1
|
Rubio-Tomás T, Alegre-Cortés E, Lionaki E, Fuentes JM, Tavernarakis N. Heat shock and thermotolerance in Caenorhabditis elegans: An overview of laboratory techniques. Methods Cell Biol 2024; 185:1-17. [PMID: 38556443 DOI: 10.1016/bs.mcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The soil nematode worm Caenorhabditis elegans is a simple and well-established model for the study of many biological processes. Heat shock and thermotolerance assays have been developed for this nematode, and have been used to decipher the molecular relationships between thermal stress and aging, among others. Nevertheless, a systematic and methodological comparison of the different approaches and tools utilized is lacking in the literature. Here, we aim to provide a comprehensive summary of the most commonly used strategies for carrying out heat shock and thermotolerance assays that have been reported, highlighting specific readouts and scientific questions that can be addressed. Furthermore, we offer examples of thermotolerance assays performed with wild type nematodes, that can serve as a gauge of the animal survival under diverse conditions of stress.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Eva Alegre-Cortés
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - José M Fuentes
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain.
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
2
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
3
|
Althobaiti NA, Menaa F, Albalawi AE, Dalzell JJ, Warnock ND, Mccammick EM, Alsolais A, Alkhaibari AM, Green BD. Assessment and Validation of Globodera pallida as a Novel In Vivo Model for Studying Alzheimer's Disease. Cells 2021; 10:2481. [PMID: 34572130 PMCID: PMC8465914 DOI: 10.3390/cells10092481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Whole transgenic or non-transgenic organism model systems allow the screening of pharmacological compounds for protective actions in Alzheimer's disease (AD). AIM In this study, a plant parasitic nematode, Globodera pallida, which assimilates intact peptides from the external environment, was investigated as a new potential non-transgenic model system of AD. Methods: Fresh second-stage juveniles of G. pallida were used to measure their chemosensory, perform immunocytochemistry on their neurological structures, evaluate their survival rate, measure reactive oxygen species, and determine total oxidized glutathione to reduced glutathione ratio (GSSG/GSH) levels, before and after treatment with 100 µM of various amyloid beta (Aβ) peptides (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16). Wild-type N2 C. elegans (strain N2) was cultured on Nematode Growth Medium and directly used, as control, for chemosensory assays. RESULTS We demonstrated that: (i) G. pallida (unlike Caenorhabditis elegans) assimilates amyloid-β (Aβ) peptides which co-localise with its neurological structures; (ii) pre-treatment with various Aβ isoforms (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16) impairs G. pallida's chemotaxis to differing extents; (iii) Aβ peptides reduced survival, increased the production of ROS, and increased GSSG/GSH levels in this model; (iv) this unique model can distinguish differences between different treatment concentrations, durations, and modalities, displaying good sensitivity; (v) clinically approved neuroprotective agents were effective in protecting G. pallida from Aβ (1-42) exposure. Taken together, the data indicate that G. pallida is an interesting in vivo model with strong potential for discovery of novel bioactive compounds with anti-AD activity.
Collapse
Affiliation(s)
- Norah A. Althobaiti
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia
| | - Farid Menaa
- Departments of Internal Medicine and Advanced Technologies, Fluorotronics-California Innovations Corporation, San Diego, CA 92037, USA
| | - Aishah E. Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.E.A.); (A.M.A.)
| | - Johnathan J. Dalzell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Neil D. Warnock
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Erin M. Mccammick
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Abdulellah Alsolais
- Nursing Department, Faculty of Applied Health Science, Shaqra University, Al Dawadmi 17452, Saudi Arabia;
| | - Abeer M. Alkhaibari
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.E.A.); (A.M.A.)
| | - Brian D. Green
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| |
Collapse
|
4
|
WITHDRAWN: Assessment and Validation of Globodera pallida as a Novel In Vivo Model for Studying Alzheimer's Disease. Neurobiol Aging 2021. [DOI: 10.1016/j.neurobiolaging.2021.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhao J, Zhu A, Sun Y, Zhang W, Zhang T, Gao Y, Shan D, Wang S, Li G, Zeng K, Wang Q. Beneficial effects of sappanone A on lifespan and thermotolerance in Caenorhabditis elegans. Eur J Pharmacol 2020; 888:173558. [PMID: 32941928 DOI: 10.1016/j.ejphar.2020.173558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/30/2022]
Abstract
Sappanone A (SA) is a homoisoflavonoid compound isolated from Caesalpinia sappan L. that selectively binds to inosine monophosphate dehydrogenase 2, a protein involved in aging. It is unknown if SA has an anti-aging effect and what is it mechanism. This study aimed to investigate the lifespan-extending and health-enhancing effects of SA, and the potential pharmacological mechanism in Caenorhabditis elegans (C. elegans). The worms were exposed to 0-50 μM SA. The effect on the lifespan was observed, and health status was evaluated by detecting motility, feeding, reproduction, thermotolerance, lipofuscin and ROS accumulation. To explore a possible mechanism, the transcription of the genes of the insulin/insulin-like growth factor-1 signalling pathway and heat stress response was detected by RT-qPCR. Moreover, subcellular distribution of green fluorescent protein-labeled DAF-16 was determined, and the interaction between SA and HSP-90 protein was simulated by molecular docking. We found that SA prolonged lifespan in C. elegans and enhanced motility and thermotolerance. The feeding and reproduction were not impacted. The ROS and lipofuscin accumulation was declined. Mechanistic study revealed that the gene expression levels of daf-16 and hsp-90 were up-regulated. Moreover, DAF-16 was translocated into the nucleus. SA was docked into the active pocket of HSP-90 in the simulation. SA (50 μM) can extend lifespan in C. elegans and decelerate aging by regulating the IIS pathway, and daf-16 is specifically important for the regulation of longevity. HSP-90 was involved in the enhancement of thermotolerance. Thus, SA may act as a promising candidate for the development of an anti-aging agent.
Collapse
Affiliation(s)
- Jingwei Zhao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Yuqing Sun
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing Center of Preventive Medicine Research, Beijing, 100013, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Yadong Gao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Danping Shan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing Center of Preventive Medicine Research, Beijing, 100013, China; School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China.
| |
Collapse
|
6
|
Kılıçgün H, Arda N, Uçar EÖ. Identification of longevity, fertility and growth-promoting properties of pomegranate in Caenorhabditis elegans. Pharmacogn Mag 2015; 11:356-9. [PMID: 25829775 PMCID: PMC4378134 DOI: 10.4103/0973-1296.153089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 09/12/2014] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pomegranate (Punica granatum L.) is commonly consumed as fresh fruit and fruit juice. It is also used in the production of jam, wine, food coloring agent, and flavor enhancer. OBJECTIVE The aim of this study was to identify the possible longevity, fertility and growth promoting properties of different ethanolic extract concentrations of pomegranate in Caenorhabditis elegans, which is increasingly popular and has proven to be a very useful experimental model organism for aging studies as well as for testing antioxidants and other compounds for effects on longevity. MATERIALS AND METHODS In this study, five experimental groups (20, 10, 5, 2.5 and 1.25 mg pomegranate extract/mL and one control group) were used to determine the most effective dose of pomegranate in terms of longevity, fertility and growth parameters. RESULTS It was seen that, pomegranate extracts up to the concentration of 5 mg/mL, had the potential to promote for the longevity, formation of new generations, fertility of new generations and growth properties of C. elegans although higher concentrations significantly reduced these parameters. CONCLUSION these findings indicated that pomegranate could be used as a supplement to enhance longevity, fertility and growth rate for the other living organisms and human beings, but the dose should be carefully adjusted to avoid adverse effects.
Collapse
Affiliation(s)
- Hasan Kılıçgün
- Department of Nutrition and Dietetic, School of Health, Erzincan University, 24100, Erzincan, Turkey
| | - Nazlı Arda
- Department of Molecular Biology and Genetics, Istanbul University Faculty of Science, İstanbul, Turkey
| | - Evren Önay Uçar
- Department of Molecular Biology and Genetics, Istanbul University Faculty of Science, İstanbul, Turkey
| |
Collapse
|