1
|
Aly SH, Elbadry AMM, Doghish AS, El-Nashar HAS. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5571-5596. [PMID: 38563878 PMCID: PMC11329582 DOI: 10.1007/s00210-024-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer is the most prevalent type of cancer, the fifth leading cause of cancer-related deaths, and the second leading cause of cancer deaths among women globally. Recent research has provided increasing support for the significance of phytochemicals, both dietary and non-dietary, particularly triterpenoids, in the mitigation and management of breast cancer. Recent studies showed that triterpenoids are promising agents in the treatment and inhibition of breast cancer achieved through the implementation of several molecular modes of action on breast cancer cells. This review discusses recent innovations in plant triterpenoids and their underlying mechanisms of action in combating breast cancer within the timeframe spanning from 2017 to 2023. The present work is an overview of different plant triterpenoids with significant inhibition on proliferation, migration, apoptosis resistance, tumor angiogenesis, or metastasis in various breast cancer cells. The anticancer impact of triterpenoids may be attributed to their antiproliferative activity interfering with angiogenesis and differentiation, regulation of apoptosis, DNA polymerase inhibition, change in signal transductions, and impeding metastasis. The present review focuses on several targets, mechanisms, and pathways associated with pentacyclic triterpenoids, which are responsible for their anticancer effects. We could conclude that natural triterpenoids are considered promising agents to conquer breast cancer.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, 11829, Egypt.
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Xie W, Fang X, Li H, Lu X, Yang D, Han S, Bi Y. Advances in the anti-tumor potential of hederagenin and its analogs. Eur J Pharmacol 2023; 959:176073. [PMID: 37742813 DOI: 10.1016/j.ejphar.2023.176073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Hederagenin is a pentacyclic triterpenoid that is widely distributed as the main pharmaceutical ingredient in various medicinal plants. Similarly as other pentacyclic triterpenoids, hederagenin has various pharmacological effects such as anti-tumor, anti-inflammatory, anti-depressant, and anti-viral activities. In particular, the anti-tumor activity of hederagenin indicates its potential for development into highly effective chemotherapeutic agents. Studies revealed that hederagenin effectively suppresses the growth of various tumor cell lines in vitro and interacts with several molecular targets that play essential roles in various cellular signaling pathways. The compound suppresses transformation, inhibits proliferation, and induces apoptosis in tumor cells. In this review, we highlight research progress on the source, pharmacokinetics, pharmacological activity, and mechanism of action of hederagenin and the anti-tumor activity of its analogs by integrating and analyzing relevant domestic and international studies and providing a basis for their further development and application.
Collapse
Affiliation(s)
- Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Xianhe Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Haixia Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Xilang Lu
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Dong Yang
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Song Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| |
Collapse
|
3
|
Asghar BH, Hassan RK, Barakat LA, Alharbi A, El Behery M, Elshaarawy RF, Hassan YA. Cross-linked quaternized chitosan nanoparticles for effective delivery and controllable release of O. europaea phenolic extract targeting cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Gadekar GJ, Bhandare PA, Bandawane DD. Amelioration of 5-Fluorouracil Induced Nephrotoxicity by Acacia catechu through Overcoming Oxidative Damage and Inflammation in Wistar Rats. Cardiovasc Hematol Disord Drug Targets 2023; 23:189-201. [PMID: 37946347 DOI: 10.2174/011871529x274030231102065433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
AIM The research intended to explore the possible nephroprotective potential of the ethyl acetate fraction derived from Acacia catechu leaves against nephrotoxicity brought about by 5-fluorouracil (5-FU) in Wistar rats. BACKGROUND While possessing strong anticancer properties, 5-FU is hindered in its therapeutic application due to significant organ toxicity linked to elevated oxidative stress and inflammation. OBJECTIVE The study is undertaken to conduct an analysis of the ethyl acetate fraction of A. catechu leaves both in terms of quality and quantity, examining its impact on different biochemical and histopathological parameters within the context of 5-FU-induced renal damage in rats and elucidation of the mechanism behind the observed outcomes. METHODOLOGY Intraperitoneal injection of 5-FU at a dosage of 20 mg/kg/day over 5 days was given to induce nephrotoxicity in rats. The evaluation of nephrotoxicity involved quantifying serum creatinine, urea, uric acid, and electrolyte concentrations. Furthermore, superoxide dismutase, catalase antioxidant enzymes, and TNF-α concentration in serum were also measured. RESULTS 5-FU injection led to the initiation of oxidative stress within the kidneys, leading to modifications in renal biomarkers (including serum creatinine, urea, uric acid, and Na+, K+ levels), and a reduction in antioxidant enzymes namely superoxide dismutase and catalase. Notably, the presence of the inflammatory cytokine TNF-α was significantly elevated due to 5-FU. Microscopic examination of renal tissue revealed tubular degeneration and congestion. However, treatment involving the ethyl acetate fraction derived from A. catechu leaves effectively and dose-dependently reversed the changes observed in renal biomarkers, renal antioxidant enzymes, inflammatory mediators, and histopathological features, bringing them closer to normal conditions. The observed recuperative impact was mainly attributed to the antioxidant and antiinflammatory properties of the fraction. CONCLUSION The ethyl acetate fraction of A. catechu leaves exhibited a mitigating influence on the renal impairment caused by 5-FU, showcasing its potential as a nephroprotective agent capable of preventing and ameliorating 5-FU-induced nephrotoxicity.
Collapse
Affiliation(s)
- Gayatri Jaising Gadekar
- Department of Pharmacology, P. E. Society's Modern College of Pharmacy, Nigdi, Pune- 44, India
| | | | - Deepti Dinesh Bandawane
- Department of Pharmacology, P. E. Society's Modern College of Pharmacy, Nigdi, Pune- 44, India
| |
Collapse
|
5
|
Thangavelu L, Geetha RV, Devaraj E, Dua K, Chellappan DK, Balusamy SR. Acacia catechu seed extract provokes cytotoxicity via apoptosis by intrinsic pathway in HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:446-456. [PMID: 34800081 DOI: 10.1002/tox.23411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Acacia catechu Willd (Fabaceae) is a thorny tree widely distributed in India and commonly used as traditional Ayurvedic medicine for various ailments. The current study evaluates the cytotoxic potentials of A. catechu ethanolic seed extract (ACSE) in HepG2 cells, a human hepatocellular carcinoma cell line. The HepG2 cells were treated with 0.1, 0.3, 1, 3, 10, 30, 100, 300 and 1000 μg/ml of ACSE and the cytotoxic effect was evaluated by MTT and lactate dehydrogenase (LDH) leakage assays. The IC50 of ACSE was found at 77.04 μg/ml and therefore, further studies were carried out with the concentrations of 35 and 70 μg/ml. The intracellular reactive oxygen species (ROS) generation and apoptosis-related morphological changes were evaluated. Gene expressions of Bax, Bcl-2, cytochrome C (Cyt-c), caspases-9 and 3 were analyzed by qPCR. The ACSE treatments caused LDH leakage was associated with an increased ROS generation. The increased ROS generation was associated with the downregulation of intracellular antioxidant enzyme superoxide dismutase and reduced glutathione content. AO/EB and PI staining also confirmed chromatin condensation and apoptosis. The flow cytometric analysis showed an accumulation of HepG2 cells at sub G0/G1 (apoptotic) phase upon ACSE treatments. The ACSE induced cytotoxicity and oxidative stress were related to increased apoptotic marker gene expressions such as Bax, Cyt-c, caspase-9 and 3, and decreased anti-apoptotic marker Bcl-2. The current finding suggests that ACSE has apoptosis-inducing potential via the mitochondrial pathway in HepG2 cells.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Royapuram Veeraragavan Geetha
- Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | |
Collapse
|
6
|
A Comprehensive Review on the Chemical Composition and Pharmacological Activities of Acacia catechu (L.f.) Willd. J CHEM-NY 2021. [DOI: 10.1155/2021/2575598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the emergence of epidemics, pandemics, and infectious diseases, several research activities have been carried out on natural products to tackle them. As there are structural diversities in natural products, researchers are focused on exploring them for treatment and/or management of various infections and/or diseases. Acacia catechu (L.f.) Willd. belonging to the order Fabales and family Fabaceae shows a wide range of pharmacological functions in the management of diseases in humankind. This review was carried out to gather and provide information about the chemical constituents and pharmacological activities of A. catechu through the literature survey of scientific articles. On preliminary assessments, A. catechu is demonstrated as a significant wellspring of bioactive compounds with a wide range of biological and pharmaceutical applications such as antidiabetic, antioxidant, antimicrobial, anticancer, antidiarrheal, anti-inflammatory, antiviral, hepatoprotective, immunomodulatory, and so on. Although the metabolites from the plant are reported with diverse pharmacological applications, there is little information in regards to toxicity and clinical trials on bioactive compounds of this plant. Further research on diverse bioactive compounds from the plant is required to develop them as a successful potent drug.
Collapse
|
7
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
8
|
Abstract
Reactive oxygen species (ROS) are related to several degenerative diseases. In this study, Acacia, a genus with many fast-growing species, was investigated to explore the many phytochemical compounds that are biologically active in processes dealing with ROS-related diseases. This study aimed to select extracts of Acacia heartwood on the basis of their pharmacological and phytochemical profiles and identify their bioactive compounds. Five methanolic extracts from Acacia heartwood were evaluated for their antioxidant activity using three different in vitro assays: toxicity toward Artemia salina and phenolic and polyphenolic content. Multivariate analysis was conducted to select two promising extracts and then their bioactive compounds were identified using liquid chromatography coupled with mass spectrometry. Acacia crassicarpa extracts showed the highest antioxidant activity, as well as phenolic and hydrolyzable tannin contents, but low toxicity. The A. mangium extract exhibited high flavonoid and condensed tannin content, whereas A. decurrrens had the highest toxicity with low antioxidant activity. Pearson’s correlation analysis demonstrated no correlation between antioxidant activity and toxicity. Moreover, the phytochemical profile exhibited an association with pharmacological parameters. Principal component analysis followed by cluster analysis divided the extracts into three clusters. Two heartwood extracts of A. crassicarpa and A. auriculiformis were chosen as the best extracts. Identification showed that these extracts were dominated by phenolic compounds, as well as anthraquinone and xanthone.
Collapse
|
9
|
Kopetdaghinanes, pro-apoptotic hemiacetialic cyclomyrsinanes from Euphorbia kopetdaghi. Fitoterapia 2020; 146:104636. [DOI: 10.1016/j.fitote.2020.104636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 01/23/2023]
|
10
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
11
|
Cao C, Zhang Y, Zhang Z, Chen Q. Small interfering LncRNA-TUG1 (siTUG1) decreases ketamine-induced neurotoxicity in rat hippocampal neurons. Int J Neurosci 2019; 129:937-944. [PMID: 30995880 DOI: 10.1080/00207454.2019.1594805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunni Cao
- Department of Hyperbaric Oxygen Therapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yanxiang Zhang
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, China
| | - Zuofu Zhang
- Department of Joint Orthopedics, Yantai Yuhuangding Hospital, Yantai, China
| | - Qi Chen
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
12
|
Maraming P, Klaynongsruang S, Boonsiri P, Maijaroen S, Daduang S, Chung JG, Daduang J. Antitumor activity of RT2 peptide derived from crocodile leukocyte peptide on human colon cancer xenografts in nude mice. ENVIRONMENTAL TOXICOLOGY 2018; 33:972-977. [PMID: 30019842 DOI: 10.1002/tox.22584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
RT2, derived from the leukocyte peptide of Crocodylus siamensis, can kill human cervical cancer cells via apoptosis induction, but no evidence has shown in vivo. In this study, we investigated the antitumor effect of RT2 on human colon cancer xenografts in nude mice. Twenty-four mice were injected subcutaneously with human colon cancer HCT 116 cells. Eleven days after cancer cell implantation, the mice were treated with intratumoral injections of phosphate buffered saline (PBS) or RT2 (0.01, 0.1, and 1 mg/mouse) once every 2 days for a total of 5 times. The effect of a 10-day intratumoral injection of RT2 on body weight, biochemical, and hematological parameters in BALB/c mice showed no significant difference between the groups. Tumor volume showed a significant decrease only in the treatment group with RT2 (1 mg/mouse) at day 6 (P < .05), day 8 (P < .01), and day 10 (P < .01) after the first treatment. The protein expression levels of cleaved poly (ADP-ribose) polymerase (PARP), apoptosis-inducing factor (AIF), and the p53 tumor suppressor protein (p53) in xenograft tumors increased after treatment with RT2 (1 mg/mouse) compared to those in the PBS-injected group. Moreover, RT2 increased the expression of Endo G and Bcl-2 family proteins. Therefore, the peptide RT2 can inhibit tumor growth via the induction of apoptosis in an in vivo xenograft model.
Collapse
Affiliation(s)
- Pornsuda Maraming
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Boonsiri
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Surachai Maijaroen
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jing-Gung Chung
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Jureerut Daduang
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Lakshmi T, Ezhilarasan D, Nagaich U, Vijayaragavan R. Acacia catechu Ethanolic Seed Extract Triggers Apoptosis of SCC-25 Cells. Pharmacogn Mag 2017; 13:S405-S411. [PMID: 29142391 PMCID: PMC5669074 DOI: 10.4103/pm.pm_458_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/08/2016] [Indexed: 01/27/2023] Open
Abstract
Background: Acacia catechu Willd (Fabaceae), commonly known as catechu, cachou, and black cutch, has been studied for its hepatoprotective, antipyretic, antidiarrheal, hypoglycemic, anti-inflammatory, immunomodulatory, antinociceptive, antimicrobial, free radical scavenging, and antioxidant activities. Objective: We evaluated the cytotoxic activity of ethanol extract of A. catechu seed (ACS) against SCC-25 human oral squamous carcinoma cell line. Methods: Cytotoxic effect of ACS extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, using concentrations of 0.1–1000 μg/mL for 24 h. A. catechu ethanol seed extract was treated SCC-25 cells with 25 and 50 μg/mL. At the end of treatment period, apoptotic marker gene expressions such as caspase 8, 9, Bcl-2, Bax, and cytochrome c were evaluated by semiquantitative reverse transcription-polymerase chain reaction. Morphological changes of ACS treated SCC-25 cells was evaluated by acridine orange/ethidium bromide (AO/EB) dual staining. Nuclear morphology and DNA fragmentation was evaluated by propidium iodide (PI) staining. Results: A. catechu ethanol seed extract treatment caused cytotoxicity in SCC-25 cells with an IC50 value of 100 μg/mL. Apoptotic markers caspases 8 and 9, cytochrome c, Bax gene expressions were significantly increased upon ACS extract treatment indicate the apoptosis induction in SCC-25 cells. This treatment also caused significant downregulation of Bcl-2 gene expression. Staining with AO/EB and PI shows membrane blebbing, and nuclear membrane distortion further confirms the apoptosis induction by ACS treatment in SCC-25 cells. Conclusion: The ethanol seed extracts of A. catechu was found to be cytotoxic at lower concentrations and induced apoptosis in human oral squamous carcinoma SCC-25 cells. SUMMARY Acacia catechu ethanolic seed extract contains phytochemicals such as epicatechin, rutin, and quercetin Acacia catechu seed (ACS) extract significantly (P < 0.001) inhibits the active proliferation of human oral squamous carcinoma (SCC-25) cells ACS extract treatment to SCC-25 cells significantly modulated the gene expressions pertaining to apoptosis and propidium iodide and acridine orange/ethidium bromide staining also confirm the apoptosis induction Antiproliferative and apoptosis inducing activities of ACS extract is correlated with phytochemical contents.
Abbreviations used: ACS: Acacia catechu seed extract; MTT: 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide; DMSO: Dimethyl sulfoxide; AO/EO: Acridine orange/ethidium bromide; LC MS: Liquid chromatography mass spectrometry.
Collapse
Affiliation(s)
- Thangavelu Lakshmi
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Upendra Nagaich
- Centre for Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | | |
Collapse
|
14
|
Shendge AK, Basu T, Chaudhuri D, Panja S, Mandal N. In vitro Antioxidant and Antiproliferative Activities of Various Solvent Fractions from Clerodendrum viscosum Leaves. Pharmacogn Mag 2017; 13:S344-S353. [PMID: 28808404 PMCID: PMC5538178 DOI: 10.4103/pm.pm_395_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/03/2016] [Indexed: 01/31/2023] Open
Abstract
Background: Free radicals such as reactive oxygen and nitrogen species, generated in the body, play an important role in the fulfillment of various physiological functions but their imbalance in the body lead to cellular injury and various clinical disorders such as cancer, neurodegenaration, and inflammation. Objective: The objective of this study is to fight this problem, natural antioxidant from plants can be considered as possible protective agents against various diseases such as cancer which might also modify the redox microenvironment to reduce the genetic instability. This study was designed to evaluate the antioxidant and antiproliferative potential of Clerodendrum viscosum fractions against various carcinomas. Materials and Methods: In this present study, 70% methanolic extract of C. viscosum leaves have been fractionated to obtain hexane, chloroform, ethyl acetate, butanol, and water fractions, which were tested for their antioxidant and anticancer properties. Results: It was observed that chloroform and ethyl acetate fractions showed good free radical scavenging properties as well as inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells. Moreover, they arrested the cell cycle at G2/M phase of breast and brain cancer. These inhibitory effects were further confirmed by bromodeoxyuridine uptake imaging. Phytochemical investigations further indicate the presence of tannic acid, quercetin, ellagic caid, gallic acid, reserpine, and methyl gallate which might be the reason for these fractions’ antioxidant and antiproliferative activities. Conclusion: Clerodendrum viscosum leaf chloroform and Clerodendrum viscosum leaf ethyl acetate fractions from C. viscosum showed good reactive oxygen species and reactive nitrogen species scavenging potential. Both the fractions arrested cell cycle at G2/M phase in MCF-7 and U87 cells which lead to induce apoptosis. SUMMARY Crude extract of Clerodendrum viscosum leaves was fractionated using different solvents Among them, chloroform and ethyl acetate fractions exhibited excellent free radical scavenging properties The same fractions inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells Chloroform and ethyl acetate fractions arrested the cell cycle at G2/M phase of breast and brain cancer Phytochemical investigations further indicate the presence of several bioactive principles present in them.
Abbreviations used: CVLME: Clerodendrum viscosum leaf methanolic extract; CVLH: Clerodendrum viscosum leaf hexane; CVLC: Clerodendrum viscosum leaf chloroform; CVLE: Clerodendrum viscosum leaf ethyl acetate; CVLB: Clerodendrum viscosum leaf butanol; CVLW: Clerodendrum viscosum leaf water; BrdU: Bromodeoxyuridine; WST-1: Water soluble tetrazolium salt.
Collapse
Affiliation(s)
| | - Tapasree Basu
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Dipankar Chaudhuri
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
15
|
Zhang J, Zhang Z, Bao J, Yu Z, Cai M, Li X, Wu T, Xiang J, Cai D. Jia-Jian-Di-Huang-Yin-Zi decoction reduces apoptosis induced by both mitochondrial and endoplasmic reticulum caspase12 pathways in the mouse model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:69-79. [PMID: 28163115 DOI: 10.1016/j.jep.2016.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical prescription of traditional Chinese medicine (TCM), Jia-Jian-Di-Huang-Yin-Zi decoction (JJDHYZ) has been used to treat the symptoms of neurological disorders with a long history. AIM OF THE STUDY To evaluate the effects and possible mechanisms of JJDHYZ on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of Parkinson's disease. MATERIALS AND METHODS Adult male C57BL/6 mice were randomly divided into five groups: control, MPTP, JJDHYZ low dosage (JJDHYZ-L, 8.5g/kg/day), medium dosage (JJDHYZ-M, 17g/kg/day) and high dosage (JJDHYZ-H, 34g/kg/day). Behavioral tests, immunohistochemistry, immunofluorescence, and high-performance liquid chromatography (HPLC) were conducted to evaluate the neuroprotective effects of JJDHYZ. The mechanism was further explored using TdT-mediated dUTP nick end labeling staining and transmission electron microscopy. The protein expression of Bax, Bcl-2, cytochrome c, full-length caspase9, cleaved caspase9, cleaved caspase3, caspase12 and C/EBP homologous protein was assessed. The toxicity on hepatocytes and renal cells was detected using the enzyme-linked immunosorbent assay kits. RESULTS JJDHYZ-H restored the behavior performance impaired by MPTP, and reduced the loss of tyrosine hydroxylase. Additionally, it blocked the apoptosis, activated cleaved caspase3 and protected the ultrastructural integrity of mitochondria by regulating the expression of proteins in both mitochondrial and endoplasmic reticulum (ER) caspase12 pathways. CONCLUSIONS JJDHYZ-H showed behavior recovery and dopamine neuron protection by inhibiting the apoptotic activities associated with mitochondrial and ER caspase12 pathways.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhennian Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Bao
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhonghai Yu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ting Wu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Jiang XW, Bai JP, Zhang Q, Hu XL, Tian X, Zhu J, Liu J, Meng WH, Zhao QC. Caffeoylquinic Acid Derivatives Protect SH-SY5Y Neuroblastoma Cells from Hydrogen Peroxide-Induced Injury Through Modulating Oxidative Status. Cell Mol Neurobiol 2017; 37:499-509. [PMID: 27255971 DOI: 10.1007/s10571-016-0387-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Oxidative stress has been confirmed as a contribution to the pathogenesis and pathophysiology of many neurological disorders such as Alzheimer's disease and Parkinson's disease. Caffeoylquinic acids (CQAs) are considered to have anti-oxidative stress ability in a previous study, but the structure-activity relationships (SARs) of CQAs in neuroprotective effects are still unclear. In the present study, we primarily expound the SARs of CQAs in counteracting H2O2-induced injury in SH-SY5Y cells. We found that CQAs (1-10) represented the protection of SH-SY5Y cells against H2O2-induced injury in varying degrees and malonyl groups could obviously increase the anti-oxidative stress ability of CQAs. Intensive studies of 4,5-O-dicaffeoyl-1-O-(malic acid methyl ester)-quinic acid (MDCQA) indicated that the mechanisms could potentially involve activation of endogenous antioxidant enzymes and the regulation of the phosphorylation of MAPKs and AKT. In conclusion, MDCQA could serve as a neuroprotective agent with a potential to attenuate oxidative stress.
Collapse
Affiliation(s)
- Xiao-Wen Jiang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110840, China
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jun-Peng Bai
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qiao Zhang
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Long Hu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xing Tian
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jun Zhu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jia Liu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei-Hong Meng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110840, China
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110840, China.
| |
Collapse
|
17
|
Yin Y, Lu L, Wang D, Shi Y, Wang M, Huang Y, Chen D, Deng C, Chen J, Lv P, Wang Y, Li C, Wei LB. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts. Cell Biochem Biophys 2017; 73:433-439. [PMID: 27352334 DOI: 10.1007/s12013-015-0659-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis.
Collapse
Affiliation(s)
- Yi Yin
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lu Lu
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Dongtao Wang
- Department of Nephrology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530011, China
| | - Ying Shi
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ming Wang
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yanfeng Huang
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Dexiu Chen
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Cong Deng
- Division of TCM, Guangzhou Nansha Central Hospital, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Jiebin Chen
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Peijia Lv
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanjing Wang
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chengjie Li
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lian-Bo Wei
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China.
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
18
|
Basu T, Mallik A, Mandal N. Evolving importance of anticancer research using herbal medicine: a scientometric analysis. Scientometrics 2017. [DOI: 10.1007/s11192-016-2223-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Lakshmi T, Ezhilarasan D, Vijayaragavan R, Bhullar SK, Rajendran R. Acacia catechu ethanolic bark extract induces apoptosis in human oral squamous carcinoma cells. J Adv Pharm Technol Res 2017; 8:143-149. [PMID: 29184846 PMCID: PMC5680622 DOI: 10.4103/japtr.japtr_73_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Oral cancer is in approximately 30% of all cancers in India. This study was conducted to evaluate the cytotoxic activity of ethanolic extract of Acacia catechu bark (ACB) against human squamous cell carcinoma cell line-25 (SCC-25). Cytotoxic effect of ACB extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide assay. A. catechu extract was treated SCC-25 cells with 25 and 50 μg/mL for 24 h. Apoptosis markers such as caspases-8 and 9, bcl-2, bax, and cytochrome c (Cyt-c) were done by RT-PCR. Morphological changes of ACB treated cells were evaluated using acridine orange/ethidium bromide (AO/EB) dual staining. Nuclear morphology and DNA fragmentation were evaluated using propidium iodide (PI) staining. Further, cell cycle analysis was performed using flow cytometry. A. catechu treatment caused cytotoxicity in SCC-25 cells with an IC50 of 52.09 μg/mL. Apoptotic marker gene expressions were significantly increased on ACB treatment. Staining with AO/EB and PI shows membrane blebbing and nuclear membrane distortion, respectively, and it confirms the apoptosis induction in SCC-25 cells. These results suggest that ACB extract can be used as a modulating agent in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Thangavelu Lakshmi
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India.,Department of Pharmacology, Biomedical Research Unit and Animal Research Centre, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | | | | | - Ramasamy Rajendran
- Green Chem Herbal Extracts and Formulations, Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Kar I, Chattopadhyaya R. Effect of seven Indian plant extracts on Fenton reaction-mediated damage to DNA constituents. J Biomol Struct Dyn 2016; 35:2997-3011. [PMID: 27691720 DOI: 10.1080/07391102.2016.1244493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The influences of substoichiometric amounts of seven plant extracts in the Fenton reaction-mediated damage to deoxynucleosides, deoxynucleoside monophosphates, deoxynucleoside triphosphates, and supercoiled plasmid DNA were studied to rationalize anticancer properties reported in some of these extracts. Extracts from Acacia catechu, Emblica officinalis, Spondias dulcis, Terminalia belerica, Terminalia chebula, as well as gallic acid, epicatechin, chebulagic acid and chebulinic acid enhance the extent of damage in Fenton reactions with all monomeric substrates but protect supercoiled plasmid DNA, compared to standard Fenton reactions. The damage to pyrimidine nucleosides/nucleotides is enhanced by these extracts and compounds to a greater extent than for purine ones in a concentration dependent manner. Dolichos biflorus and Hemidesmus indicus extracts generally do not show this enhancement for the monomeric substrates though they protect plasmid DNA. Compared to standard Fenton reactions for deoxynucleosides with ethanol, the presence of these five plant extracts render ethanol scavenging less effective as the radical is generated in the vicinity of the target. Since substoichiometric amounts of these extracts and the four compounds produce this effect, a catalytic mechanism involving the presence of a ternary complex of the nucleoside/nucleotide substrate, a plant compound and the hydroxyl radical is proposed. Such a mechanism cannot operate for plasmid DNA as the planar rings in the extract compounds cannot stack with the duplex DNA bases. These plant extracts, by enhancing Fenton reaction-mediated damage to deoxynucleoside triphosphates, slow down DNA replication in rapidly dividing cancer cells, thus contributing to their anticancer properties.
Collapse
Affiliation(s)
- Indrani Kar
- a Department of Biochemistry , Bose Institute , P-1/12, C. I. T. Scheme VIIM, Kolkata 700054 , India
| | - Rajagopal Chattopadhyaya
- a Department of Biochemistry , Bose Institute , P-1/12, C. I. T. Scheme VIIM, Kolkata 700054 , India
| |
Collapse
|
21
|
Afsar T, Razak S, Khan MR, Mawash S, Almajwal A, Shabir M, Haq IU. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:258. [PMID: 27473625 PMCID: PMC4966721 DOI: 10.1186/s12906-016-1240-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/23/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Acacia hydaspica R. Parker, family leguminosae, is a medicinally important plant. Different plant parts are used in various ailments in folk medicine. The current study aimed at investigating the in vitro antioxidant, anti-hemolytic and anticancer activity of A. hydaspica. METHODS Antioxidant potential was assessed using DPPH, ABTS and •OH, scavenging of H2O2, inhibition of lipid peroxidation and β-carotene bleaching inhibition assays. Anti-hemolytic activity was assessed using H2O2 induced hemolysis of RBCs. Anticancer potential was assessed using MTT assay. Spectrometric methods and HPLC-DAD analysis was performed for phytochemical screening. RESULTS EC50 values based on reduction of DPPH, ABTS and •OH, scavenging of H2O2, inhibition of lipid peroxidation and β-carotene bleaching for AHB, AHE and AHM were generally lower manifesting potential antiradical capacities. The fractions also exhibited significant (P <0.001) anti-hemolytic potential. Regarding IC50 values for anticancer activity against HCC-38 and MDA-MB-361 cancer cell lines; AHB, AHE and AHM exhibited significant (P <0.001) cyto-selection indices. Plant extracts showed no cytotoxicity against normal Vero cells (IC50 > 250 μg/ml). While significant (P <0.001) cytotoxicity was elicited by these extract/fractions against cancer cell lines. AHE was the most effective and IC50 was found to be 29.9 ± 0.909 μg/ml (SI = 9.83) and 39.5 ± 0.872 μg/ml (SI = 7.44) against MDA-MB-361 and HCC-38 cancer cells respectively. Higher amounts of TPC and TFC were exhibited by AHE and AHB as compared to other fractions. Gallic acid, catechin and myricetin were identified in AHE whereas gallic acid and catechin were identified in AHB by HPLC. CONCLUSION The presence of bioactive constituents in AHE and AHB might be responsible for antioxidant, anti-hemolytic and anticancer activities.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saadia Mawash
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maria Shabir
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
22
|
Afsar T, Razak S, Khan MR, Mawash S, Almajwal A, Shabir M, Haq IU. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. Altern Ther Health Med 2016. [DOI: 10.1186/s12906-016-1240-8
https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-016-1240-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Afsar T, Trembley JH, Salomon CE, Razak S, Khan MR, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep 2016; 6:23077. [PMID: 26975752 PMCID: PMC4791679 DOI: 10.1038/srep23077] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/19/2016] [Indexed: 12/29/2022] Open
Abstract
Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Janeen H Trembley
- Cellular and Molecular Biochemistry Research Laboratory (151), Minneapolis VA Health Care System, Minneapolis, MN USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | | | - Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Khalil Ahmed
- Cellular and Molecular Biochemistry Research Laboratory (151), Minneapolis VA Health Care System, Minneapolis, MN USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
24
|
Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines : Gaillardin-induced apoptosis in breast cancer cell lines. Cell Biol Toxicol 2016; 31:295-305. [PMID: 26843455 DOI: 10.1007/s10565-016-9312-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022]
Abstract
Medicinal plant extracts have been widely used for cancer treatment. Gaillardin is a natural sesquiterpene lactone that has recently been reported to have anticancer properties. The ability to induce apoptosis is an important property of a candidate anticancer drug, which discriminates between anticancer drugs and toxic compounds. The current study was therefore carried out to address the issue if Gaillardin is able to induce apoptosis in the breast cancer cell lines MCF-7 and MDA-MB-468 and to determine the underlying mechanism of its anticancer effects. Apoptosis induction by Gaillardin treatment was confirmed by annexin V-FITC/PI staining, and caspase-3,-6, and-9 activation. Using Western blot analysis, we found that Gaillardin upregulated the pro-apoptotic protein Bax and p53 and downregulated the anti-apoptotic protein Bcl-2. Moreover, the apoptotic effect of Gaillardin was also related to ROS production and loss of mitochondrial membrane potential (ΔΨm). Taken together, these results demonstrate that Gaillardin can inhibit proliferation of breast cancer cells via inducing mitochondrial apoptotic pathway and therefore, might be a promising molecule in cancer chemoprevention or chemotherapy.
Collapse
|
25
|
Diab KAE, Guru SK, Bhushan S, Saxena AK. In Vitro Anticancer Activities of Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleiferna Indian Plants. Asian Pac J Cancer Prev 2015; 16:6423-8. [DOI: 10.7314/apjcp.2015.16.15.6423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Adegbite OS, Akinsanya YI, Kukoyi AJ, Iyanda-Joel WO, Daniel OO, Adebayo AH. Induction of rat hepatic mitochondrial membrane permeability transition pore opening by leaf extract of Olax subscorpioidea. Pharmacognosy Res 2015; 7:S63-8. [PMID: 26109790 PMCID: PMC4466771 DOI: 10.4103/0974-8490.157998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/09/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The induction of the mitochondrial membrane permeability transition (MMPT) pore has been implicated in the cascade of events involved in apoptosis (programmed cell death). Olax subscorpioidea is traditionally used for the treatment of several diseases and infection. However, its role on MMPT is not yet established. This study was aimed at evaluating the effects of varying concentrations of the methanol leaf extract of O. subscorpioidea (MEOS) on MMPT pore opening, mitochondrial adenosine triphosphatase (ATPase), and mitochondrial lipid peroxidation. MATERIALS AND METHODS Opening of the pore was spectrophotometrically assayed under succinate-energized conditions. RESULTS In the absence of triggering agent (calcium), MEOS induced MMPT pore opening by 350, 612, 827, 845% at 36, 60, 86 and 112 μg/ml, respectively. MEOS further induced MMPT pore opening in the presence of a triggering agent by 866, 905, 831, 840, 949% at 12, 36, 60, 86 and 112 μg/ml, respectively. The extract significantly induced mitochondrial membrane lipid peroxidation in all the concentration used. MEOS also significantly increased mitochondrial ATP hydrolysis by mitochondrial ATPase in all concentration of the extract used. CONCLUSION It may be deduced from this results, that MEOS contains certain bioactive components that may find use in pathological conditions that require an enhanced rate of apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - Oluwatoyin O Daniel
- Department of Biochemistry, University of Ibadan, Ibadan, Nigeria ; Department of Biological Sciences, Crawford University, Igbesa, Nigeria
| | | |
Collapse
|
27
|
Stohs SJ, Bagchi D. Antioxidant, Anti-inflammatory, and Chemoprotective Properties of Acacia catechu Heartwood Extracts. Phytother Res 2015; 29:818-24. [PMID: 25802170 PMCID: PMC6680240 DOI: 10.1002/ptr.5335] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 11/09/2022]
Abstract
Aqueous extracts of Acacia catechu heartwood are rich source of catechin and epicatechin (gallic acid derivatives), with smaller amounts of flavonoids. Extracts have also been prepared with ethyl acetate, ethanol, and methanol, and the properties of these extracts have been studied and are reviewed. Potent antioxidant activity has been well established in both in vitro and in vivo studies. This antioxidant activity is believed to be responsible for the anti-inflammatory, tissue protectant, antineoplastic, and analgesic activities that have been demonstrated and clearly established in animal and cell culture systems. Furthermore, antihyperglycemic, antidiarrheal, antinociceptive, and antipyretic activities have been demonstrated in animal studies. No adverse effects have been observed in animal or human studies or in cell culture systems. In spite of the fact that Acacia products have been used for many years and the general safety of catechins and epicatechins is well documented, few human studies have ever been conducted on the efficacy or safety of A. catechu heartwood extracts. Several studies have shown that a two-ingredient combination product containing A. catechu extract exhibited no adverse effects when administered daily for up to 12 weeks while exhibiting significant anti-inflammatory activity in subjects with osteoarthritis of the knee. There is a need for additional human clinical studies with regard to efficacy and safety.
Collapse
Affiliation(s)
- Sidney J Stohs
- School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha, 68178, NE, USA.,AdvoCare International, Plano, 75074, TX, USA
| | - Debasis Bagchi
- AdvoCare International, Plano, 75074, TX, USA.,Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
28
|
Shin JA, Kwon KH, Cho SD. AMPK-activated protein kinase activation by Impatiens balsamina L. is related to apoptosis in HSC-2 human oral cancer cells. Pharmacogn Mag 2015; 11:136-42. [PMID: 25709223 PMCID: PMC4329613 DOI: 10.4103/0973-1296.149728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/25/2014] [Accepted: 01/21/2015] [Indexed: 11/04/2022] Open
Abstract
Objective: In the present study, we investigated the efficacy of a methanol extract from Impatiens balsamina L. (MEIB) against HSC-2 human oral cancer cells. Materials and Methods: The anti-cancer efficacies of MEIB were performed by methanethiosulfonate assay, phospho-kinase array, Western blot, 4’-6-diamidino-2-phenylindole staining, trypan blue exclusion assay and 5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolylcarbocyanine iodide assay. Results: MEIB decreased the cell viability of HSC-2 cells. According to phospho-kinase arrays, MEIB markedly activated AMP-activated protein kinase (AMPK) signaling, but inactivated mammalian target of rapamycin signaling. MEIB induced apoptosis as evidenced by activation of caspase-3, poly (ADP-ribose) polymerase cleavage and nuclear condensation. In addition, AMPK activation by two known activators (5-aminoimidazole-4-carboxamide-1-β-ribofuranoside and metformin) decreased cell viability and induced apoptosis. Moreover, MEIB increased the expression levels of mitochondria-related proteins (t-Bid, Bak and Bad), which contributed to the disruption of mitochondrial membrane potential, cytochrome C release and activation of caspase-9. Metformin also increased t-Bid expression and the subsequent release of cytochrome C into the cytosol. Conclusion: These results suggest that MEIB may be of therapeutic value for treating oral cancer and that its mechanism of action occurs through AMPK and t-Bid.
Collapse
Affiliation(s)
- Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Ki Han Kwon
- Department of Food Science and Nutrition, College of Health Welfare and Education, Gwangju University, Gwangju, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| |
Collapse
|