1
|
Puah PY, Lee DJH, Puah SH, Lah NASN, Ling YS, Fong SY. High-throughput metabolomics reveals dysregulation of hydrophobic metabolomes in cancer cell lines by Eleusine indica. Sci Rep 2022; 12:9347. [PMID: 35668092 PMCID: PMC9168358 DOI: 10.1038/s41598-022-13575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Eleusine indica, which is used in traditional medicine, exhibits antiproliferative activity against several cancer cell lines. However, metabolomic studies to evaluate the metabolite changes induced by E. indica in cancer cells are still lacking. The present study investigated the anticancer effects of a root fraction of E. indica (R-S5-C1-H1) on H1299, MCF-7, and SK-HEP-1 cell lines and analyzed metabolic changes in the treated cancer cells using ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Cell metabolic activity assays demonstrated that the cell viability of the three cancer cell lines was significantly reduced following treatment with R-S5-C1-H1, with half-maximal inhibitory concentrations values of 12.95 µg/mL, 15.99 µg/mL, and 13.69 µg/mL at 72 h, respectively. Microscopy analysis using Hoechst 33342 and Annexin V fluorescent dyes revealed that cells treated with R-S5-C1-H1 underwent apoptotic cell death, while chemometric analysis suggested that apoptosis was triggered 48 h after treatment with R-S5-C1-H1. Deconvoluted cellular metabolomics revealed that hydrophobic metabolites were significantly altered, including triacylglycerols, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and ceramide, suggesting that apoptosis induction by R-S5-C1-H1 potentially occurred through modulation of phospholipid synthesis and sphingolipid metabolism. These metabolomic profiling results provide new insights into the anticancer mechanisms of E. indica and facilitate the overall understanding of molecular events following therapeutic interventions.
Collapse
Affiliation(s)
- Perng Yang Puah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Dexter Jiunn Herng Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Soo Huan Puah
- Medical Department, Sarawak General Hospital, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
- Medical Department, Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, 13700, Permatang Pauh, Penang, Malaysia
| | - Nik Amin Sahid Nik Lah
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Yee Soon Ling
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
- CAIQ Certification Sdn Bhd Kota Kinabalu, Sabah, Malaysia.
| | - Siat Yee Fong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Faustino MV, Faustino MAF, Pinto DCGA. Halophytic Grasses, a New Source of Nutraceuticals? A Review on Their Secondary Metabolites and Biological Activities. Int J Mol Sci 2019; 20:E1067. [PMID: 30823674 PMCID: PMC6429475 DOI: 10.3390/ijms20051067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/02/2022] Open
Abstract
The Poaceae family, known as grasses, is distributed worldwide and is considered the most important group of monocotyledonous crops. Salt stress is multifactorial, therefore to survive, halophytes evolved a variety of adaptations, which include the biosynthesis of different primary and secondary metabolites. This trait enhances the accumulation of important families of compounds crucial to the prevention of a variety of chronic diseases. Besides, if proven edible, these species could cope with the increased soil salinity responsible for the decline of arable land due to their high nutritional/nutraceutical value. Herein, the phytochemical investigations performed in halophytes from the Poaceae family as well as their biological properties were explored. Among the 65 genera and 148 species of known halophytic grasses, only 14% of the taxa were studied phytochemically and 10% were subjected to biological evaluation. Notably, in the studied species, a variety of compound families, as well as bioactivities, were demonstrated, highlighting the potential of halophytic grasses.
Collapse
Affiliation(s)
- Maria V Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Karri S, Sharma S, Hatware K, Patil K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed Pharmacother 2018; 110:224-238. [PMID: 30481727 DOI: 10.1016/j.biopha.2018.11.076] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
In the present scenario, obesity is a challenging health problem and its prevalence along with comorbidities are on the rise around the world. According to world health organization and organisation for economic co-operation and development epidemiology reports, overweight and obesity are the fifth foremost causes of deaths globally. The increasing rate of obesity is becoming a mammoth problem which enormously affects an individual's quality of life. The conventional therapy of obesity mainly involves synthetic moieties and surgical procedures, which has many harmful side effects and chances of recurrence with severity. Hence, the Present review is a metanalysis of all the available data on the use of the plants with their biological source, active phytochemical constituents and a probable mechanism of action as natural anti-obesity agents. The metanalysis of data during the period of 2000-2018 was performed with the help of scientific data search engine National Center for Biotechnology Information (NCBI/PubMed). This data reveals the need and scope of further research in the development of new natural phytoconstituents for the management of obesity.
Collapse
Affiliation(s)
- Sravani Karri
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Sanjay Sharma
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India.
| | - Ketan Hatware
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Kiran Patil
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| |
Collapse
|
4
|
Braun JBS, Ruchel JB, Manzoni AG, Abdalla FH, Casalli EA, Castilhos LG, Passos DF, Leal DBR. Pretreatment with quercetin prevents changes in lymphocytes E-NTPDase/E-ADA activities and cytokines secretion in hyperlipidemic rats. Mol Cell Biochem 2017; 444:63-75. [PMID: 29188537 DOI: 10.1007/s11010-017-3231-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Abstract
Hyperlipidemia (HL) is a condition associated with endothelial dysfunction and inflammatory disorders. Purinergic system ectoenzymes play an important role in modulating the inflammatory and immune response. This study investigated whether the preventive treatment with quercetin is able to prevent changes caused by hyperlipidemia in the purinergic system, through the activities of E-NTPDase and E-ADA in lymphocytes, and quantify the nucleotides and nucleoside, and the secretion of anti- and proinflammatory cytokines. Animals were divided into saline/control, saline/quercetin 5 mg/kg, saline/quercetin 25 mg/kg, saline/quercetin 50 mg/kg, saline/simvastatin (0.04 mg/kg), hyperlipidemia, hyperlipidemia/quercetin 5 mg/kg, hyperlipidemia/quercetin 25 mg/kg, hyperlipidemia/quercetin 50 mg/kg, and hyperlipidemia/simvastatin. Animals were pretreated with quercetin for 30 days and hyperlipidemia was subsequently induced by intraperitoneal administration of 500 mg/kg of poloxamer-407. Simvastatin was administered after the induction of hyperlipidemia. Lymphocytes were isolated and E-NTPDase and E-ADA activities were determined. Serum was separated for the cytokines and nucleotide/nucleoside quantification. E-NTPDase and E-ADA activities were increased in lymphocytes from hyperlipidemic rats and pretreatment with quercetin was able to prevent the increase in the activities of these enzymes caused by hyperlipidemia. Hyperlipidemic rats when receiving pretreatment with quercetin and treatment with simvastatin showed decreased levels of ATP and ADP when compared to the untreated hyperlipidemic group. The IFN-γ and IL-4 cytokines were increased in the hyperlipidemic group when compared with control group, and decreased when hyperlipidemic rats received the pretreatment with quercetin. However, pretreatment with quercetin was able to prevent the alterations caused by hyperlipidemia probably by regulating the inflammatory process. We can suggest that the quercetin is a promising compound to be used as an adjuvant in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Josiane B S Braun
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.
| | - Jader B Ruchel
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil
| | - Alessandra G Manzoni
- Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil
| | - Fátima H Abdalla
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Emerson A Casalli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lívia G Castilhos
- Programa de Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Daniela F Passos
- Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.
| | - Daniela B R Leal
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.,Programa de Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|