1
|
Gościniak A, Szulc P, Zielewicz W, Walkowiak J, Cielecka-Piontek J. Multidirectional Effects of Red Clover ( Trifolium pratense L.) in Support of Menopause Therapy. Molecules 2023; 28:5178. [PMID: 37446841 DOI: 10.3390/molecules28135178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Red clover is a raw material of interest primarily due to its isoflavone content. However, other groups of compounds may affect the pleiotropic biological effects of this raw material. It is used to alleviate menopausal symptoms, but the fact that there are many varieties of this plant that can be grown makes it necessary to compare the biological activity and phytochemical composition of this plant. Also of interest are the differences between the leaves and flowers of the plant. The aim of this study was to evaluate the properties of the leaves and flowers of six clover varieties-'Tenia', 'Atlantis', 'Milena', 'Magellan', 'Lemmon' and 'Lucrum'-with respect to their ability to inhibit α-glucosidase, lipase, collagenase and antioxidant activity. Therefore, the contents of polyphenols and the four main isoflavones-genistein, daidzein, biochanin and formononetin-were assessed. The study was complemented by testing for permeability through a model membrane system (PAMPA). Principal component analysis (PCA) identified a relationship between activity and the content of active compounds. It was concluded that antioxidant activity, inhibition of glucosidase, collagenase and lipase are not correlated with isoflavone content. A higher content of total polyphenols (TPC) was determined in the flowers of red clover while a higher content of isoflavones was determined in the leaves of almost every variety. The exception is the 'Lemmon' variety, characterized by high isoflavone content and high activity in the tests conducted.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Waldemar Zielewicz
- Department of Grassland and Natural Landscape Sciences, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Ahn Y, Lee HS, Lee SH, Joa KL, Lim CY, Ahn YJ, Suh HJ, Park SS, Hong KB. Effects of gypenoside L-containing Gynostemma pentaphyllum extract on fatigue and physical performance: A double-blind, placebo-controlled, randomized trial. Phytother Res 2023. [PMID: 36877124 DOI: 10.1002/ptr.7801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/07/2023]
Abstract
This study was conducted to investigate the effect of Gynostemma pentaphyllum extract containing gypenoside L (GPE) on improving the cognitive aspects of fatigue and performance of the motor system. One hundred healthy Korean adults aged 19-60 years were randomized to the treatment (GPE for 12 weeks) and control groups, and efficacy and safety-related parameters were compared between the two groups. Maximal oxygen consumption (VO2 max) and O2 pulse were significantly higher in the treatment group than in the control group (p = 0.007 and p = 0.047, respectively). After 12 weeks, the treatment group showed significant changes such as decreases in the levels of free fatty acids (p = 0.042). In addition, there were significant differences in the rating of perceived exertion (RPE) (p < 0.05) and value of temporal fatigue between the treatment and control groups on the multidimensional fatigue scale (p < 0.05). Moreover, the level of endothelial nitric oxide synthase (eNOS) in the blood was significantly higher in the treatment group than in the control group (p = 0.047). In summary, oral administration of GPE has a positive effect on resistance to exercise-induced physical and mental fatigue.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Kyung-Lim Joa
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University School of Medicine, Incheon, South Korea
| | | | - Yu Jin Ahn
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea.,BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, South Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| |
Collapse
|
3
|
Natural bioactive flavonoids as promising agents in alleviating exercise-induced fatigue. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Luo C, Wei X, Song J, Xu X, Huang H, Fan S, Zhang D, Han L, Lin J. Interactions between Gut Microbiota and Polyphenols: New Insights into the Treatment of Fatigue. Molecules 2022; 27:7377. [PMID: 36364203 PMCID: PMC9653952 DOI: 10.3390/molecules27217377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/02/2023] Open
Abstract
Fatigue seriously affects people's work efficiency and quality of life and has become a common health problem in modern societies around the world. The pathophysiology of fatigue is complex and not fully clear. To some degree, interactions between gut microbiota and host may be the cause of fatigue progression. Polyphenols such as tannin, tea polyphenols, curcumin, and soybean isoflavones relieve fatigue significantly. Studies have shown that the gut microbiota is able to convert these active compounds into more active metabolites through intestinal fermentation. However, the mechanism of anti-fatigue polyphenols is currently mainly analyzed from the perspective of antioxidant and anti-inflammatory effects, and changes in gut microbiota are rarely considered. This review focuses on gut microecology and systematically summarizes the latest theoretical and research findings on the interaction of gut microbiota, fatigue, and polyphenols. First, we outline the relationship between gut microbiota and fatigue, including changes in the gut microbiota during fatigue and how they interact with the host. Next, we describe the interactions between the gut microbiota and polyphenols in fatigue treatment (regulation of the gut microbiota by polyphenols and metabolism of polyphenols by the gut microbiota), and how the importance of potential active metabolites (such as urolithin) produced by the decomposition of polyphenols by gut microbiota is emerging. Based on the new perspective of gut microbiota, this review provides interesting insights into the mechanism of polyphenols in fatigue treatment and clarifies the potential of polyphenols as targets for anti-fatigue product development, aiming to provide a useful basis for further research and design.
Collapse
Affiliation(s)
- Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xichuan Wei
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaorong Xu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haozhou Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanhu Fan
- Sichuan Huamei Pharmaceutical Co., Ltd., Sanajon Pharmaceutical Group, Chengdu 610045, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
5
|
Chen YJ, Baskaran R, Shibu MA, Lin WT. Anti-Fatigue and Exercise Performance Improvement Effect of Glossogyne tenuifolia Extract in Mice. Nutrients 2022; 14:nu14051011. [PMID: 35267986 PMCID: PMC8912778 DOI: 10.3390/nu14051011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Glossogyne tenuifolia (GT) is a native perennial plant growing across the coastline areas in Taiwan. The current study aimed to examine the efficacy of GT extract in ameliorating physical fatigue during exercise and increasing exercise performance. Fifty male Institute of Cancer Research (ICR) mice were randomly segregated into five groups (n = 10) to GT extract orally for 4 weeks, at different concentrations (50, 100, 250, and 500 mg/kg BW/day): LGT 1X, MGT 2X, HGT 5X, and HGT 10X groups. Forelimb grip strength, endurance swimming time, serum biochemical marker levels, blood lipid profile and histological analysis of various organs were performed to assess the anti-fatigue effect and exercise performance of GT extract. The forelimb-grips strength and endurance-swimming time of GT-administered mice were increased significantly in a dose-dependent manner when compared to the control. Serum glucose, creatine kinase, and lactate levels were increased significantly in the HGT 10X group. Liver marker serum glutamic-oxaloacetic transaminase (GOT) was increased in the HGT 5X and HGT 10X groups, whereas Serum Glutamic Pyruvic Transaminase (GPT) was not altered. Renal markers, creatinine and uric acid levels, were not altered. Muscle and hepatic glycogen levels, which are essential for energy sources during exercise, were also significantly increased in a dose-dependent manner in all GT extract groups. No visible histological aberrations were observed in the vital organs after GT extract administration. The supplementation with GT extract could have beneficial effects on exercise performance and anti-fatigue function without toxicity at a higher dose.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Surgery, Taichung Veterans General Hospital, Taichung 40704, Taiwan;
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan;
| | | | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung 40704, Taiwan
- Correspondence: ; Tel.: +886-4-2359-0121 (ext. 37709)
| |
Collapse
|
6
|
Zhang J, Chen L, Zhang L, Chen Q, Tan F, Zhao X. Effect of Lactobacillus fermentum HFY03 on the Antifatigue and Antioxidation Ability of Running Exhausted Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8013681. [PMID: 34621465 PMCID: PMC8492249 DOI: 10.1155/2021/8013681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Yak yogurt is mainly produced in Qinghai-Tibet Plateau. It is a kind of naturally fermented dairy product. It contains abundant microorganisms. Lactobacillus fermentum (LF) HFY03 is a lactic acid bacteria derived from it. Our main research content is to study the influence of LF-HFY03 on the antifatigue and antioxidation ability of running exhausted mice. We gave different doses of LF-HFY03 to mice by gavage for 4 weeks. We selected vitamin C as the positive control group, mainly to study the relationship between antioxidant capacity and fatigue resistance and LF-HFY03 in mice with running exhaustion. The results showed that LF-HFY03 and vitamin C could significantly improve the running time of mice. And with the increase in LF-HFY03 concentration, the exhaustion time of mice was also extended. LF-HFY03 can reduce the content of urea nitrogen and lactic acid and also can increase the content of free fatty acids and liver glycogen. The levels of alanine aminotransferase, serum creatine kinase, and aspartate aminotransferase in mice decreased gradually as the antioxidant peptide level of walnut albumin increased. LF-HFY03 can reduce malondialdehyde (MDA) levels in a quantification-dependent manner and can also increase catalase (CAT) and superoxide dismutase (SOD) levels. LF-HFY03 can also increase the expressions of CAT mRNA, Cu/Zn-SOD, and Mn-SOD in the liver of mice. At the same time, LF-HFY03 can also increase the expression of protein of threonine transporter 1 (AST1)/alanine/cysteine/serine, mRNA, nNOS, and eNOS. At the same time, the solution could reduce the expression of TNF-α, syncytin-1, and inducible nitric oxide synthase (iNOS). The results showed that LF-HFY03 has a high development and application prospect as an antifatigue probiotic nutritional supplement.
Collapse
Affiliation(s)
- Junxiao Zhang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
- School of Teacher Development, Chongqing University of Education, Chongqing 400067, China
| | - Ling Chen
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, 610500 Sichuan, China
| | - Lingyan Zhang
- School of Continuing Education, Chongqing University of Education, Chongqing 400067, China
| | - Qiuping Chen
- Department of Education, Our Lady of Fatima University, Valenzuela 838, Philippines
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, 838 Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
- School of Teacher Development, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
7
|
Yi R, Feng M, Chen Q, Long X, Park KY, Zhao X. The Effect of Lactobacillus plantarum CQPC02 on Fatigue and Biochemical Oxidation Levels in a Mouse Model of Physical Exhaustion. Front Nutr 2021; 8:641544. [PMID: 34095185 PMCID: PMC8173150 DOI: 10.3389/fnut.2021.641544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Chinese Sichuan pickle is a fermented food rich in microorganisms. Microorganisms have the potential to become an important new form of potent future therapeutic capable of treating human disease. Selecting vitamin C as a positive control, a lactic acid bacteria (Lactobacillus plantarum CQPC02, LP-CQPC02) isolated from Sichuan pickle was given to mice over 4 weeks to investigate the effect of CQPC02 on fatigue levels and biochemical oxidation phenomena in exercise-exhausted Institute of Cancer Research (ICR) mice. The fatigue model was established by forced swimming of mice, the levels of hepatic glycogen, skeletal muscle glycogen, lactic acid, blood urea nitrogen and free fatty acid were measured by physicochemical methods, serum serum creatine kinase (CK), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels were measured by kits, the histopathological changes in the livers of mice were observed by H&E slicing, and the mRNA changes in the livers and skeletal muscles were observed by quantitative polymerase chain reaction (qPCR). Both vitamin C and LP-CQPC02 increased swimming exhaustion time. The concentration of LP-CQPC02 and exhaustion time were positively correlated. LP-CQPC02 also increased liver glycogen, skeletal muscle glycogen and free fatty acid content in mice and reduced lactic acid and blood urea nitrogen content in a dose-dependent manner. As walnut albumin antioxidant peptide concentration increased, levels of mouse CK, AST, and AST gradually decreased. LP-CQPC02 increased SOD and CAT levels and decreased MDA levels in a dose-dependent fashion. LP-CQPC02 up-regulated expression of mRNA encoding copper/zinc-superoxide dismutase (Cu/Zn-SOD), manganese-superoxide dismutase (Mn-SOD), and CAT in swimming exhaustion mouse liver tissue. LP-CQPC02 also up-regulated alanine/serine/cysteine/threonine transporter 1 (ASCT1) expression while down-regulating syncytin-1, inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α) expression in swimming exhaustion mouse skeletal muscle. Overall, LP-CQPC02 had a clear anti-fatigue and anti-oxidation effect. This suggests that LP-CQPC02 can be developed as a microbiological therapeutic agent.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Min Feng
- Department of Obstetrics, Eastern Hospital, Sichuan Provincial Medical Sciences Academy and Sichuan Provincial People's Hospital, Chengdu, China
| | - Qiuping Chen
- Department of Education, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
8
|
Zhang Y, Li A, Yang X. Effect of lemon seed flavonoids on the anti-fatigue and antioxidant effects of exhausted running exercise mice. J Food Biochem 2021; 45:e13620. [PMID: 33533497 DOI: 10.1111/jfbc.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 01/10/2023]
Abstract
In this research, mice were gavaged with different doses of lemon seed flavonoids (LSF) for 4 weeks, and vitamin C was used as a positive control to investigate its effects on anti-fatigue and antioxidant capacity in exhaustively exercised mice. The results obtained from the study indicated that both vitamin C and LSF could significantly increase the running exhaustion time of mice, and the exhaustion time of mice was prolonged with increasing LSF concentration. LSF can increase hepatic glycogen and the free fatty acid content and reduce the lactate and urea nitrogen contents in a dose-dependent manner in mice. Serum CK, AST, and ALT levels in mice decreased gradually with increasing LSF concentration. LSF increased SOD and CAT levels and decreased MDA levels in mice in a dose-dependent manner. LSF could also enhance nNOS, eNOS, and ASCT1 mRNA expression and decrease syncytin-1, iNOS and TNF-α expression in the skeletal muscle of mice. By HPLC analysis, LSF was found to contain epigallocatechin, caffeic acid, epicatechin, vitexin, quercetin, and hesperidin, which are common flavonoids of this species. Thus, it was observed that LSF has good anti-fatigue and antioxidant capacities, and its anti-fatigue effect is related to improving the hepatic glycogen reserve capacity, increasing fat mobilization, and reducing lactate accumulation and protein decomposition. The antioxidant capacity of LSF is related to scavenging free radicals and reducing lipid peroxidation, and its antioxidant effect comes from its five antioxidant flavonoids. In conclusion, LSF has high development and application prospects in nutritional supplements. PRACTICAL APPLICATIONS: Lemon seed is the waste of lemon processing, which contains abundant flavonoids. The flavonoids in lemon seed can be used to exert its antioxidant effect and recover from exhausted exercise. Therefore, it can be concluded that lemon seed flavonoids are functional components that can be used as exercise recovery substances.
Collapse
Affiliation(s)
- Yinglong Zhang
- School of Physical Education, Yan'an University, Yan'an, China
| | - Aihua Li
- School of Physical Education, Beijing Normal University, Beijing, China
| | - Xiaoguang Yang
- Sports Department, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
9
|
Yellow- and green-cotyledon seeds of black soybean: Phytochemical and bioactive differences determine edibility and medical applications. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Cui J, Xia P, Zhang L, Hu Y, Xie Q, Xiang H. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chem 2020; 333:127527. [PMID: 32683263 DOI: 10.1016/j.foodchem.2020.127527] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 07/05/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to develop a novel fermented soybean food (FSF) using selected Bacillus subtilis GD1, Bacillus subtilis N4, Bacillus velezensis GZ1, Lactobacillus delbrueckii subsp. bulgaricus and Hansenula anomala, as well as to assess its antioxidant and anti-fatigue activity. These Bacillus strains had excellent enzyme producing and soybean transformation capacity. FSF showed the highest peptide, total phenol, total flavonoid content, antioxidant activity, and suitable organic acid and biological amine content. In intense exercise mice, FSF treatment markedly increased hepatic glycogen level, decreased metabolite accumulation, improved the activities of antioxidant enzymes and decreased malondialdehyde (MDA) level in serum and liver, respectively. Furthermore, FSF treatment increased nuclear factor-erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE)-dependent gene expression. Together, the selection of microbial starter culture and mixed culture fermentation are essential for the effective enrichment of bioactive compounds, and FSF has stronger antioxidant and anti-fatigue activity.
Collapse
Affiliation(s)
- Jingwen Cui
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Peibin Xia
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Lingling Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Yu Hu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China.
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China.
| |
Collapse
|
11
|
Wang P, Zeng H, Lin S, Zhang Z, Zhang Y, Hu J. Anti-fatigue activities of hairtail (Trichiurus lepturus) hydrolysate in an endurance swimming mice model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Natural medicines for the treatment of fatigue: Bioactive components, pharmacology, and mechanisms. Pharmacol Res 2019; 148:104409. [DOI: 10.1016/j.phrs.2019.104409] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
|
13
|
Wei L, Wen YT, Lee MC, Ho HM, Huang CC, Hsu YJ. Effects of isolated soy protein and strength exercise training on exercise performance and biochemical profile in postpartum mice. Metabolism 2019; 94:18-27. [PMID: 30731100 DOI: 10.1016/j.metabol.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Postpartum women are at an increased risk for obesity and metabolic diseases because of excessive weight gain during pregnancy and weight retention after delivery. Maintenance of good nutrition and regular physical activity is used as a therapeutic approach for promotion of health and well-being in postpartum women. The aim of this study is to assess the independent and additive effects of isolated soy protein (ISP) and strength exercise training (ET) on weight management, exercise performance and health maintenance in postpartum mice. DESIGN AND METHODS Thirty-two postpartum mice (ICR, 14-weeks old) were divided into four groups (n = 8 per group): Group 1 mice were the sedentary control with vehicle (SC), Group 2 mice were the sedentary control with ISP supplementation (8.95 g·kg-1, SC + ISP), Group 3 mice received vehicle with exercise training (ET) and Group 4 mice received isolated soy protein with exercise training (ISP + ET). Animals in the ET and ISP + ET groups underwent strength exercise training for 6 weeks, 5 days a week. Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time, as well as by changes in body composition and biochemical parameters at the end of the experiment. RESULTS Combined intervention of ISP and ET increased lean muscle mass and prevented body weight and fat elevation. The grip strength and exhaustive swimming time of the ISP + ET group were significantly higher than the other groups. The ISP + ET group showed significantly decreased serum levels of lactate, ammonia and creatinine phosphate kinase (CPK), and increased glucose level after the 15-min swimming test. The serum levels of aspartate transaminase (AST), triglyceride (TG) and creatinine after sacrifice were significantly decreased in the ET + ISP group. ISP combined with ET promoted fat oxidation in brown adipose tissue (BAT) as evidenced from the increased utilization of plasma and BAT tissue triglyceride. CONCLUSIONS We suggest that long-term supplementation with ISP can have a wide spectrum of bioactivities on health promotion, performance improvement and fitness. ISP with ET conferred better energy utilization, improved biochemical profiles and may be an effective ergogenic aid in strength training.
Collapse
Affiliation(s)
- Li Wei
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan; Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
| | - Ya-Ting Wen
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Hua-Ming Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| |
Collapse
|
14
|
Jayachandran M, Xu B. An insight into the health benefits of fermented soy products. Food Chem 2019; 271:362-371. [PMID: 30236688 DOI: 10.1016/j.foodchem.2018.07.158] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
The current review was aimed to summarize the nutritional values and various health benefits of fermented soy products. Several previous researches proved that soy products rich in protein can reduce the serum concentrations of total cholesterol, low-density lipoproteins (LDLs), and triglycerides if consumed instead of animal protein. Apart from these lipid-lowering effects, fermented soy products also proved to be effective in attenuating the effects of diabetes mellitus, blood pressure, cardiac disorders and cancer-related issues. The nutritional value of the fermented soy products gains much attention due to its increased levels compared to the non-fermented ones. The origin, compositions, nutritional values of different fermented soy products and health-promoting benefits of fermented soy products were systematically reviewed. Hence the in-depth analysis of the various research findings on fermented soy products, beneficial activities may help the future researchers to derive a conclusion on its beneficial effects on health.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Food Science and Technology Program, Beijing Normal University Hong Kong Baptist University United International College, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University Hong Kong Baptist University United International College, China.
| |
Collapse
|
15
|
Ahsan M, Mallick AK. The Effect of Soy Isoflavones on the Menopause Rating Scale Scoring in Perimenopausal and Postmenopausal Women: A Pilot Study. J Clin Diagn Res 2017; 11:FC13-FC16. [PMID: 29207728 PMCID: PMC5713750 DOI: 10.7860/jcdr/2017/26034.10654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/22/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Menopause is associated with many unpleasant symptoms which vary in different phases of menopausal transition. Although, Hormone Replacement Therapy (HRT) is considered the most effective mode of treatment for these symptoms, its use is associated with increased risk of breast cancer, endometrial cancer and thromboembolic events. Soy isoflavones are being widely used as a safer alternative to HRT, even though scientific evidence of their efficacy is poor or lacking. AIM To study the effect of soy isoflavone supplementation on the menopausal symptoms in perimenopausal and postmenopausal women. MATERIALS AND METHODS An observational pilot study was done involving 29 perimenopausal and 21 postmenopausal women prescribed 100 mg soy isoflavones for 12 weeks. Menopause Rating Scale (MRS) questionnaire was administered to the patients before starting soy isoflavone therapy and at the end of treatment. Responses were analysed using Statistical Package for Social Sciences (SPSS) software 23.0. RESULTS Total score of both the groups were comparable at baseline. Among perimenopausal women highest score was given to symptoms of psychological domain. Urogenital symptoms were the worst among postmenopausal women. After 12 weeks of treatment, total scores improved significantly by 19.55% and 12.62% in the perimenopausal and postmenopausal women respectively. The greatest improvement was seen in scores of hot flashes for both the groups and the least improvement was shown by symptoms of urogenital subscale. CONCLUSION Soy isoflavone improves the MRS score among both the perimenopausal and postmenopausal women. As they are most effective for somatic and psychological symptoms, their use could be beneficial during perimenopause.
Collapse
Affiliation(s)
- Marya Ahsan
- Assistant Professor, Department of Pharmacology, Rohilkhand Medical College, Bareilly, Uttar Pradesh, India
| | - Ayaz Khurram Mallick
- Associate Professor, Department of Biochemistry, Rohilkhand Medical College, Bareilly, Uttar Pradesh, India
| |
Collapse
|
16
|
Hayes M, Tiwari BK. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities. Int J Mol Sci 2015; 16:22485-508. [PMID: 26393573 PMCID: PMC4613320 DOI: 10.3390/ijms160922485] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/24/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022] Open
Abstract
Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.
Collapse
Affiliation(s)
- Maria Hayes
- The Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Brijesh K Tiwari
- The Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|