1
|
Fu YP, Malterud KE, Hamre AG, Inngjerdingen KT, Wangensteen H. Polysaccharides and Bioactive Phenolics from Aconitum septentrionale Roots. Chem Biodivers 2023; 20:e202300161. [PMID: 37337851 DOI: 10.1002/cbdv.202300161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Aconitum septentrionale is known to contain toxic diterpene alkaloids, while other bioactive compounds in the plant remain unclear. The aim of this study was to explore the phenolic compounds and polysaccharides from the water extract of A. septentrionale roots. Fifteen phenolic compounds were isolated and identified by NMR and MS, including fourteen known and one new dianthramide glucoside (2-[[2-(β-D-glucopyranosyloxy)-5-hydroxybenzoyl]amino]-4,5-dihydroxybenzoic acid methyl ester, 14). One neutral (complex of glucans with minor amounts of mannans) and two acidic polysaccharide fractions (complexes of pectic polysaccharides and glucans) were also obtained. Hydroxytyrosol (1), hydroxytyrosol-1-O-β-glucoside (2) and bracteanolide A (7) inhibited the release of nitric oxide by dendritic cells. Magnoflorine (8) and 2-[[2-(β-D-glucopyranosyloxy)-5-hydroxybenzoyl]amino]-5-hydroxybenzoic acid methyl ester (12) inhibited 15-lipoxygenase, and bracteanolide A (7) was a moderate inhibitor of xanthine oxidase. This study is the first to describe the diversity of phenolics and polysaccharides from A. septentrionale and their anti-inflammatory and anti-oxidant activities.
Collapse
Affiliation(s)
- Yu-Ping Fu
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Karl Egil Malterud
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Anne Grethe Hamre
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| |
Collapse
|
2
|
Phytochemical and chemotaxonomic investigations on the aerial parts of Cynanchum auriculatum Royle ex Wight. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
3
|
Chao T, Hsieh C, Kuo Y, Yu Y, Wan C, Hsieh S. Bracteanolide A abrogates oxidative stress-induced cellular damage and protects against hepatic ischemia and reperfusion injury in rats. Food Sci Nutr 2021; 9:4758-4769. [PMID: 34531989 PMCID: PMC8441430 DOI: 10.1002/fsn3.2374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Liver diseases, including viral hepatitis, liver cirrhosis, and liver cancer, mostly remain silent until the late stages and pose a continuing threat to millions of people worldwide. Liver transplantation is the most appropriate solution in the case of liver failure, but it is associated with hepatic ischemia and reperfusion (I/R) injury which severely reduces the prognosis of the patients. In order to ameliorate I/R injury, we investigated the potential of bracteanolide A, from the herb Tradescantia albiflora Kunth in protecting the liver from I/R injury. We first determined the protective effect of bracteanolide A against oxidative stress and DNA damage using HepG2 hepatocyte cell line and then assessed the levels of inflammatory cytokines and antioxidant proteins in response to hepatic insult using an animal model of hepatic I/R injury. The results showed bracteanolide A greatly enhanced cell survival and decreased reactive oxygen species (ROS) production under H2O2 induction. It also upregulated the expression of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and its downstream cytoprotective proteins NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Bracteanolide A effectively reduced the severity of liver lesions in I/R-injured rats revealed by histological analysis and significantly decreased the levels of alanine transaminase (ALT), aspartate transaminase (AST), cyclooxygenase-2, and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Bracteanolide A preconditioning effectively protected the liver from I/R damage in the animal model, and this easily applied procedure may provide a new means to ameliorate hepatic I/R injury during liver surgeries.
Collapse
Affiliation(s)
- Ting‐Yu Chao
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cheng‐Chu Hsieh
- Biologics DivisionAnimal Health Research InstituteCouncil of AgricultureExecutive Yuan, New Taipei CityTaiwan
| | - Yueh‐Hsiung Kuo
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine ResourcesChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
- Chinese Medicine Research CenterChina Medical UniversityTaichungTaiwan
| | - Ya‐Ju Yu
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cho‐Hua Wan
- Graduate Institute of Molecular and Comparative PathobiologySchool of Veterinary MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Shu‐Chen Hsieh
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
4
|
Parisa N, Hidayat R, Maritska Z, Prananjaya BA. Evaluation of the anti-gout effect of Sonchus Arvensis on monosodium urate crystal-induced gout arthritis via anti-inflammatory action - an in vivo study. Med Pharm Rep 2021; 94:358-365. [PMID: 34430859 DOI: 10.15386/mpr-1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background and aims Sonchus arvensis is an Indonesian plant with strong therapeutic effects. Various studies have shown that this plant is useful in treating kidney stone disorders, and recent studies have shown that S. arvensis extract can reduce inflammation caused by monosodium urate crystal deposition in the synovial tissue. This study was aimed to explore the extract of Sonchus arvensis, via fractionation, to optimize the specific content of S. arvensis with anti-inflammatory potential in gout arthritis. Methods The study included 30 rats (Rattus norvegicus) Wistar strain obtained from the Eureka Research Laboratory (Palembang, Indonesia) weighing between 200 - 250 grams. After one week of acclimatization, the rats were randomly divided into six groups, each group containing five animals; normal control group, monosodium urate group (negative control), colchicine group, hexane fraction of S. arvensis group, ethyl-acetate fraction of S. arvensis group and water fraction group. Before monosodium urate administration, rats in the colchicine group, as a positive control group, were given orally for seven days with 0.28 mg/kg/day colchicine. IL-1β levels in joint synovial fluid were examined with Rat ELISA interleukin-1β. Results S. arvensis water fraction showed the most significant reduction in inflammatory cells compared to the hexane or ethyl acetate fractions. The water fraction of S. arvensis group had an equal effect with positive control in reducing the infiltration of inflammatory cells in the synovial tissue. Conclusion Sonchus arvensis water fraction has anti-gout effects in monosodium urate-induced gout arthritis in rats by decreasing the inflammatory response in the synovial joint.
Collapse
Affiliation(s)
- Nita Parisa
- Doctoral Programme of Biomedical Science Student, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia.,Department of Pharmacology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Rachmat Hidayat
- Department of Biology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Ziske Maritska
- Department of Biology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | | |
Collapse
|
5
|
Chen L, Luo Z, Wang M, Cheng J, Li F, Lu H, He Q, You Y, Zhou X, Kwan HY, Zhao X, Zhou L. The Efficacy and Mechanism of Chinese Herbal Medicines in Lowering Serum Uric Acid Levels: A Systematic Review. Front Pharmacol 2021; 11:578318. [PMID: 33568990 PMCID: PMC7868570 DOI: 10.3389/fphar.2020.578318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background. Chinese herbal medicines are widely used to lower serum uric acid levels. However, no systemic review summarizes and evaluates their efficacies and the underlying mechanisms of action. Objectives. To evaluate the clinical and experimental evidences for the effectiveness and the potential mechanism of Chinese herbal medicines in lowering serum uric acid levels. Methods. Four electronic databases PubMed, Wed of Science, the Cochrane Library and Embase were used to search for Chinese herbal medicines for their effects in lowering serum uric acid levels, dated from 1 January 2009 to 19 August 2020. For clinical trials, randomized controlled trials (RCTs) were included; and for experimental studies, original articles were included. The methodological quality of RCTs was assessed according to the Cochrane criteria. For clinical trials, a meta-analysis of continuous variables was used to obtain pooled effects. For experimental studies, lists were used to summarize and integrate the mechanisms involved. Results. A total of 10 clinical trials and 184 experimental studies were included. Current data showed that Chinese herbal medicines have promising clinical efficacies in patients with elevated serum uric acid levels (SMD: −1.65, 95% CI: −3.09 to −0.22; p = 0.024). There was no significant difference in serum uric acid levels between Chinese herbal medicine treatments and Western medicine treatments (SMD: −0.13, 95% CI: −0.99 to 0.74; p = 0.772). Experimental studies revealed that the mechanistic signaling pathways involved in the serum uric acid lowering effects include uric acid synthesis, uric acid transport, inflammation, renal fibrosis and oxidative stress. Conclusions. The clinical studies indicate that Chinese herbal medicines lower serum uric acid levels. Further studies with sophisticated research design can further demonstrate the efficacy and safety of these Chinese herbal medicines in lowering serum uric acid levels and reveal a comprehensive picture of the underlying mechanisms of action.
Collapse
Affiliation(s)
- Liqian Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhengmao Luo
- Department of Nephrology, General Hospital of Southern Theatre Command, PLA, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Traditional Chinese Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Hanqi Lu
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Phytochemical Investigation of Tradescantia Albiflora and Anti-Inflammatory Butenolide Derivatives. Molecules 2019; 24:molecules24183336. [PMID: 31540241 PMCID: PMC6767271 DOI: 10.3390/molecules24183336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
Phytochemical investigation of the whole plant of Tradescantia albiflora Kunth led to the isolation and characterization of a butanolide, rosmarinosin B (1), that was isolated from natural sources for the first time, a new butenolide, 5-O-acetyl bracteanolide A (2), and a new apocarotenoid, 2β-hydroxyisololiolide (11), together with 25 known compounds (compounds 3–10 and 12–28). The structures of the new compounds were elucidated by analysis of their spectroscopic data, including MS, 1D, and 2D NMR experiments, and comparison with literature data of known compounds. Furthermore, four butenolides 4a–4d were synthesized as novel derivatives of bracteanolide A. The isolates and the synthesized derivatives were evaluated for their preliminary anti-inflammatory activity against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Among them, the synthesized butenolide derivative n-butyl bracteanolide A (4d) showed enhanced NO inhibitory activity compared to the original compound, with an IC50 value of 4.32 ± 0.09 μg/mL.
Collapse
|
7
|
Mao Q, Dai X, Xu G, Su Y, Zhang B, Liu D, Wang S. Design, synthesis and biological evaluation of 2-(4-alkoxy-3-cyano)phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives as novel xanthine oxidase inhibitors. Eur J Med Chem 2019; 181:111558. [PMID: 31369933 DOI: 10.1016/j.ejmech.2019.07.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 01/16/2023]
Abstract
In our previous study, we reported a series of 1-hydroxy-2-phenyl-1H-imidazole-5-carboxylic acid derivatives that presented excellent in vitro xanthine oxidase (XO) inhibitory potency. To further investigate the structure-activity relationships of these compounds, the imidazole ring was transformed to a pyrimidine ring to design 2-(4-alkoxy-3-cyano)phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acids (8a-8j), 2-(4-alkoxy-3-cyano)phenyl-4-methyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acids (9c, 9e, 9j, 9l) and 2-(4-alkoxy-3-cyano)phenyl-6-imino-1,6-dihydropyrimidine-5-carboxylic acids (10c, 10e, 10j, 10l). These compounds exhibited remarkable in vitro XO inhibitory potency with IC50 values ranging from 0.0181 μM to 0.5677 μM. Specifically, compounds 10c and 10e, with IC50 values of 0.0240 μM and 0.0181 μM, respectively, emerged as the most potent XO inhibitors, and their potencies were comparable to that of febuxostat. Structure-activity relationship analysis revealed that the methyl group at 4-position of pyrimidine ring could damage the potency, and the XO inhibitory potency was maintained when carbonyl group was changed to an imino group. Lineweaver-Burk plot analysis revealed that the representative compound 10c acted as a mixed-type inhibitor. A potassium oxonate induced hyperuricemia model in rats was chosen to further confirm the hypouricemic effect of compound 10c, and the results showed that compound 10c (5 mg/kg) was able to significantly lower the serum uric acid level. Furthermore, in acute oral toxicity study, no sign of toxicity was observed when the mice were administered with a single 2000 mg/kg oral dose of compound 10c. These results suggested that compound 10c was a potent and promising uric acid-lowing agent for the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xiwen Dai
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Gaoyang Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, No.103 Culture Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Yu Su
- Department of Pharmacology, Shenyang Pharmaceutical University, No.103 Culture Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
8
|
Ptushenko OS, Ptushenko VV. Tradescantia-based models: a powerful looking glass for investigation of photoacclimation and photoadaptation in plants. PHYSIOLOGIA PLANTARUM 2019; 166:120-133. [PMID: 30854663 DOI: 10.1111/ppl.12963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Here, we summarize diverse evidence from species that belong to the genus Tradescantia, which we propose as handy and versatile models for studies of the ecology of photosynthesis and the mechanisms of photoacclimation in higher plants. A valuable feature of this genus is the amazingly broad range of ecological niches occupied by its species: from shady understory of tropical rainforest to deserts and semideserts. The former habitats demand shade tolerance (e.g. that featured by Tradescantia fluminensis), whereas the latter requires succulence and/or high light stress tolerance (evident in e.g. Tradescantia navicularis). At the same time, the acclimative traits of Tradescantia species seem quite moderate at first glance. Certainly, their basic principles of acclimation seem to differ in some aspects from the ones typical for most of other higher plants. This review presents a systematic analysis of irradiance responses of Tradescantia species studied on different timescales. The specifics of Tradescantia responses to irradiance make the plants of this genus a 'multitool' for studies in this field. Similarity of irradiance acclimation patterns is a characteristic feature in the ecologically contrasting Tradescantia species, which may inspire further insights into physiology and evolution of plants.
Collapse
Affiliation(s)
- Oxana S Ptushenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vasily V Ptushenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
9
|
Park JE, Yeom Z, Park KT, Han EH, Yu HJ, Kang HS, Lim YH. Hypouricemic Effect of Ethanol Extract of Aster glehni Leaves in Potassium Oxonate-Induced Hyperuricemic Rats. Clin Nutr Res 2018; 7:126-135. [PMID: 29713621 PMCID: PMC5921330 DOI: 10.7762/cnr.2018.7.2.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
The prevalence of gout is increasing worldwide, and control of serum uric acid level has been regarded as one of the therapeutic methods for gout. Inhibition of xanthine oxidase (XO) activity which can oxidize hypoxanthine to uric acid has been commonly proposed to decrease serum uric acid level. The aim of this study was to demonstrate the hypouricemic effect of ethanol extract of Aster glehni leaves (EAG) by in vitro and in vivo study in potassium oxonate (PO)-induced hyperuricemic rats. EAG possessed 132.5 ± 6.8 mg QE/g of total flavonoid and showed antioxidant activity. EAG showed in vitro and in vivo inhibitory activity against XO and significantly decreased serum uric acid level in PO-induced hyperuricemic rats without liver toxicity. These results show that EAG significantly attenuates hyperuricemia by inhibiting XO activity, which resulted in the decrease of serum uric acid level. Therefore, EAG might possess a potential therapeutic ability for improving gout.
Collapse
Affiliation(s)
- Ji-Eun Park
- Department of Public Health Science (Brain Korea 21 PLUS Program), Graduate School, Korea University, Seoul 02841, Korea
| | - Zia Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Korea
| | - Keun-Tae Park
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Korea.,Research and Development Center, Milae Resources ML Co. Ltd., Seoul 05542, Korea
| | - Eun Hye Han
- Department of R&D, Koreaeundan Co., Seongnam 06105, Korea
| | | | | | - Young-Hee Lim
- Department of Public Health Science (Brain Korea 21 PLUS Program), Graduate School, Korea University, Seoul 02841, Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Korea.,Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
10
|
Su Q, Su H, Nong Z, Li D, Wang L, Chu S, Liao L, Zhao J, Zeng X, Ya Q, He F, Lu W, Wei B, Wei G, Chen N. Hypouricemic and Nephroprotective Effects of an Active Fraction from Polyrhachis Vicina Roger On Potassium Oxonate-Induced Hyperuricemia in Rats. Kidney Blood Press Res 2018; 43:220-233. [DOI: 10.1159/000487675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
|
11
|
Wang H, Peng Y, Zhang T, Lan Q, Zhao H, Wang W, Zhao Y, Wang X, Pang J, Wang S, Zheng J. Metabolic Epoxidation Is a Critical Step for the Development of Benzbromarone-Induced Hepatotoxicity. Drug Metab Dispos 2017; 45:1354-1363. [PMID: 29021351 DOI: 10.1124/dmd.117.077818] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
Benzbromarone (BBR) is effective in the treatment of gout; however, clinical findings have shown it can also cause fatal hepatic failure. Our early studies demonstrated that CYP3A catalyzed the biotransformation of BBR to epoxide intermediate(s) that reacted with sulfur nucleophiles of protein to form protein covalent binding both in vitro and in vivo. The present study attempted to define the correlation between metabolic epoxidation and hepatotoxicity of BBR by manipulating the structure of BBR. We rationally designed and synthesized three halogenated BBR derivatives, fluorinated BBR (6-F-BBR), chlorinated BBR (6-Cl-BBR), and brominated BBR (6-Br-BBR), to decrease the potential for cytochrome P450-mediated metabolic activation. Both in vitro and in vivo uricosuric activity assays showed that 6-F-BBR achieved favorable uricosuric effect, while 6-Cl-BBR and 6-Br-BBR showed weak uricosuric efficacy. Additionally, 6-F-BBR elicited much lower hepatotoxicity in mice. Fluorination of BBR offered advantage to metabolic stability in liver microsomes, almost completely blocked the formation of epoxide metabolite(s) and protein covalent binding, and attenuated hepatic and plasma glutathione depletion. Moreover, the structural manipulation did not alter the efficacy of BBR. This work provided solid evidence that the formation of the epoxide(s) is a key step in the development of BBR-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Ying Peng
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Tingjian Zhang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Qunsheng Lan
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Huimin Zhao
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Wenbao Wang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Yufei Zhao
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Xu Wang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Jianxin Pang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Shaojie Wang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Jiang Zheng
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| |
Collapse
|