1
|
Rani K, Pippal B, Singh SK, Karmakar A, Vankayala R, Jain N. Effects of the aspect ratio of plasmonic gold nanorods on the inhibition of lysozyme amyloid formation. Biomater Sci 2023. [PMID: 37161699 DOI: 10.1039/d3bm00400g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid formation due to altered protein folding and aggregation has gained significant attention due to its association with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and systemic lysozyme amyloidosis. Amyloids are characterized by parallel and anti-parallel cross-β-strands arranged to form stacks of sheets that provide stability and rigidity to the amyloid core. The prototypic protein Hen Egg White Lysozyme (HEWL) has been extensively used to understand protein hydrolysis, fragmentation, folding, misfolding, and amyloid formation. In the present study, we have examined the efficacy of plasmonic gold nanorods (GNRs) as an anti-amyloid agent against HEWL amyloids. Our results reveal that (i) the amyloid inhibition by plasmonic GNRs is dependent on their aspect ratio, (ii) the large aspect ratio GNRs ameliorate amyloid assembly completely, and (iii) GNRs interfere at several stages along the lysozyme fibril-formation pathway and block the conversion of monomeric and oligomeric intermediates into mature fibrils. Using a multi-parametric approach, we demonstrate that GNRs drive HEWL into off-pathway and amyloid-incompetent forms. To establish GNRs as generic amyloid inhibitors, we extended our studies to another archetypal protein, Bovine Serum Albumin (BSA), and observed similar results of GNRs inhibiting BSA aggregation. We believe that our results will pave the way for the potential use of GNRs with current therapeutics to reduce the burden of amyloid-related diseases.
Collapse
Affiliation(s)
- Khushboo Rani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Bhumika Pippal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Shubham Kumar Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Anurupa Karmakar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Centre for Emerging Technologies for Sustainable Development (CETSD), Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
2
|
Unnikrishnan AC, Sushana Thennarasu A, Saveri P, Pandurangan S, Deshpande AP, Ayyadurai N, Shanmugam G. π-System Functionalization Transforms Amyloidogenic Peptide Fragment of Human Islet Amyloid Polypeptide into a Super Hydrogelator. Chem Asian J 2023; 18:e202201235. [PMID: 36567257 DOI: 10.1002/asia.202201235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
While a considerable number of ultra-short/short amyloid peptides have been reported to form 3D supramolecular hydrogels, they all possess high minimum gelation concentration (MGC) (≥1 wt%), which preclude their applications. In this context, we demonstrate that functionalisation of a well-known amyloidogenic ultra-short peptide fragment NFGAIL (IAPf) of human Islet amyloid polypeptide with a π-system (Fluorenyl, Fm) at the N-terminus of the peptide (Fm-IAPf) yield not only highly thermostable hydrogel at physiological pH but also exhibited super gelator nature as the MGC (0.08 wt%) falls below 0.1 wt%. Various experimental results confirmed that aromatic π-π interactions from fluorenyl moieties and hydrogen bonding interactions between the IAPf drive the self-assembly/fibril formation. Fm-IAPf is the first super hydrogelator derived from amyloid-based ultra-short peptides, to the best of our knowledge. We strongly believe that this report, i. e., functionalization of an amyloid peptide with π-system, provides a lead to develop super hydrogelators from other amyloid-forming peptide fragments for their potential applications.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abinaya Sushana Thennarasu
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, 600036, Chennai, India
| | - Suryalakshmi Pandurangan
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, 600036, Chennai, India
| | - Niraikulam Ayyadurai
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
J-aggregation of 5, 10, 15, 20-tetraphenyl-21H, 23H-porphinetetrasulfonic acid in a molecular crowding environment simulated using dextran. ANAL SCI 2022; 38:1505-1512. [PMID: 36050568 DOI: 10.1007/s44211-022-00185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
Abstract
In a molecular crowding environment, different thermodynamics is often observed in a dilute solution. One such example is the promotion of the formation of amyloids, which are causal agents of Alzheimer's disease. Although a considerable number of molecular crowding studies have been reported, its effect remains unclear. In this study, we investigated a J-aggregation of a porphyrin derivative, 5, 10, 15, 20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (TPPS), in a molecular crowding environment simulated by dextran (Dex) in HClO4, HCl, and NaCl solutions. The changes in the number of monomers in the J-aggregate (n) with the concentration of Dex (CDex) depended on the type of solution. No change in n was observed in the NaCl solution, which indicated that the Dex solution did not affect the J-aggregation because of the ionic strength effect. In the HCl solution, the aggregation behavior changed with the pH. Further, at a low pH, the electrostatic interactions promoted J-aggregation by the volume exclusion of Dex, while the aggregation was suppressed at a high pH owing to steric hindrance. A different aggregation mechanism, involving the hydrogen bonding between NH in the center of the TPPS macrocyclic frame and the SO3H and ClO4- functional groups, was responsible for the J-aggregation in the HClO4 solution. Moreover, the n value increased owing to the volume exclusion effect. We expect that this study will be useful for further elucidation of the molecular crowding effect.
Collapse
|
4
|
Wang J, Liu J, Dong Q, An Y, Su J, Xie H, Sun B, Liu J. The Influence of Heparan Sulfate on Breast Amyloidosis and the Toxicity of the Pre-fibrils Formed by β-casein. Protein J 2022; 41:543-549. [PMID: 35962883 DOI: 10.1007/s10930-022-10071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/27/2022]
Abstract
Heparan sulfate (HS) as a mediator is usually involved in both inflammation and fibrosis. Besides, pre-fibrils are the intermediates of amyloid fibrils that usually cause cell death and tissue damage, like the amyloid-β in Alzheimer's disease, α-synuclein in Parkinson disease and islet amyloid polypeptide in type II diabetes mellitus. However, the related study was involved rarely in breast. Therefore, the combing technologies including hematoxylin-eosin staining and thioflavin S staining were used to investigate the influence of HS on breast amyloidosis. To further study the toxicity of the pre-fibrils formed by β-casein on the HC11 cells and the breast mammary gland, the combing technologies including pentamer formyl thiophene acetic acid fluorescence analysis, MTT assay, Annexin V/PI staining and hematoxylin-eosin staining were performed. The results demonstrated that HS, acted as an endogenous molecule, induced the inflammation and amyloid fibril formation at the same time, and there was a close relationship between inflammation and fibrosis of breast. In addition, the pre-fibrils formed by β-casein were toxic because they induced the death and apoptosis of HC11 cells, as well as the inflammation of mammary gland of rats. Therefore, the early examination and identify of the pre-fibrils in the breast were worth considering to prevent the disease development, and it was interesting to explore the HS mimetics to impair the breast amyloidosis and attenuate the inflammatory response in the future.
Collapse
Affiliation(s)
- Jia Wang
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Jiayin Liu
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Qinghai Dong
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Yang An
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Jun Su
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Hongliu Xie
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Bo Sun
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Jihua Liu
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China.
| |
Collapse
|
5
|
Quiroga IY, Cruikshank AE, Bond ML, Reed KSM, Evangelista BA, Tseng JH, Ragusa JV, Meeker RB, Won H, Cohen S, Cohen TJ, Phanstiel DH. Synthetic amyloid beta does not induce a robust transcriptional response in innate immune cell culture systems. J Neuroinflammation 2022; 19:99. [PMID: 35459147 PMCID: PMC9034485 DOI: 10.1186/s12974-022-02459-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that impacts nearly 400 million people worldwide. The accumulation of amyloid beta (Aβ) in the brain has historically been associated with AD, and recent evidence suggests that neuroinflammation plays a central role in its origin and progression. These observations have given rise to the theory that Aβ is the primary trigger of AD, and induces proinflammatory activation of immune brain cells (i.e., microglia), which culminates in neuronal damage and cognitive decline. To test this hypothesis, many in vitro systems have been established to study Aβ-mediated activation of innate immune cells. Nevertheless, the transcriptional resemblance of these models to the microglia in the AD brain has never been comprehensively studied on a genome-wide scale. METHODS We used bulk RNA-seq to assess the transcriptional differences between in vitro cell types used to model neuroinflammation in AD, including several established, primary and iPSC-derived immune cell lines (macrophages, microglia and astrocytes) and their similarities to primary cells in the AD brain. We then analyzed the transcriptional response of these innate immune cells to synthetic Aβ or LPS and INFγ. RESULTS We found that human induced pluripotent stem cell (hIPSC)-derived microglia (IMGL) are the in vitro cell model that best resembles primary microglia. Surprisingly, synthetic Aβ does not trigger a robust transcriptional response in any of the cellular models analyzed, despite testing a wide variety of Aβ formulations, concentrations, and treatment conditions. Finally, we found that bacterial LPS and INFγ activate microglia and induce transcriptional changes that resemble many, but not all, aspects of the transcriptomic profiles of disease associated microglia (DAM) present in the AD brain. CONCLUSIONS These results suggest that synthetic Aβ treatment of innate immune cell cultures does not recapitulate transcriptional profiles observed in microglia from AD brains. In contrast, treating IMGL with LPS and INFγ induces transcriptional changes similar to those observed in microglia detected in AD brains.
Collapse
Affiliation(s)
- I Y Quiroga
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - A E Cruikshank
- Postbaccalaureate Research Education Program, University of North Carolina, Chapel Hill, NC, USA
| | - M L Bond
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - K S M Reed
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - B A Evangelista
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - J H Tseng
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - J V Ragusa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - R B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - H Won
- Department of Genetics and Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - S Cohen
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - T J Cohen
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - D H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Hixon AM, Christensen E, Hamilton R, Drees C. Epilepsy in Parry-Romberg syndrome and linear scleroderma en coup de sabre: Case series and systematic review including 140 patients. Epilepsy Behav 2021; 121:108068. [PMID: 34052630 PMCID: PMC11529207 DOI: 10.1016/j.yebeh.2021.108068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Parry-Romberg syndrome (PRS) and linear sclerosis en coup de sabre (LScs) are rare, related, autoimmune conditions of focal atrophy and sclerosis of head and face which are associated with the development of focal epilepsy. The scarcity of PRS and LScs cases has made an evidence-based approach to optimal treatment of seizures difficult. Here we present a large systematic review of the literature evaluating 137 cases of PRS or LScs, as well as three new cases with epilepsy that span the spectrum of severity, treatments, and outcomes in these syndromes. Analysis showed that intracranial abnormalities and epileptic foci localized ipsilateral to the external (skin, eye, mouth) manifestations by imaging or EEG in 92% and 80% of cases, respectively. Epilepsy developed before external abnormalities in 19% of cases and after external disease onset in 66% of cases, with decreasing risk the further from the start of external symptoms. We found that over half of individuals affected may achieve seizure freedom with anti-seizure medications (ASMs) alone or in combination with immunomodulatory therapy (IMT), while a smaller number of individuals benefitted from epilepsy surgery. Although analysis of case reports has the risk of bias or omission, this is currently the best source of clinical information on epilepsy in PRS/LScs-spectrum disease. The paucity of higher quality information requires improved case identification and tracking. Toward this effort, all data have been deposited in a Synapse.org database for case collection with the potential for international collaboration.
Collapse
Affiliation(s)
- Alison M Hixon
- Medical Scientist Training Program, University of Colorado, CU Anschutz Fitzsimons Building 13001 East 17th Place, Aurora, CO 80045, USA
| | - Elijah Christensen
- Medical Scientist Training Program, University of Colorado, CU Anschutz Fitzsimons Building 13001 East 17th Place, Aurora, CO 80045, USA
| | - Robert Hamilton
- Blue Sky Neurology, 499 E. Hampden Ave. Ste. 360 Englewood, CO 80113, USA
| | - Cornelia Drees
- Department of Neurology, University of Colorado, CU Anschutz Research Complex II, 12700 East 19th Avenue, Aurora, CO 80045, USA; Mayo Clinic Neurology and Neurosurgery, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA.
| |
Collapse
|
7
|
Li B, Zhang G, Tahirbegi IB, Morten MJ, Tan H. Monitoring amyloid-β 42 conformational change using a spray-printed graphene electrode. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Tahirbegi B, Magness AJ, Piersimoni ME, Knöpfel T, Willison KR, Klug DR, Ying L. A Novel Aβ 40 Assembly at Physiological Concentration. Sci Rep 2020; 10:9477. [PMID: 32528074 PMCID: PMC7289798 DOI: 10.1038/s41598-020-66373-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/15/2020] [Indexed: 01/27/2023] Open
Abstract
Aggregates of amyloid-β (Aβ) are characteristic of Alzheimer's disease, but there is no consensus as to either the nature of the toxic molecular complex or the mechanism by which toxic aggregates are produced. We report on a novel feature of amyloid-lipid interactions where discontinuities in the lipid continuum can serve as catalytic centers for a previously unseen microscale aggregation phenomenon. We show that specific lipid membrane conditions rapidly produce long contours of lipid-bound peptide, even at sub-physiological concentrations of Aβ. Using single molecule fluorescence, time-lapse TIRF microscopy and AFM imaging we characterize this phenomenon and identify some exceptional properties of the aggregation pathway which make it a likely contributor to early oligomer and fibril formation, and thus a potential critical mechanism in the etiology of AD. We infer that these amyloidogenic events occur only at areas of high membrane curvature, which suggests a range of possible mechanisms by which accumulated physiological changes may lead to their inception. The speed of the formation is in hours to days, even at 1 nM peptide concentrations. Lipid features of this type may act like an assembly line for monomeric and small oligomeric subunits of Aβ to increase their aggregation states. We conclude that under lipid environmental conditions, where catalytic centers of the observed type are common, key pathological features of AD may arise on a very short timescale under physiological concentration.
Collapse
Affiliation(s)
- Bogachan Tahirbegi
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Alastair J Magness
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Thomas Knöpfel
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Keith R Willison
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - David R Klug
- Department of Chemistry, Imperial College London, London, United Kingdom.
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
9
|
Ziaunys M, Sneideris T, Smirnovas V. Formation of distinct prion protein amyloid fibrils under identical experimental conditions. Sci Rep 2020; 10:4572. [PMID: 32165692 PMCID: PMC7067779 DOI: 10.1038/s41598-020-61663-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
Protein aggregation into amyloid fibrils is linked to multiple neurodegenerative disorders, such as Alzheimer’s, Parkinson’s or Creutzfeldt-Jakob disease. A better understanding of the way these aggregates form is vital for the development of drugs. A large detriment to amyloid research is the ability of amyloidogenic proteins to spontaneously aggregate into multiple structurally distinct fibrils (strains) with different stability and seeding properties. In this work we show that prion proteins are capable of forming more than one type of fibril under the exact same conditions by assessing their Thioflavin T (ThT) binding ability, morphology, secondary structure, stability and seeding potential.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tomas Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
10
|
Kumari A, Somvanshi P, Grover A. Ameliorating amyloid aggregation through osmolytes as a probable therapeutic molecule against Alzheimer's disease and type 2 diabetes. RSC Adv 2020; 10:12166-12182. [PMID: 35497581 PMCID: PMC9050657 DOI: 10.1039/d0ra00429d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/16/2020] [Indexed: 01/31/2023] Open
Abstract
Large numbers of neurological and metabolic disorders occurring in humans are induced by the aberrant growth of aggregated or misfolded proteins.
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi-110070
- India
- School of Biotechnology
| | - Pallavi Somvanshi
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi-110070
- India
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
11
|
Active-site environment of Cu bound amyloid β and amylin peptides. J Biol Inorg Chem 2019; 24:1245-1259. [DOI: 10.1007/s00775-019-01724-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
|
12
|
Valderhaug VD, Glomm WR, Sandru EM, Yasuda M, Sandvig A, Sandvig I. Formation of neural networks with structural and functional features consistent with small-world network topology on surface-grafted polymer particles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191086. [PMID: 31824715 PMCID: PMC6837210 DOI: 10.1098/rsos.191086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
In vitro electrophysiological investigation of neural activity at a network level holds tremendous potential for elucidating underlying features of brain function (and dysfunction). In standard neural network modelling systems, however, the fundamental three-dimensional (3D) character of the brain is a largely disregarded feature. This widely applied neuroscientific strategy affects several aspects of the structure-function relationships of the resulting networks, altering network connectivity and topology, ultimately reducing the translatability of the results obtained. As these model systems increase in popularity, it becomes imperative that they capture, as accurately as possible, fundamental features of neural networks in the brain, such as small-worldness. In this report, we combine in vitro neural cell culture with a biologically compatible scaffolding substrate, surface-grafted polymer particles (PPs), to develop neural networks with 3D topology. Furthermore, we investigate their electrophysiological network activity through the use of 3D multielectrode arrays. The resulting neural network activity shows emergent behaviour consistent with maturing neural networks capable of performing computations, i.e. activity patterns suggestive of both information segregation (desynchronized single spikes and local bursts) and information integration (network spikes). Importantly, we demonstrate that the resulting PP-structured neural networks show both structural and functional features consistent with small-world network topology.
Collapse
Affiliation(s)
- Vibeke Devold Valderhaug
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
| | | | | | - Masahiro Yasuda
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Department of Neurology and Clinical Neuroophysiology, St Olav's Hospital, Trondheim, Norway
- Department of Pharmacology and Clinical Neuroscience, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
| |
Collapse
|
13
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 611] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
14
|
|
15
|
A multiparametric analysis of the synergistic impact of anti-Parkinson's drugs on the fibrillation of human serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:275-285. [DOI: 10.1016/j.bbapap.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 01/26/2023]
|
16
|
Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity. Sci Rep 2019; 9:2530. [PMID: 30792475 PMCID: PMC6384915 DOI: 10.1038/s41598-018-38401-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence (‘NFGAILSS’) derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN’s special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor β-structures. Large peptide clusters (size 18–26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of β-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest β-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the β-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.
Collapse
|
17
|
Sahoo A, Matysiak S. Computational insights into lipid assisted peptide misfolding and aggregation in neurodegeneration. Phys Chem Chem Phys 2019; 21:22679-22694. [DOI: 10.1039/c9cp02765c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An overview of recent advances in computational investigation of peptide–lipid interactions in neurodegeneration – Alzheimer's, Parkinson's and Huntington's disease.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program
- Institute of Physical Science and Technology
- University of Maryland
- College Park
- USA
| | - Silvina Matysiak
- Biophysics Program
- Institute of Physical Science and Technology
- University of Maryland
- College Park
- USA
| |
Collapse
|
18
|
Abstract
Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
19
|
Kim HY, Yang SH, Yoon J, Jang H, Baek S, Shin J, Kim SH, Kim Y. Taurine-Carbohydrate Derivative Stimulates Fibrillogenesis of Amyloid-β and Reduce Alzheimer-Like Behaviors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:225-232. [PMID: 28849458 DOI: 10.1007/978-94-024-1079-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ) aggregates are a hallmark of Alzheimer's disease (AD). Through the misfolding process of Aβ in the brain, oligomeric forms of Aβ accumulate and significantly damage the brain cells inducing neuronal loss and cognitive dysfunctions that lead to AD. We hypothesized that decrease in Aβ oligomers during the aggregation process might be able to reduce Aβ-dependent brain damage. As taurine-like chemicals are often reported to have direct binding abilities to Aβ, we prepared a chemical library that consisted of taurine-carbohydrate derivatives to search for molecules that target Aβ and accelerate its fibrillogenesis. Here, we report that 1-deoxy-1-(2-sulfoethylamino)-D-fructose stimulates the formation of relatively less toxic Aβ fibrils leading to prevention of cognitive deficits in AD acute model mice.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of pharmacy and Integrated Science and Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Seung-Hoon Yang
- Brain Science Institute, Korea Institute of Science and Technology (KIST) Hwarangno 24-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jin Yoon
- Brain Science Institute, Korea Institute of Science and Technology (KIST) Hwarangno 24-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, USA
| | - HoChung Jang
- Department of pharmacy and Integrated Science and Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST) Hwarangno 24-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
- Department of Biological Chemistry, Korea University of Science and Technology (UST), 217 Gajungro Yuseong-gu, Daegeon, 34113, South Korea
| | - Seungyeop Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST) Hwarangno 24-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jisu Shin
- Department of pharmacy and Integrated Science and Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Sung Hoon Kim
- Department of Chemistry, Konkuk University, Seoul, South Korea.
| | - YoungSoo Kim
- Department of pharmacy and Integrated Science and Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea.
| |
Collapse
|
20
|
Khamaganova I. Progressive Hemifacial Atrophy and Linear Scleroderma En Coup de Sabre: A Spectrum of the Same Disease? Front Med (Lausanne) 2018; 4:258. [PMID: 29445726 PMCID: PMC5798413 DOI: 10.3389/fmed.2017.00258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/26/2017] [Indexed: 11/25/2022] Open
Abstract
Similar clinical and histhopathological features in progressive hemifacial atrophy and linear scleroderma en coup de sabre are well known. Trauma may predispose to the development of both diseases. The lack of association with anti-Borrelia antibodies was shown in both cases as well. The otolaryngological and endocrine disorders may be associated findings in both diseases. However, there are certain differences in neurological and ophthalmological changes in the diseases.
Collapse
Affiliation(s)
- Irina Khamaganova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
21
|
Seoudi RS, Mechler A. Design Principles of Peptide Based Self-Assembled Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:51-94. [DOI: 10.1007/978-3-319-66095-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Foglieni C, Papin S, Salvadè A, Afroz T, Pinton S, Pedrioli G, Ulrich G, Polymenidou M, Paganetti P. Split GFP technologies to structurally characterize and quantify functional biomolecular interactions of FTD-related proteins. Sci Rep 2017; 7:14013. [PMID: 29070802 PMCID: PMC5656600 DOI: 10.1038/s41598-017-14459-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Protein multimerization in physiological and pathological conditions constitutes an intrinsic trait of proteins related to neurodegeneration. Recent evidence shows that TDP-43, a RNA-binding protein associated with frontotemporal dementia and amyotrophic lateral sclerosis, exists in a physiological and functional nuclear oligomeric form, whose destabilization may represent a prerequisite for misfolding, toxicity and subsequent pathological deposition. Here we show the parallel implementation of two split GFP technologies, the GFP bimolecular and trimolecular fluorescence complementation (biFC and triFC) in the context of TDP-43 self-assembly. These techniques coupled to a variety of assays based on orthogonal readouts allowed us to define the structural determinants of TDP-43 oligomerization in a qualitative and quantitative manner. We highlight the versatility of the GFP biFC and triFC technologies for studying the localization and mechanisms of protein multimerization in the context of neurodegeneration.
Collapse
Affiliation(s)
- Chiara Foglieni
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Torricella-Taverne, Switzerland
| | - Stéphanie Papin
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Torricella-Taverne, Switzerland
| | - Agnese Salvadè
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Torricella-Taverne, Switzerland
| | - Tariq Afroz
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Sandra Pinton
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Torricella-Taverne, Switzerland
| | - Giona Pedrioli
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Torricella-Taverne, Switzerland
| | - Giorgio Ulrich
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Torricella-Taverne, Switzerland
| | | | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Torricella-Taverne, Switzerland.
| |
Collapse
|
23
|
Marasini C, Foderà V, Vestergaard B. Sucrose modulates insulin amyloid-like fibril formation: effect on the aggregation mechanism and fibril morphology. RSC Adv 2017. [DOI: 10.1039/c6ra25872g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sucrose modifies the human insulin fibrillation pathways, affecting the fibril morphology.
Collapse
Affiliation(s)
- Carlotta Marasini
- Department of Drug Design and Pharmacology
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Vito Foderà
- Section for Biologics
- Department of Pharmacy
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| |
Collapse
|
24
|
van Diggelen F, Tepper AWJW, Apetri MM, Otzen DE. α-Synuclein Oligomers: A Study in Diversity. Isr J Chem 2016. [DOI: 10.1002/ijch.201600116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Femke van Diggelen
- Crossbeta Biosciences; Padualaan 8 3584CH Utrecht The Netherlands
- Interdisciplinary Nanoscience Centre (iNANO); Aarhus University; Gustav Wieds Vej 14 8000C Aarhus Denmark
| | | | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO); Aarhus University; Gustav Wieds Vej 14 8000C Aarhus Denmark
| |
Collapse
|
25
|
Lin D, Ren R, Tan Q, Wu Q, Li F, Li L, Liu S, He J. A facile and dynamic assay for the detection of peptide aggregation. Anal Bioanal Chem 2016; 408:1609-14. [DOI: 10.1007/s00216-015-9271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/22/2023]
|
26
|
Wojciechowski M, Gómez-Sicilia À, Carrión-Vázquez M, Cieplak M. Unfolding knots by proteasome-like systems: simulations of the behaviour of folded and neurotoxic proteins. MOLECULAR BIOSYSTEMS 2016; 12:2700-12. [DOI: 10.1039/c6mb00214e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Knots in proteins have been proposed to resist proteasomal degradation, thought in turn to be related to neurodegenerative diseases such as Huntington.
Collapse
Affiliation(s)
| | - Àngel Gómez-Sicilia
- Instituto Cajal
- Consejo Superior de Investigaciones Científicas
- (CSIC)
- 28002 Madrid
- Spain
| | | | - Marek Cieplak
- Institute of Physics
- Polish Academy of Sciences
- PL-02668 Warsaw
- Poland
| |
Collapse
|
27
|
Vix J, Mathis S, Lacoste M, Guillevin R, Neau JP. Neurological Manifestations in Parry-Romberg Syndrome: 2 Case Reports. Medicine (Baltimore) 2015; 94:e1147. [PMID: 26181554 PMCID: PMC4617071 DOI: 10.1097/md.0000000000001147] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Parry-Romberg syndrome (PRS) is a variant of morphea usually characterized by a slowly progressive course. Clinical and radiological involvement of the central nervous system may be observed in PRS. We describe 2 patients with PRS and neurological symptoms (one with trigeminal neuralgia associated with deafness, and the second with hemifacial pain associated with migraine without aura) in conjunction with abnormal cerebral MRI including white matter T2 hyperintensities and enhancement with gadolinium. Despite the absence of specific immunosuppressive treatments, both patients have presented stable imaging during follow-up without any clinical neurologic progression. We have performed a large review of the medical literature on patients with PRS and neurological involvement (total of 129 patients). Central nervous system involvement is frequent among PRS patients and is inconsistently associated with clinical abnormalities. These various neurological manifestations include seizures, headaches, movement disorders, neuropsychological symptoms, and focal symptoms. Cerebral MRI may reveal frequent abnormalities, which can be bilateral or more often homolateral to the skin lesions, localized or so widespread so as to involve the whole hemisphere: T2 hyperintensities, mostly in the subcortical white matter, gadolinium enhancement, brain atrophy, and calcifications. These radiological lesions do not usually progress over time. Steroids or immunosuppressive treatments are controversial since it remains unclear to what extent they are beneficial and there is often no neurological progression.
Collapse
Affiliation(s)
- Justine Vix
- From Department of Neurology, CHU Poitiers, University of Poitiers, Poitiers (JV, SM, JPN); Cabinet of Neurology, Niort (ML); and Department of Radiology, CHU Poitiers, University of Poitiers, Poitiers, France (RG)
| | | | | | | | | |
Collapse
|