21, endostatin, and DNA damage (γH2AX) levels in the brain endothelial cell line, but they were reversed by PBMT. Intriguingly, the beneficial effects of PBMT were attenuated by a NOS inhibitor. In summary, these findings provide novel insights into the role of eNOS in PBMT-mediated protection against cerebrovascular senescence and endothelial dysfunction following ischemia. The use of PBMT as a therapeutic is a promising strategy to improve endothelial function in cerebrovascular disease.
Collapse
Affiliation(s)
- Yu Feng
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Zhihai Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Xuemei Zong
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Baojin Ding
- Department of Biochemistry & Molecular Biology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Quanguang Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| |
Collapse
|
2
|
Oryan A, Alemzadeh E, Mohammadi S. Healing potential of curcumin nanomicelles in cutaneous burn wounds: an in vitro and in vivo study. Connect Tissue Res 2023; 64:555-568. [PMID: 37458277 DOI: 10.1080/03008207.2023.2235007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE/AIM OF THE STUDY Curcumin is the active substance of turmeric and has been shown to enhance the healing potential of burn wounds. However, its high hydrophobicity and rapid degradability are great challenges for its clinical applications. The development of new curcumin formulations may provide a potential solution to these issues. METHODS AND RESULTS In this study, we investigated the use of curcumin nanomicelles for wound dressing and evaluated their effects on fibroblast migration and proliferation in vitro. We found that the application of curcumin nanomicelles to the wounds significantly improved wound contraction and increased the expression of transforming growth factor-1 and basic fibroblast growth factor at day 14 of the healing process. Furthermore, curcumin nanomicelles reduced the expression of interleukin-1 at days 7 and 14 post-wounding. Histopathological analysis revealed that the curcumin nanomicelles-treated burn wounds exhibited more organized granulation tissue, improved angiogenesis, and enhanced re-epithelialization. Additionally, the curcumin treatment led to increased hydroxyproline content and enhanced TGF-β1 expression level in the wounds. The in vitro studies also demonstrated that the curcumin nanomicelles induced proliferation and migration of fibroblasts. CONCLUSION Overall, our findings suggest that curcumin nanomicelles can be a promising candidate for the treatment of burn wounds.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Esmat Alemzadeh
- Infectious Diseases Research Center, Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Soroush Mohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Choi DH, Oh D, Na K, Kim H, Choi D, Jung YH, Ahn J, Kim J, Kim CH, Chung S. Radiation induces acute and subacute vascular regression in a three-dimensional microvasculature model. Front Oncol 2023; 13:1252014. [PMID: 37909014 PMCID: PMC10613678 DOI: 10.3389/fonc.2023.1252014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Radiation treatment is one of the most frequently used therapies in patients with cancer, employed in approximately half of all patients. However, the use of radiation therapy is limited by acute or chronic adverse effects and the failure to consider the tumor microenvironment. Blood vessels substantially contribute to radiation responses in both normal and tumor tissues. The present study employed a three-dimensional (3D) microvasculature-on-a-chip that mimics physiological blood vessels to determine the effect of radiation on blood vessels. This model represents radiation-induced pathophysiological effects on blood vessels in terms of cellular damage and structural and functional changes. DNA double-strand breaks (DSBs), apoptosis, and cell viability indicate cellular damage. Radiation-induced damage leads to a reduction in vascular structures, such as vascular area, branch length, branch number, junction number, and branch diameter; this phenomenon occurs in the mature vascular network and during neovascularization. Additionally, vasculature regression was demonstrated by staining the basement membrane and microfilaments. Radiation exposure could increase the blockage and permeability of the vascular network, indicating that radiation alters the function of blood vessels. Radiation suppressed blood vessel recovery and induced a loss of angiogenic ability, resulting in a network of irradiated vessels that failed to recover, deteriorating gradually. These findings demonstrate that this model is valuable for assessing radiation-induced vascular dysfunction and acute and chronic effects and can potentially improve radiotherapy efficiency.
Collapse
Affiliation(s)
- Dong-Hee Choi
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- R&D Research Center, Next&Bio Inc, Seoul, Republic of Korea
| | - Dongwoo Oh
- Korea University-Korea institute of Science and Technology (KU-KIST) Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Kyuhwan Na
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- R&D Research Center, Next&Bio Inc, Seoul, Republic of Korea
| | - Hyunho Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States
| | - Dongjin Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Yong Hun Jung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- R&D Research Center, Next&Bio Inc, Seoul, Republic of Korea
| | - Jinchul Ahn
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- R&D Research Center, Next&Bio Inc, Seoul, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- Korea University-Korea institute of Science and Technology (KU-KIST) Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
4
|
Atallah O, Chaurasia B. Brain metastasis localized to the same area of infarction: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 6:CASE23325. [PMID: 37581584 PMCID: PMC10555590 DOI: 10.3171/case23325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Ischemic stroke and tumor account for a disproportionate share of deaths and disabilities among the elderly. Patients with a tumor who develop recurrent acute neurological deficits after a stroke can be at risk for tumor-related stroke. In contrast, brain metastases (BM) are common causes of neurological symptoms and are associated with a poor prognosis in patients with both malignancy and ischemic stroke. OBSERVATIONS The authors report a rare case of metastatic melanoma that manifested in the same region as a previous ischemic infarction. A 22-year-old female presented at our emergency department with right hemiparesis and sensory difficulties. Infarction in the left frontoparietal and basal ganglia regions was found on a computed tomography scan of the brain. A decompressive hemicraniectomy was performed urgently. After 16 years, a biopsy taken from her chin revealed malignant melanoma. Hemorrhagic metastasis on the frontal lobe of the brain was detected with magnetic resonance imaging and was histopathologically confirmed upon resection. LESSONS In addition to recurrence, BM may be considered when a person with ischemic stroke and a cancer such as melanoma has new neurological problems in one area that cannot be explained by the stroke.
Collapse
Affiliation(s)
- Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany; and
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| |
Collapse
|
5
|
Zeng CW. Multipotent Mesenchymal Stem Cell-Based Therapies for Spinal Cord Injury: Current Progress and Future Prospects. BIOLOGY 2023; 12:biology12050653. [PMID: 37237467 DOI: 10.3390/biology12050653] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Spinal cord injury (SCI) represents a significant medical challenge, often resulting in permanent disability and severely impacting the quality of life for affected individuals. Traditional treatment options remain limited, underscoring the need for novel therapeutic approaches. In recent years, multipotent mesenchymal stem cells (MSCs) have emerged as a promising candidate for SCI treatment due to their multifaceted regenerative capabilities. This comprehensive review synthesizes the current understanding of the molecular mechanisms underlying MSC-mediated tissue repair in SCI. Key mechanisms discussed include neuroprotection through the secretion of growth factors and cytokines, promotion of neuronal regeneration via MSC differentiation into neural cell types, angiogenesis through the release of pro-angiogenic factors, immunomodulation by modulating immune cell activity, axonal regeneration driven by neurotrophic factors, and glial scar reduction via modulation of extracellular matrix components. Additionally, the review examines the various clinical applications of MSCs in SCI treatment, such as direct cell transplantation into the injured spinal cord, tissue engineering using biomaterial scaffolds that support MSC survival and integration, and innovative cell-based therapies like MSC-derived exosomes, which possess regenerative and neuroprotective properties. As the field progresses, it is crucial to address the challenges associated with MSC-based therapies, including determining optimal sources, intervention timing, and delivery methods, as well as developing standardized protocols for MSC isolation, expansion, and characterization. Overcoming these challenges will facilitate the translation of preclinical findings into clinical practice, providing new hope and improved treatment options for individuals living with the devastating consequences of SCI.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Yu Q, Sun H, Yue Z, Yu C, Jiang L, Dong X, Yao M, Shi M, Liang L, Wan Y, Zhang H, Yao F, Li J. Zwitterionic Polysaccharide-Based Hydrogel Dressing as a Stem Cell Carrier to Accelerate Burn Wound Healing. Adv Healthc Mater 2023; 12:e2202309. [PMID: 36447378 DOI: 10.1002/adhm.202202309] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Stem cell therapy integrated with hydrogels has shown promising potential in wound healing. However, the existing hydrogels usually cannot reach the desired therapeutic efficacy for burn wounds due to the inadaptability to wound shape and weak anti-infection ability. Moreover, it is difficult to improve the environment for the survival and function of stem cells under complicated wound microenvironments. In this study, an injectable and self-healing hydrogel (DSC), comprising sulfobetaine-derived dextran and carboxymethyl chitosan, is fabricated through a Schiff-base reaction. Meanwhile, the DSC hydrogel shows high nonfouling properties, including resistance to bacteria and nonspecific proteins; moreover, the prepared hydrogel can provide a biomimetic microenvironment for cell proliferation whilst maintaining the stemness of adipose-derived stem cells (ADSCs) regardless of complex microenvironments. In burnt murine animal models, the ADSCs-laden hydrogel can significantly accelerate wound healing rate and scarless skin tissue regeneration through multiple pathways. Specifically, the ADSCs-laden DSC hydrogel can avoid immune system recognition and activation and thus reduce the inflammatory response. Moreover, the ADSCs-laden DSC hydrogel can promote collagen deposition, angiogenesis, and enhance macrophage M2 polarization in the wound area. In summary, sulfobetaine-derived polysaccharide hydrogel can serve as a versatile platform for stem cell delivery to promote burn wound healing.
Collapse
Affiliation(s)
- Qingyu Yu
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhiwei Yue
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Chaojie Yu
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lijie Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Xiaoru Dong
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengmeng Yao
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mingyue Shi
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lei Liang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yizao Wan
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Jiangxi Key Laboratory of Nanobiomaterials and Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Hong Zhang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fanglian Yao
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Junjie Li
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
7
|
Potemkin N, Clarkson AN. Non-coding RNAs in stroke pathology, diagnostics, and therapeutics. Neurochem Int 2023; 162:105467. [PMID: 36572063 DOI: 10.1016/j.neuint.2022.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Methods to alleviate functional deficits after ischemic stroke focus on restoration of cerebral blood flow to the affected area. However, pharmacological or surgical methods such as thrombolysis and thrombectomy have a narrow effective window. Harnessing and manipulating neurochemical processes of recovery may provide an alternative to these methods. Recently, non-coding RNA (ncRNA) have been increasingly investigated for their contributions to the pathology of diseases and potential for diagnostic and therapeutic applications. Here we will review several ncRNA - H19, MALAT1, ANRIL, NEAT1, pseudogenes, small nucleolar RNA, piwi-interacting RNA and circular RNA - and their involvement in stroke pathology. We also examine these ncRNA as potential diagnostic biomarkers, particularly in circulating blood, and as targets for therapeutic interventions. An important aspect of this is a discussion of potential methods of treatment delivery to allow for targeting of interventions past the blood-brain barrier, including lipid nanoparticles, polymer nanoparticles, and viral and non-viral vectors. Overall, several long non-coding RNA (lncRNA) discussed here have strong implications for the development of pathology and functional recovery after ischemic stroke. LncRNAs H19 and ANRIL show potential as diagnostic biomarkers, while H19 and MALAT1 may prove to be effective therapeutics for both minimising damage as well as promoting recovery. Other ncRNA have also been implicated in ischemic stroke but are currently too poorly understood to make inferences for diagnosis or treatment. Whilst the field of ncRNAs is relatively new, significant work has already highlighted that ncRNAs represent a promising novel investigative tool for understanding stroke pathology, could be used as diagnostic biomarkers, and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Nikita Potemkin
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 9054, New Zealand.
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
8
|
Isaković J, Šerer K, Barišić B, Mitrečić D. Mesenchymal stem cell therapy for neurological disorders: The light or the dark side of the force? Front Bioeng Biotechnol 2023; 11:1139359. [PMID: 36926687 PMCID: PMC10011535 DOI: 10.3389/fbioe.2023.1139359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Neurological disorders are recognized as major causes of death and disability worldwide. Because of this, they represent one of the largest public health challenges. With awareness of the massive burden associated with these disorders, came the recognition that treatment options were disproportionately scarce and, oftentimes, ineffective. To address these problems, modern research is increasingly looking into novel, more effective methods to treat neurological patients; one of which is cell-based therapies. In this review, we present a critical analysis of the features, challenges, and prospects of one of the stem cell types that can be employed to treat numerous neurological disorders-mesenchymal stem cells (MSCs). Despite the fact that several studies have already established the safety of MSC-based treatment approaches, there are still some reservations within the field regarding their immunocompatibility, heterogeneity, stemness stability, and a range of adverse effects-one of which is their tumor-promoting ability. We additionally examine MSCs' mechanisms of action with respect to in vitro and in vivo research as well as detail the findings of past and ongoing clinical trials for Parkinson's and Alzheimer's disease, ischemic stroke, glioblastoma multiforme, and multiple sclerosis. Finally, this review discusses prospects for MSC-based therapeutics in the form of biomaterials, as well as the use of electromagnetic fields to enhance MSCs' proliferation and differentiation into neuronal cells.
Collapse
Affiliation(s)
- Jasmina Isaković
- Omnion Research International, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Klara Šerer
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Barišić
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Dinko Mitrečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
9
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
10
|
Morin Attenuated Cerebral Ischemia/Reperfusion Injury Through Promoting Angiogenesis Mediated by Angiopoietin-1-Tie-2 Axis and Wnt/β-Catenin Pathway. Neurotox Res 2022; 40:14-25. [PMID: 34997920 DOI: 10.1007/s12640-021-00470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Cerebral damage following cerebral ischemia/reperfusion injury affects the neurological deficits and motor impairment of stroke patients in the long-term period. Angiogenesis, the essential process for restoration of cerebral blood flow (CBF) in the ischemic brain, promotes the recovery of neurological function following ischemia. The aim of this study was to investigate the long-term effects of morin on angiogenesis and functional outcomes in a middle cerebral artery occlusion (MCAO) and reperfusion model. Male Wistar rats were subjected to MCAO, and they were administered 30 mg/kg of morin at reperfusion via i.p. injection daily for 14 days. Fourteen days after I/R injury, the rats were evaluated for the brain damage, and angiogenic factors involved in Ang1/Tie-2 and Wnt/β-catenin signaling. In addition, at 1, 7, and 14 days after reperfusion, rotarod and pole tests were performed to investigate the functional recovery. We found morin significantly reduced the infarct size, blood-brain barrier (BBB) leakage, and apoptotic cells at 14 days after I/R injury. It also promoted angiogenesis via boosting the expression of angiogenic proteins, such as angiopoietin 1 (Ang1), Tie-2, Wnt3α, β-catenin, and cyclin D1. Morin-mediated angiogenesis was confirmed by a significant increase in microvessel's density in the penumbra area and an increase in von Willebrand factor (vWF) protein expression of the morin-treated rats. Moreover, the rotarod and pole tests also demonstrated morin increased functional recovery in the morin-treated rats compared to the vehicle rats. Therefore, our data exposed that morin promotes angiogenesis and improves functional outcomes in MCAO and reperfusion rats.
Collapse
|
11
|
Alrafiah A, Alofi E, Almohaya Y, Hamami A, Qadah T, Almaghrabi S, Hakami N, Alrawaili MS, Tayeb HO. Angiogenesis Biomarkers in Ischemic Stroke Patients. J Inflamm Res 2021; 14:4893-4900. [PMID: 34588795 PMCID: PMC8473716 DOI: 10.2147/jir.s331868] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction Stroke is a global health issue, and ischemic stroke is among the most common strokes affecting many people worldwide. Throughout ischemic stroke, various immune cells counter its effect by releasing cytokines, chemokines, and angiogenic molecules. These molecules can work as potential biomarkers in the diagnosis and monitoring of the progress of ischemic stroke. The current study investigated the use of angiogenic molecules as biomarkers in ischemic stroke patients. Methods The samples were obtained from twenty healthy subjects and nineteen patients with ischemic stroke. Multiplex assay was used to measure the serum levels of angiogenic biomarkers, including endoglin, VEGF-A, endothelin-1, G-CSF, and angiopoietin-2. All data were analyzed using an unpaired Student’s t-test. Correlations between measured parameters were made using Pearson correlations. Results Angiopoietin-2, VEGF-A, endothelin-1, and endoglin levels in stroke patients were significantly higher compared to healthy controls. Nevertheless, G-CSF level showed a non-significant increase in patients compared to controls. The correlation coefficient of measured angiogenic biomarkers among patients showed significant correlations between endoglin, angiopoietin, VEGF-A, and endothelin-1. Discussion The angiogenic factors were significantly increased in patients with ischemic stroke, which may help in the early detection of ischemic stroke and consequently prompt treatment and better prognosis.
Collapse
Affiliation(s)
- Aziza Alrafiah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebtisam Alofi
- Department of Physiology, Medical School, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yasser Almohaya
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Hamami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Talal Qadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safa Almaghrabi
- Department of Physiology, Medical School, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nora Hakami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moafaq S Alrawaili
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Lyu Z, Park J, Kim KM, Jin HJ, Wu H, Rajadas J, Kim DH, Steinberg GK, Lee W. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat Biomed Eng 2021; 5:847-863. [PMID: 34385693 PMCID: PMC8524779 DOI: 10.1038/s41551-021-00744-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
The therapeutic efficacy of stem cells transplanted into an ischaemic brain depends primarily on the responses of the neurovascular unit. Here, we report the development and applicability of a functional neurovascular unit on a microfluidic chip as a microphysiological model of ischaemic stroke that recapitulates the function of the blood-brain barrier as well as interactions between therapeutic stem cells and host cells (human brain microvascular endothelial cells, pericytes, astrocytes, microglia and neurons). We used the model to track the infiltration of a number of candidate stem cells and to characterize the expression levels of genes associated with post-stroke pathologies. We observed that each type of stem cell showed unique neurorestorative effects, primarily by supporting endogenous recovery rather than through direct cell replacement, and that the recovery of synaptic activities is correlated with the recovery of the structural and functional integrity of the neurovascular unit rather than with the regeneration of neurons.
Collapse
Affiliation(s)
- Zhonglin Lyu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jon Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kwang-Min Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye-Jin Jin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jayakumar Rajadas
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deok-Ho Kim
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A.,Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Gary K. Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wonjae Lee
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA.,Correspondence and requests for materials should be addressed to: Corresponding author, Wonjae Lee, or
| |
Collapse
|
13
|
Snake venom vascular endothelial growth factors (svVEGFs): Unravelling their molecular structure, functions, and research potential. Cytokine Growth Factor Rev 2021; 60:133-143. [PMID: 34090786 DOI: 10.1016/j.cytogfr.2021.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis, a physiological process characterized by the formation of new vessels from a preexisting endothelium. VEGF has also been implicated in pathologic states, such as neoplasias, intraocular neovascular disorders, among other conditions. VEGFs are distributed in seven different families: VEGF-A, B, C, D, and PIGF (placental growth factor), which are identified in mammals; VEGF-E, which are encountered in viruses; and VEGF-F or svVEGF (snake venom VEGF) described in snake venoms. This is the pioneer review of svVEGF family, exploring its distribution among the snake venoms, molecular structure, main functions, and potential applications.
Collapse
|
14
|
Biomarkers of Angiogenesis and Neuroplasticity as Promising Clinical Tools for Stroke Recovery Evaluation. Int J Mol Sci 2021; 22:ijms22083949. [PMID: 33920472 PMCID: PMC8068953 DOI: 10.3390/ijms22083949] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Several key issues impact the clinical practice of stroke rehabilitation including a patient’s medical history, stroke experience, the potential for recovery, and the selection of the most effective type of therapy. Until clinicians have answers to these concerns, the treatment and rehabilitation are rather intuitive, with standard procedures carried out based on subjective estimations using clinical scales. Therefore, there is a need to find biomarkers that could predict brain recovery potential in stroke patients. This review aims to present the current state-of-the-art stroke recovery biomarkers that could be used in clinical practice. The revision of biochemical biomarkers has been developed based on stroke recovery processes: angiogenesis and neuroplasticity. This paper provides an overview of the biomarkers that are considered to be ready-to-use in clinical practice and others, considered as future tools. Furthermore, this review shows the utility of biomarkers in the development of the concept of personalized medicine. Enhancing brain neuroplasticity and rehabilitation facilitation are crucial concerns not only after stroke, but in all central nervous system diseases.
Collapse
|
15
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
17
|
Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS APPLIED BIO MATERIALS 2019; 2:5492-5511. [DOI: 10.1021/acsabm.9b00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Susheel Kumar Nethi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
18
|
Ping S, Qiu X, Kyle M, Hughes K, Longo J, Zhao LR. Stem cell factor and granulocyte colony-stimulating factor promote brain repair and improve cognitive function through VEGF-A in a mouse model of CADASIL. Neurobiol Dis 2019; 132:104561. [PMID: 31376480 DOI: 10.1016/j.nbd.2019.104561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL) is a cerebral small vascular disease caused by NOTCH3 gene mutation in vascular smooth muscle cells (VSMCs), leading to ischemic stroke and vascular dementia. To date, the pathogenesis of CADASIL remains poorly understood, and there is no treatment that can slow the progression of CADASIL. Using a transgenic mouse model of CADASIL (TgNotch3R90C), this study reveals novel findings for understanding CADASIL pathogenesis that decreased cerebral vascular endothelial growth factor (VEGF/VEGF-A) is linked to reduced cerebral blood vessel density. Reduced endothelial cell (EC) proliferation and angiogenesis are seen in TgNotch3R90C mouse brain-isolated ECs. Decreased dendrites, axons, and synapses in the somatosensory and motor cortex layer 2/3 and in the hippocampal CA1, and reduced neurogenesis in both the subventricular zone and subgranular zone occur in 15-month-old TgNotch3R90C mice. These reductions in neuron structures, synapses, and neurogenesis are significantly correlated to decreased cerebral vasculature in the corresponding areas. Impaired spatial learning and memory in TgNotch3R90C mice are significantly correlated with the reduced cerebral vasculature, neuron structures, and synapses. Repeated treatment of stem cell factor and granulocyte colony-stimulating factor (SCF+G-CSF) at 9 and 10 months of age improves cognitive function, increases cerebral VEGF/VEGF-A, restores cerebral vasculature, and enhances regeneration of neuronal structures, synaptogenesis and neurogenesis in TgNotch3R90C mice. Pretreatment with Avastin, an angiogenesis inhibitor by neutralizing VEGF-A, completely eliminates the SCF+G-CSF-enhanced cognitive function, vascular and neuronal structure regeneration, synaptogenesis and neurogenesis in TgNotch3R90C mice. SCF+G-CSF-enhanced EC proliferation and angiogenesis in TgNotch3R90C mouse brain-isolated ECs are also blocked by Avastin pretreatment. These data suggest that SCF+G-CSF treatment may repair Notch3R90C mutation-damaged brain through the VEGF-A-mediated angiogenesis. This study provides novel insight into the involvement of VEGF/VEGF-A in the pathogenesis of CADASIL and sheds light on the mechanism underlying the SCF+G-CSF-enhanced brain repair in CADASIL.
Collapse
Affiliation(s)
- Suning Ping
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Karen Hughes
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - John Longo
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
19
|
Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater 2019; 108:555-567. [PMID: 31081996 DOI: 10.1002/jbm.b.34411] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/17/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
Abstract
Application of hydrogels can be an effective technique in transferring the adipose-derived stem cells (ASCs) to injured tissue and their protection from further complications. Besides, acellular dermal matrix (ADM) has successfully been used in treatment of wounds. In this study, a combination of hylauronic acid (HA) and ASCs (HA/ASCs) was applied on burn wounds and the injured area was then covered by an ADM dressing in a rat model (ADM-HA/ASCs). Wound healing was evaluated by histopathological, histomorphometrical, molecular, biochemical, and scanning electron microscopy assessments on days 7, 14, and 28 post-wounding. ADM-HA/ASCs stimulated healing significantly more than the ADM-HA and ADM treated wounds, as it led to reduced inflammation, and improved angiogenesis and enhanced granulation tissue formation. Expression of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) was lower in the ADM-HA/ASCs treated wounds than the ADM-HA and ADM groups, at the seventh post-wounding day. ADM-HA/ASCs also enhanced the expression level of TGF-β1 mRNA at 14 day post-wounding that was parallel to the experimental data from histological and biochemical assessments and confirmed the positive role of ASCs in repair of burn wounds. Additionally, increase in basic fibroblast growth factor (bFGF) expression and decreased TGF-β1 level on the 28th post-wounding day indicated the anti-scarring activity of ASCs. HA loaded by adipose stem cells can represent a promising strategy in accelerating burn wound healing.
Collapse
Affiliation(s)
- Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali A Mohammadi
- Burn and Wound Healing Research Center, Plastic and Reconstructive Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Koutakis P, Ismaeel A, Farmer P, Purcell S, Smith RS, Eidson JL, Bohannon WT. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol Rep 2019; 6:e13650. [PMID: 29611350 PMCID: PMC5880878 DOI: 10.14814/phy2.13650] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Peripheral artery disease is an atherosclerotic disease of arterial vessels that mostly affects arteries of lower extremities. Effort induced cycles of ischemia and reperfusion lead to increased reactive oxygen species production by mitochondria. Therefore, the pathophysiology of peripheral artery disease is a consequence of metabolic myopathy, and oxidative stress is the putative major operating mechanism behind the structural and metabolic changes that occur in muscle. In this review, we discuss the evidence for oxidative damage in peripheral artery disease and discuss management strategies related to antioxidant supplementation. We also highlight the major pathways governing oxidative stress in the disease and discuss their implications in disease progression. Potential therapeutic targets and diagnostic methods related to these mechanisms are explored, with an emphasis on the Nrf2 pathway.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Health Human Performance and Recreation, Baylor University, Waco, Texas
| | - Ahmed Ismaeel
- Department of Health Human Performance and Recreation, Baylor University, Waco, Texas
| | - Patrick Farmer
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas
| | - Seth Purcell
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - Robert S Smith
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - Jack L Eidson
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| |
Collapse
|
21
|
Daicheng H, Shiwen X, Huaping Z, Yong L, Qianqian Z, Changxia H. Fangchinoline Ameliorates the Expressions of Angiogenic Molecule in Cerebral Ischemia Induced Neuronal Degeneration in Neonatal Rats. Transl Neurosci 2019; 9:117-122. [PMID: 30687543 PMCID: PMC6341909 DOI: 10.1515/tnsci-2018-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Background Present investigation evaluates the beneficial effect of fangchinoline on cerebral ischemia induced neuronal degeneration in neonatal rats and also postulates the possible mechanism of its action. Methodology Cerebral ischemia was produced by the ligation of right common carotid artery in neonatal rats on postnatal day 5 (P5) and further pups were treated with fangchinoline 3, 10 and 30 mg/kg, i.p. for the period of 3 days. Effect of fangchinoline was estimated by determining the brain injury and enzyme linked immunosorbent assay (ELISA) method was used for the estimation of pro-inflammatory mediators and markers of oxidative stress in the cerebral tissues of neonatal rats. Moreover western blot assay and histopathology study was also performed on the brain tissue. Results Result of this investigation reveals that the percentage of brain injury significantly reduces and enhancement of myelin basic protein in the cerebral tissues of fangchinoline than ischemic group. Treatment with fangchinoline attenuates the altered level of proinflammatory mediators and markers of oxidative stress in the cerebral tissue of cerebral ischemia induced neuronal injury neonatal rats. Moreover expressions of inducible nitric oxide synthtase (iNOS), vascular endothelial growth factor (VEGF), p53 and nuclear receptor factor-2 (Nrf2) in the brain tissue attenuated by fangchinoline treated group. Conclusion In conclusion, fangchinoline ameliorates the cerebral ischemia induced neuronal injury in neonatal rats by enhancing angiogenesis molecules.
Collapse
Affiliation(s)
- Han Daicheng
- Department of Neonatology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China
| | - Xia Shiwen
- Department of Neonatology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China
| | - Zhu Huaping
- Department of Neonatology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China
| | - Liu Yong
- Department of Neonatology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China
| | - Zhou Qianqian
- Department of Neonatology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China
| | - Hu Changxia
- Department of Neonatology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China
| |
Collapse
|
22
|
Huang K, Hu S, Cheng K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv Healthc Mater 2019; 8:e1801011. [PMID: 30548836 PMCID: PMC6368830 DOI: 10.1002/adhm.201801011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI), caused by coronary heart disease (CHD), remains one of the most common causes of death in the United States. Over the last few decades, scientists have invested considerable resources on the study and development of cell therapies for myocardial regeneration after MI. However, due to a number of limitations, they are not yet readily available for clinical applications. Mounting evidence supports the theory that paracrine products are the main contributors to the regenerative effects attributed to these cell therapies. The next generation of cell-based MI therapies will identify and isolate cell products and derivatives, integrate them with biocompatible materials and technologies, and use them for the regeneration of damaged myocardial tissue. This review discusses the progress made thus far in pursuit of this new generation of cell therapies. Their fundamental regenerative mechanisms, their potential to combine with other therapeutic products, and their role in shaping new clinical approaches for heart tissue engineering, are addressed.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
- Pharmacoengineeirng and Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
23
|
Yang J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res 2018; 123:62-67. [PMID: 30594490 DOI: 10.1016/j.mvr.2018.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress, which is defined as an imbalance between proxidant and antioxidant systems, is the essential mechanism involving in the ischemic process. During the early stage of brain ischemia, reactive oxygen species (ROS) are increased. Increased ROS are thought of a consequence of brain ischemia and exacerbating disease due to inducing cell death, apoptosis and senescence by oxidative stress. During brain tissue repair, ROS are act as signaling molecules and may be benefical for regulating angiogenesis and preventing tissue injury. New blood vessel formation is essentially required for rescuing tissue from brain ischemia. In ischemic conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products. ROS-induced angiogenesis involves several signaling pathways. This paper reviewed current understanding of the role of ROS as a mediator and modulator of angiogenesis in brain ischemia.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang 050000, Hebei Province, China.
| |
Collapse
|
24
|
Xing Y, Zhang M, Li WB, Dong F, Zhang F. Mechanisms Involved in the Neuroprotection of Electroacupuncture Therapy for Ischemic Stroke. Front Neurosci 2018; 12:929. [PMID: 30618558 PMCID: PMC6297779 DOI: 10.3389/fnins.2018.00929] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the main causes of death all over the world. As the combination of acupuncture and electric stimulation, electroacupuncutre is a safe and effective therapy, which is commonly applied in ischemic stroke therapy in both experimental studies and clinical settings. The review was performed via searching for related articles in the databases of OVID, PUBMED, and ISI Web of Science from their respective inceptions to May 2018. In this review, we summarized the mechanism of EA for ischemic stroke via a series of factors, consisting of apoptosis related-factors, inflammatory factors, autophagy-related factors, growth factors, transcriptional factors, cannabinoid CB1 receptors, and other factors. In summary, EA stimulation may effectively alleviate ischemic brain injury via a series of signal pathways and various other factors.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Zhong T, Piao L, Kim HJ, Liu X, Jiang S, Liu G. Chlorogenic Acid-Enriched Extract of Ilex kudingcha C.J. Tseng Inhibits Angiogenesis in Zebrafish. J Med Food 2018; 20:1160-1167. [PMID: 29243968 DOI: 10.1089/jmf.2017.3987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Kudingcha is a particularly bitter tasting tea that has been widely used in China to eliminate fever and itching eyes, and to clear blood toxins. Kudingcha is considered of value for its potential anticancer effects that are attributed to the presence of characteristic bioactive ingredients. The chlorogenic acid (CGA) derivatives 3-0-caffeoylquinic acid, 5-0-caffeoylquinic acid, 3,5-0-dicaffeoylquinic acid, and 4,5-0-dicaffeoylquinic acid were separated from Ilex kudingcha C.J. Tseng extract by high-performance liquid chromatography (HPLC)-photodiode array detector (PDA) and HPLC-nuclear magnetic resonance (NMR). In Tg(flk1:EGFP) zebrafish embryos at 52 hours postfertilization (hpf), angiogenesis was significantly inhibited by kudingcha extract (KDCE) at concentrations of 400 and 500 μg/mL and CGA also showed significant inhibition in embryos treated with 80, 100, and 130 μg/mL. Endothelial cell apoptosis showed a dose-dependent increase in response to KDCE and CGA. CGA derivatives from KDCE could have potential as anticancer agents against tumor angiogenesis.
Collapse
Affiliation(s)
- Tao Zhong
- 1 Department of Veterinary Medicine, Hainan University , 58 Renmin Road, Haikou, China
| | - Linghua Piao
- 2 Department of Physiology, Hainan Medical University , Haikou, China
| | - Hyun Jung Kim
- 3 College of Pharmacy and Natural Medicine Research Institute, Mokpo National University , Muan-gun, Korea
| | - Xiande Liu
- 1 Department of Veterinary Medicine, Hainan University , 58 Renmin Road, Haikou, China
| | - Shengnan Jiang
- 4 Department of Nuclear Medicine, Affiliated HaiKou Hospital, Xiangya School of Medicine, Central South University , Haikou, China
| | - Guomin Liu
- 5 Kudingcha Institute, Hainan University , Haikou, China
| |
Collapse
|
27
|
Long-Zhi Decoction Medicated Serum Promotes Angiogenesis in Human Umbilical Vein Endothelial Cells Based on Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6857398. [PMID: 29853968 PMCID: PMC5964498 DOI: 10.1155/2018/6857398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Ischemic stroke (IS) is a fatal subtype of stroke that lacks effective treatments. Angiogenesis following IS is an effective response that mediates brain recovery and repair. Our previous study demonstrated that long-zhi decoction (LZD), a Chinese herbal formula, promoted angiogenesis in rats of IS model. To further investigate the association between the proangiogenic mechanism of an LZD-medicated serum and cellular autophagy, we evaluated its promotional effect on angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro. We used HUVECs subjected to H2O2 to induce injury and observed the effects of the LZD-medicated serum treatment. Cell-based assays included proliferation, migration, and tube formation. To assess the extent of autophagy, transmission electron microscopy was used to measure the number of autophagosomes. Immunofluorescence and Western blotting were performed to evaluate the autophagy-related protein of LC3-II and Beclin-1. The LZD-medicated serum promoted proliferation, migration, and tube formation in HUVECs. The LZD-medicated serum also increased the autophagosomes and the autophagic protein expressions of LC3-II and Beclin-1. The proangiogenic and autophagic activity of LZD provides new cogitations to its clinical application and may lead to potential drug development for treating various vascular diseases, especially in the elderly, in the future.
Collapse
|
28
|
Zeng Y, Han H, Tang B, Chen J, Mao D, Xiong M. Transplantation of Recombinant Vascular Endothelial Growth Factor (VEGF)189-Neural Stem Cells Downregulates Transient Receptor Potential Vanilloid 1 (TRPV1) and Improves Motor Outcome in Spinal Cord Injury. Med Sci Monit 2018; 24:1089-1096. [PMID: 29466323 PMCID: PMC5829538 DOI: 10.12659/msm.905264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Spinal cord injury (SCI) causes a rapid loss of motor neurons, leading to weakness and paralysis. Transplantation of neural stem cells is known to restore the neuronal activity but is inefficient due to limited regenerative capability and low rate of survival. There has been an emphasis on the use of growth factors along with neural stem cells (NSCs) to enhance the neuronal recovery. Transplantation of recombinant NSCs with vascular endothelial growth factor (VEGF) might promote neuronal repair. This effect might be attributed to the reduced transient receptor potential vanilloid 1 (TRPV1) expression following transplantation. Material/Methods NSCs were cultured from the embryos of Sprague-Dawley rats (E12.5). Four group of rats (n=10, each) were subjected to SCI and allowed to recover for 1 week. Recombinant VEGF-NSCs, normal NSCs and PBS were intrathecally administered to the rats. VEGF and TRPV-1 expression at mRNA and protein level was evaluated. ELISA was performed to determine the release of neurotrophic factors after the transplantation. Motor neurons and axons were counted and the motor behavioral outcome was assessed using the rota-rod test. Results VEGF-NSC transgene transplantation resulted in an enhanced neuronal repair and motor behavioral outcome compared to the normal NSCs transplanted group. VEGF-NSCs increased the release of neurotrophic factors and reduced the expression of TRPV1. Conclusions Recombinant VEGF-NSCs transplantation following SCI is more efficacious compared to normal NSC transplantation. This might also be related to a reduced pain in the process of recovery due to reduced TRPV1 expression.
Collapse
Affiliation(s)
- Yun Zeng
- Department of Orthopedics, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Heng Han
- Department of Orthopedics, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Bing Tang
- Department of Orthopedics, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Jie Chen
- Department of Orthopedics, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Dan Mao
- Department of Orthopedics, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Min Xiong
- Department of Orthopedics, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| |
Collapse
|
29
|
Billinger SA, Sisante JFV, Whitaker AA, Abraham MG. Time Course of Flow-Mediated Dilation and Vascular Endothelial Growth Factor following Acute Stroke. J Stroke Cerebrovasc Dis 2017; 27:957-962. [PMID: 29198900 DOI: 10.1016/j.jstrokecerebrovasdis.2017.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES People after stroke demonstrate alterations in vascular endothelial function measured by flow-mediated dilation. Limited information is available in the literature on possible protective factors following stroke. The aims of the secondary analysis were (1) to characterize the time course of vascular endothelial function using flow-mediated dilation at 72 hours after stroke and 1 week later during inpatient stroke rehabilitation and (2) to determine whether flow-mediated dilation was related to vascular endothelial growth factor, brain-derived neurotrophic factor, or estimated prestroke peak oxygen uptake. METHODS Flow-mediated dilation using Doppler ultrasound was assessed in bilateral brachial arteries at the defined time points. Flow-mediated dilation and blood draws occurred on the same day between 7:30 am and 9:00 am following an overnight fast. Enzyme-linked immunosorbent assay was used to quantify plasma vascular endothelial growth factor and brain-derived neurotrophic factor values. A nonexercise estimate was used to calculate prestroke peak oxygen uptake. RESULTS We have shown that between-limb differences are evident within 72 hours after stroke and remain 1 week later during inpatient rehabilitation. Higher values for vascular endothelial growth factor were associated with increased flow-mediated dilation at both time points. Higher estimated prestroke peak oxygen uptake was related to flow-mediated dilation. Brain-derived neurotrophic factor was not related to any outcome measures. CONCLUSIONS Unique vascular adaptations start early after stroke in the stroke-affected limb and remain through inpatient stroke rehabilitation. Vascular endothelial growth factor and prestroke physical activity may have a protective role in vascular function following stroke. Future work should focus on mechanistic pathways for preservation of vascular health.
Collapse
Affiliation(s)
- Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas.
| | - Jason-Flor V Sisante
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Alicen A Whitaker
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael G Abraham
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas; Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
30
|
Dong Z, Shi Y, Zhao H, Li N, Ye L, Zhang S, Zhu H. Sulphonated Formononetin Induces Angiogenesis through Vascular Endothelial Growth Factor/cAMP Response Element-Binding Protein/Early Growth Response 3/Vascular Cell Adhesion Molecule 1 and Wnt/β-Catenin Signaling Pathway. Pharmacology 2017; 101:76-85. [PMID: 29131133 DOI: 10.1159/000480662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sodium formononetin-3'-sulphonate (Sul-F) is a derivative of the isoflavone formononetin. In this study, we investigated whether Sul-F can regulate angiogenesis and the potential mechanism in vitro. METHODS We examined the effects of Sul-F on cell proliferation, cell invasion, and tube formation in the human umbilical vein endothelial cell line (HUVEC). To better understand the mechanism involved, we investigated effects of the following compounds: cAMP response element-binding protein (CREB) inhibitor 2-naphthol-AS-E-phosphate (KG-501), early growth response 3 (Egr-3) siRNA, vascular endothelial growth factor (VEGF) antagonist soluble VEGF receptor 1 (sFlt-1), VEGF receptor 2 blocker SU-1498, Wnt5a antagonist WIF-1 recombinant protein (WIF-1), and inhibitor of Wnt/β-catenin recombinant Dickkopf-1 protein (DKK-1). HUVEC proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). A scratch adhesion test was used to assess cell invasion ability. Matrigel tube formation assay was performed to test capillary tube formation ability. Activation of the VEGF/CREB/Egr-3/Vascular cell adhesion molecule 1 (VCAM-1) pathway in HUVEC was tested by Western blot analysis. RESULTS Our results suggest that Sul-F induced angiogenesis in vitro by enhancing cell proliferation, invasion, and tube formation. The increase in proliferation and tube formation by Sul-F was counteracted by DKK-1, WIF-1, SU1498, KG-501, sFlt-1, and Egr-3 siRNA. CONCLUSIONS These results may suggest that Sul-F induces angiogenesis in vitro via a programed Wnt/β-catenin pathway and VEGF/CREB/Egr-3/VCAM-1 signaling axis.
Collapse
Affiliation(s)
- Zhaoju Dong
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Yanan Shi
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, China
| | - Huijuan Zhao
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Ning Li
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, China.,Institute of Toxicology, Binzhou Medical University, Yantai, China
| | - Shuping Zhang
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, China
| | - Haibo Zhu
- School of Public Health and Management, Binzhou Medical University, Yantai, China.,Institute of Toxicology, Binzhou Medical University, Yantai, China
| |
Collapse
|
31
|
Herrfurth L, Theis V, Matschke V, May C, Marcus K, Theiss C. Morphological Plasticity of Emerging Purkinje Cells in Response to Exogenous VEGF. Front Mol Neurosci 2017; 10:2. [PMID: 28194096 PMCID: PMC5276996 DOI: 10.3389/fnmol.2017.00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is well known as the growth factor with wide-ranging functions even in the central nervous system (CNS). Presently, most attention is given to the investigation of its role in neuronal protection, growth and maturation processes, whereby most effects are mediated through VEGF receptor 2 (VEGFR-2). The purpose of our current study is to provide new insights into the impact of VEGF on immature and mature Purkinje cells (PCs) in accordance with maturity and related receptor expression. Therefore, to expand our knowledge of VEGF effects in PCs development and associated VEGFR-2 expression, we used cultivated organotypic cerebellar slice cultures in immunohistochemical or microinjection studies, followed by confocal laser scanning microscopy (CLSM) and morphometric analysis. Additionally, we incorporated in our study the method of laser microdissection, followed by quantitative polymerase chain reaction (qPCR). For the first time we could show the age-dependent VEGF sensitivity of PCs with the largest promoting effects being on dendritic length and cell soma size in neonatal and juvenile stages. Once mature, PCs were no longer susceptible to VEGF stimulation. Analysis of VEGFR-2 expression revealed its presence in PCs throughout development, which underlined its mediating functions in neuronal cells.
Collapse
Affiliation(s)
- Leonard Herrfurth
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Verena Theis
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Veronika Matschke
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Caroline May
- Abteilung für Medizinische Proteomik/Bioanalytik, Medizinisches Proteom-Center, Ruhr-University Bochum Bochum, Germany
| | - Katrin Marcus
- Abteilung für Medizinische Proteomik/Bioanalytik, Medizinisches Proteom-Center, Ruhr-University Bochum Bochum, Germany
| | - Carsten Theiss
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| |
Collapse
|
32
|
Chan HH, Wathen CA, Ni M, Zhuo S. Stem cell therapies for ischemic stroke: current animal models, clinical trials and biomaterials. RSC Adv 2017. [DOI: 10.1039/c7ra00336f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We report the facilitation of stem cell therapy in stroke by tissue engineering and applications of biomaterials.
Collapse
Affiliation(s)
- Hugh H. Chan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Department of Neuroscience
| | | | - Ming Ni
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Shuangmu Zhuo
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| |
Collapse
|
33
|
Rud'ko AS, Efendieva MK, Budzinskaya MV, Karpilova MA. [Influence of vascular endothelial growth factor on angiogenesis and neurogenesis]. Vestn Oftalmol 2017; 133:75-81. [PMID: 28745660 DOI: 10.17116/oftalma2017133375-80] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is known as a key mediator of angiogenesis, but there is also evidence of its broad significance in neurogenesis and neuroprotection. Cytokines of the VEGF family affect neovascularization and neural development in the brain, particularly during cerebral ischemia, in which there is a coordinated interaction of angiogenesis and neurogenesis that contributes to rapid functional recovery. This review examines the involvement of VEGF family members and their receptors in physiological and pathophysiological processes as well as the relationship between VEGF-A plasma levels and ischemic stroke.
Collapse
Affiliation(s)
- A S Rud'ko
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M Kh Efendieva
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M V Budzinskaya
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M A Karpilova
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| |
Collapse
|
34
|
Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med 2016; 5:jcm5060056. [PMID: 27275837 PMCID: PMC4929411 DOI: 10.3390/jcm5060056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Stroke is one of the major causes of death and adult disability worldwide. The underlying pathophysiology of stroke is highly complicated, consisting of impairments of multiple signalling pathways, and numerous pathological processes such as acidosis, glutamate excitotoxicity, calcium overload, cerebral inflammation and reactive oxygen species (ROS) generation. The current treatment for ischemic stroke is limited to thromolytics such as recombinant tissue plasminogen activator (tPA). tPA has a very narrow therapeutic window, making it suitable to only a minority of stroke patients. Hence, there is great urgency to develop new therapies that can protect brain tissue from ischemic damage. Recent studies have shown that new vessel formation after stroke not only replenishes blood flow to the ischemic area of the brain, but also promotes neurogenesis and improves neurological functions in both animal models and patients. Therefore, drugs that can promote angiogenesis after ischemic stroke can provide therapeutic benefits in stroke management. In this regard, Chinese herbal medicine (CHM) has a long history in treating stroke and the associated diseases. A number of studies have demonstrated the pro-angiogenic effects of various Chinese herbs and herbal formulations in both in vitro and in vivo settings. In this article, we present a comprehensive review of the current knowledge on angiogenesis in the context of ischemic stroke and discuss the potential use of CHM in stroke management through modulation of angiogenesis.
Collapse
|
35
|
Xu Y, Zhang G, Kang Z, Xu Y, Jiang W, Zhang S. Cornin increases angiogenesis and improves functional recovery after stroke via the Ang1/Tie2 axis and the Wnt/β-catenin pathway. Arch Pharm Res 2015; 39:133-42. [DOI: 10.1007/s12272-015-0652-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 08/11/2015] [Indexed: 11/28/2022]
|
36
|
Miao Z, He Y, Xin N, Sun M, Chen L, Lin L, Li J, Kong J, Jin P, Xu X. Altering 5-hydroxymethylcytosine modification impacts ischemic brain injury. Hum Mol Genet 2015; 24:5855-66. [PMID: 26231219 DOI: 10.1093/hmg/ddv307] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/24/2015] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications such as cytosine methylation and histone modification are linked to the pathology of ischemic brain injury. Recent research has implicated 5-hydroxymethylcytosine (5hmC), a DNA base derived from 5-methylcytosine (5mC) via oxidation by ten-eleven translocation (Tet) enzymes, in DNA methylation-related plasticity. Here we show that 5hmC abundance was increased after ischemic injury, and Tet2 was responsible for this increase; furthermore, inhibiting Tet2 expression abolished the increase of 5hmC caused by ischemic injury. The decrease in 5hmC modifications from inhibiting Tet2 activity was accompanied by increased infarct volume after ischemic injury. Genome-wide profiling of 5hmC revealed differentially hydroxymethylated regions (DhMRs) associated with ischemic injury, and DhMRs were enriched among the genes involved in cell junction, neuronal morphogenesis and neurodevelopment. In particular, we found that 5hmC modifications at the promoter region of brain-derived neurotrophic factor (BDNF) increased, which was accompanied by increased BDNF mRNA, whereas the inhibition of Tet2 reduced BDNF mRNA and protein expression. Finally, we show that the abundance of 5hmC in blood samples from patients with acute ischemic stroke was also significantly increased. Together, these data suggest that 5hmC modification could serve as both a potential biomarker and a therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhigang Miao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215004, P.R. China, Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province 215123, P.R. China
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Ning Xin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215004, P.R. China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, P.R. China
| | - Li Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jizhen Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215004, P.R. China, Department of Neurology, Suzhou Kowloon Hospital, Suzhou City, Jiangsu Province 215021, P.R. China and
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA,
| | - Xingshun Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215004, P.R. China, Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province 215123, P.R. China,
| |
Collapse
|
37
|
Puspitasari V, Wahid S, Aliah A, Suhadi B, Kaelan C, As'ad S, Patellongi I, Purba JS, Wahjoepramono EJ. Serum vascular endothelial growth factor as a predictor of clinical outcomes in anterior circulation ischemic stroke. MEDICAL JOURNAL OF INDONESIA 2015. [DOI: 10.13181/mji.v24i2.1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Background: Inflammatory response in the acute phase of ischemic stroke will trigger the process of neuroplasticity and determine the clinical outcomes. Angiogenesis and neurogenesis are induced by expression of vascular endothelial growth factor (VEGF) in the acute phase of stroke. The purpose of this study was to determine the association between VEGF serum level in acute phase of stroke with the clinical outcomes.Methods: This longitudinal cohort study was conducted on 64 patients suffering from first-attack of anterior circulation blockage as evidenced by cephalic diffusion-weighted magnetic resonance imaging (DWI). VEGF serum level was measured at 72 hours and 7 days after stroke and the clinical outcomes were assessed on day 30 post-stroke using the National Institutes of Health Stroke Scale (NIHSS).Results: VEGF level at hour-72 and on day-7 were 5.84 ± 0.736 ng/mL and 5.797 ± 0.96 ng/mL, respectively (p > 0.05). High VEGF levels at hour-72 can be used to predict poor clinical outcome 30 days after stroke (OR = 6.5; 95% CI = 1.15-36.61; p = 0.034). Subjects who have increasing levels of VEGF on day-7 compared to hour-72 tend to have better clinical outcomes on day-30. (NIHSS score = 1.33 ± 1.22 vs 3 ± 3.78; p = 0.232).Conclusion: VEGF levels in the acute phase of ischemic stroke reflect the degree of brain damage, the dynamic of the increase in VEGF levels after a stroke was associated with better clinical outcomes.
Collapse
|
38
|
Dulamea AO. The potential use of mesenchymal stem cells in stroke therapy--From bench to bedside. J Neurol Sci 2015; 352:1-11. [PMID: 25818674 DOI: 10.1016/j.jns.2015.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
Abstract
Stroke is the second main cause of morbidity and mortality worldwide. The rationale for the use of mesenchymal stem cells (MSCs) in stroke is based on the capacity of MSCs to secrete a large variety of bioactive molecules such as growth factors, cytokines and chemokines leading to reduction of inflammation, increased neurogenesis from the germinative niches of central nervous system, increased angiogenesis, effects on astrocytes, oligodendrocytes and axons. This review presents the data derived from experimental studies and the evidence available from clinical trials about the use of MSCs in stroke therapy.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. "Carol Davila", Fundeni Clinical Institute, Department of Neurology, 258 Sos. Fundeni, Sector 2, Bucharest, Romania.
| |
Collapse
|
39
|
Chisholm NC, Henderson ML, Selvamani A, Park MJ, Dindot S, Miranda RC, Sohrabji F. Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics 2015; 10:142-52. [PMID: 25565250 DOI: 10.1080/15592294.2014.1001219] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In animal models, middle-aged females sustain greater ischemia-induced infarction as compared to adult females. This age difference in infarct severity is associated with reduced functional capacity of astrocytes, a critical neural support cell. The impaired response of astrocytes following stroke in middle-aged females may be related to epigenetic alterations, including histone acetylation or methylation. The present study measured the activity of enzymes that regulate histone acetylation and methylation in cerebral cortical astrocytes of adult (6 month) and middle-aged (11+ month) female rats 48 h following middle cerebral artery occlusion. H3K4 histone methyltransferase activity was decreased in astrocytes from middle-aged females. The next experiment therefore examined H3K4me3 (transcriptional enhancer) and H3K9me3 (transcriptional repressor) in astrocytes from adult and middle-aged females using ChIP-seq analysis. Adult females had more enriched H3K4me3 peaks (304 vs. 26) at transcriptional start sites and fewer H3K9me3 enriched peaks than middle-aged females (4 vs. 22), indicating a pattern of less active chromatin in astrocytes in the older group following ischemia. DAVID clustering analysis of H3K4me3 enriched genes found several functional categories, including cell motility, regulation of apoptosis and the vascular endothelial growth factor (VEGF) pathway. H3K4me3 was enriched at the miR-17-20 cluster and VEGFa, and analysis of a separate set of astrocytes confirmed that VEGF protein expression and miR-20 mRNA expression were significantly greater following ischemia in adult females compared to middle-aged females. These data indicate that astrocytes display less active chromatin with aging and provide new insight into possible mechanisms for differences in stroke severity observed during aging.
Collapse
Key Words
- BCA, bicinchoninic acid
- ChIP, chromatin immunoprecipitation
- DNA, deoxyribonucleic acid
- DNMT1, DNA methyltransferase 1
- DTT, Dithiothreitol
- FDR, false discovery rate
- GFAP, glial fibrillary acidic protein
- GLAST, glutamate–aspartate transporter
- GLT-1, glial glutamate transporter 1
- H3K4, histone 3 lysine 4
- H3K4me3
- H3K9, histone 3 lysine 9
- HAT, histone acetyltransferase
- HBSS, hank's balanced salt solution
- HDAC
- HDAC, histone deacetyltransferase
- IGF-1, insulin-like growth factor-1
- Iba-1, ionized calcium binding adaptor molecule 1
- MACS, model-based analysis of ChIP-seq
- NeuN, neuronal nuclei
- PECAM, platelet endothelial cell adhesion molecule
- SICER, spatial clustering for identification of ChIP-enriched regions
- SIRT, sirtuin
- VEGF, vascular endothelial growth factor, mRNA
- acetylation
- aging
- epigenetics
- histone 3 lysine 4 trimethylation
- me3, trimethylation
- messenger ribonucleic acid
- qPCR, quantitative polymerase chain reaction
- stroke
- transcription
Collapse
Affiliation(s)
- Nioka C Chisholm
- a Women's Health in Neuroscience Program; Department of Neuroscience and Experimental Therapeutics; Texas A & M Health Science Center College of Medicine ; Bryan , TX USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Kwon HS, Kim YS, Park HH, Choi H, Lee KY, Lee YJ, Heo SH, Chang DI, Koh SH. Increased VEGF and decreased SDF-1α in patients with silent brain infarction are associated with better prognosis after first-ever acute lacunar stroke. J Stroke Cerebrovasc Dis 2015; 24:704-10. [PMID: 25601176 DOI: 10.1016/j.jstrokecerebrovasdis.2014.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Pre-existing silent brain infarctions (SBIs) have been reported to be associated with better outcomes after first-ever symptomatic ischemic stroke, although the mechanism of this remains unclear. We investigated the association between SBIs, outcomes of acute lacunar infarction, and biomarkers including vascular endothelial growth factor (VEGF), stromal cell-derived factor-1α (SDF-1α), macrophage migration inhibitory factor (MIF), and high-mobility group box-1 (HMGB1). METHODS A total of 68 consecutive patients diagnosed with first-ever lacunar infarction (<20 mm) within 24 hours of symptom onset were included in this study. Clinical, laboratory, and imaging data were obtained. Plasma levels of VEGF, SDF-1α, MIF, and HMGB1 were assessed using Enzyme-Linked Immunosorbent Assay kits. RESULTS SBIs were noted in 31 of the 68 patients. Although the initial National Institutes of Health Stroke Scale scores were not related with the presence of SBIs (P = .313), patients with SBIs had better outcomes at 3 months (P = .029). Additionally, plasma VEGF levels were higher (P = .035) and SDF-1α levels were lower (P < .001) in patients with SBIs. Logistic regression analysis indicated that VEGF and SDF-1α were independently associated with the presence of SBIs. CONCLUSIONS SBIs are associated with favorable outcomes in patients with first-ever acute lacunar infarction and higher levels of VEGF, and lower levels of SDF-1α in these patients may contribute to their more favorable prognosis.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Seo Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sung Hyuk Heo
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Dae-Il Chang
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea.
| |
Collapse
|