1
|
Hu Y, Yu C, Cheng L, Zhong C, An J, Zou M, Liu B, Gao X. Flavokawain C inhibits glucose metabolism and tumor angiogenesis in nasopharyngeal carcinoma by targeting the HSP90B1/STAT3/HK2 signaling axis. Cancer Cell Int 2024; 24:158. [PMID: 38711062 DOI: 10.1186/s12935-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Over the past decade, heat shock protein 90 (HSP90) inhibitors have emerged as promising anticancer drugs in solid and hematological malignancies. Flavokawain C (FKC) is a naturally occurring chalcone that has been found to exert considerable anti-tumor efficacy by targeting multiple molecular pathways. However, the efficacy of FKC has not been studied in nasopharyngeal carcinoma (NPC). Metabolic abnormalities and uncontrolled angiogenesis are two important features of malignant tumors, and the occurrence of these two events may involve the regulation of HSP90B1. Therefore, this study aimed to explore the effects of FKC on NPC proliferation, glycolysis, and angiogenesis by regulating HSP90B1 and the underlying molecular regulatory mechanisms. METHODS HSP90B1 expression was analyzed in NPC tissues and its relationship with patient's prognosis was further identified. Afterward, the effects of HSP90B1 on proliferation, apoptosis, glycolysis, and angiogenesis in NPC were studied by loss-of-function assays. Next, the interaction of FKC, HSP90B1, and epidermal growth factor receptor (EGFR) was evaluated. Then, in vitro experiments were designed to analyze the effect of FKC treatment on NPC cells. Finally, in vivo experiments were allowed to investigate whether FKC treatment regulates proliferation, glycolysis, and angiogenesis of NPC cells by HSP90B1/EGFR pathway. RESULTS HSP90B1 was highly expressed in NPC tissues and was identified as a poor prognostic factor in NPC. At the same time, knockdown of HSP90B1 can inhibit the proliferation of NPC cells, trigger apoptosis, and reduce glycolysis and angiogenesis. Mechanistically, FKC affects downstream EGFR phosphorylation by regulating HSP90B1, thereby regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. FKC treatment inhibited the proliferation, glycolysis, and angiogenesis of NPC cells, which was reversed by introducing overexpression of HSP90B1. In addition, FKC can affect NPC tumor growth and metastasis in vivo by regulating the HSP90B1/EGFR pathway. CONCLUSION Collectively, FKC inhibits glucose metabolism and tumor angiogenesis in NPC by targeting the HSP90B1/EGFR/PI3K/Akt/mTOR signaling axis.
Collapse
Affiliation(s)
- YuQiang Hu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - LiangJun Cheng
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chang Zhong
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun An
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - MingZhen Zou
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bing Liu
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
2
|
Wang R, Li R, Yang H, Chen X, Wu L, Zheng X, Jin Y. Flavokawain C inhibits proliferation and migration of liver cancer cells through FAK/PI3K/AKT signaling pathway. J Cancer Res Clin Oncol 2024; 150:117. [PMID: 38460052 PMCID: PMC10924746 DOI: 10.1007/s00432-024-05639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 03/11/2024]
Abstract
PURPOSE This study investigated the potential applicability and the underlying mechanisms of flavokawain C, a natural compound derived from kava extracts, in liver cancer treatment. METHODS Drug distribution experiment used to demonstrate the preferential tissues enrichment of flavokawain C. Cell proliferation, apoptosis and migration effect of flavokawain C were determined by MTT, colony formation, EdU staining, cell adhesion, transwell, flow cytometry and western blot assay. The mechanism was explored by comet assay, immunofluorescence assay, RNA-seq-based Kyoto encyclopedia of genes and genomes analysis, molecular dynamics, bioinformatics analysis and western blot assay. The anticancer effect of flavokawain C was further confirmed by xenograft tumor model. RESULTS The studies first demonstrated the preferential enrichment of flavokawain C within liver tissues in vivo. The findings demonstrated that flavokawain C significantly inhibited proliferation and migration of liver cancer cells, induced cellular apoptosis, and triggered intense DNA damage along with strong DNA damage response. The findings from RNA-seq-based KEGG analysis, molecular dynamics, bioinformatics analysis, and western blot assay mechanistically indicated that treatment with flavokawain C notably suppressed the FAK/PI3K/AKT signaling pathway in liver cancer cells. This effect was attributed to the induction of gene changes and the binding of flavokawain C to the ATP sites of FAK and PI3K, resulting in the inhibition of their phosphorylation. Additionally, flavokawain C also displayed the strong capacity to inhibit Huh-7-derived xenograft tumor growth in mice with minimal adverse effects. CONCLUSIONS These findings identified that flavokawain C is a promising anticancer agent for liver cancer treatment.
Collapse
Affiliation(s)
- Rong Wang
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Rizhao Li
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Huibing Yang
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejiao Chen
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Medical University, Wenzhou, 325000, China
| | | | | | - Yuepeng Jin
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Hba S, Ghaddar S, Wahnou H, Pinon A, El Kebbaj R, Pouget C, Sol V, Liagre B, Oudghiri M, Limami Y. Natural Chalcones and Derivatives in Colon Cancer: Pre-Clinical Challenges and the Promise of Chalcone-Based Nanoparticles. Pharmaceutics 2023; 15:2718. [PMID: 38140059 PMCID: PMC10748144 DOI: 10.3390/pharmaceutics15122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development and progression of colon cancer makes them invaluable as targeted therapeutics. Nevertheless, it is crucial to recognize that although chalcones exhibit promise, further pre-clinical studies are required to validate their efficacy and safety. The journey toward effective colon cancer treatment is multifaceted, involving considerations such as optimizing the sequencing of therapeutic agents, comprehending the resistance mechanisms, and exploring combination therapies incorporating chalcones. Furthermore, the integration of nanoparticle-based drug delivery systems presents a novel avenue for enhancing the effectiveness of chalcones in colon cancer treatment. This review delves into the mechanisms of action of natural chalcones and some derivatives. It highlights the challenges associated with their use in pre-clinical studies, while also underscoring the advantages of employing chalcone-based nanoparticles for the treatment of colon cancer.
Collapse
Affiliation(s)
- Soufyane Hba
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Suzan Ghaddar
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | - Christelle Pouget
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| |
Collapse
|
4
|
Ranjbary AG, Bagherzadeh A, Sabbaghi SS, Faghihi A, Karimi DN, Naji S, Kardani M. Chlorogenic acid induces apoptosis and cell-cycle arrest in colorectal cancer cells. Mol Biol Rep 2023; 50:9845-9857. [PMID: 37847443 DOI: 10.1007/s11033-023-08854-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Apoptotic agents from natural products like phenolic compounds can be used effectively in the treatment of cancer. Chlorogenic acid (CGA) is one of the phenolic compounds in medicinal plants with anti-cancer properties. In this research, we aimed to explore the anti-cancer mode of action of CGA on colorectal cancer (CRC) cells in vitro conditions. METHODS HT-29 and HEK-293 cells were cultured after MTT assay for 24 h with CGA 100 µM, and without CGA. Then, flow cytometry assays and the expression of apoptosis-related genes including caspase 3 and 9, Bcl-2 and Bax, and cell cycle-related genes including P21, P53 and NF-κB at mRNA and protein levels were examined. Finally, we measured the amount of intracellular reactive oxygen species (ROS). RESULTS The cell viability of all two-cell lines decreased in a dose-dependent manner. Moreover, CGA induces cell cycle arrest in HT-29 cells by increasing the expression of P21 and P53. It also induces apoptosis in HT-29 cells by mitigating Bcl-2 and NF-κB expression and elevating caspase 3 and 9 expression and ROS levels. CONCLUSIONS Considering the cytotoxicity and cell cycle arrest and induction of apoptosis in the colon cancer cell line by CGA, it can be concluded that CGA is a suitable option for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Ali Bagherzadeh
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Seyed Sina Sabbaghi
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Arshida Faghihi
- Department of Chemistry, Faculty of Science Shiraz University, Shiraz, Iran
| | - Delaram Nassaj Karimi
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Shahryar Naji
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Kardani
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| |
Collapse
|
5
|
Michalkova R, Kello M, Cizmarikova M, Bardelcikova A, Mirossay L, Mojzis J. Chalcones and Gastrointestinal Cancers: Experimental Evidence. Int J Mol Sci 2023; 24:ijms24065964. [PMID: 36983038 PMCID: PMC10059739 DOI: 10.3390/ijms24065964] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martina Cizmarikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Annamaria Bardelcikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
6
|
High-Molecular-Weight Dextran-Type Exopolysaccharide Produced by the Novel Apilactobacillus waqarii Improves Metabolic Syndrome: In Vitro and In Vivo Analyses. Int J Mol Sci 2022; 23:ijms232012692. [PMID: 36293544 PMCID: PMC9603972 DOI: 10.3390/ijms232012692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Metabolic syndrome is a leading medical concern that affects one billion people worldwide. Metabolic syndrome is defined by a clustering of risk factors that predispose an individual to cardiovascular disease, diabetes and stroke. In recent years, the apparent role of the gut microbiota in metabolic syndrome has drawn attention to microbiome-engineered therapeutics. Specifically, lactic acid bacteria (LAB) harbors beneficial metabolic characteristics, including the production of exopolysaccharides and other microbial byproducts. We recently isolated a novel fructophilic lactic acid bacterium (FLAB), Apilactobacillus waqarii strain HBW1, from honeybee gut and found it produces a dextran-type exopolysaccharide (EPS). The objective of this study was to explore the therapeutic potential of the new dextran in relation to metabolic syndrome. Findings revealed the dextran's ability to improve the viability of damaged HT-29 intestinal epithelial cells and exhibit antioxidant properties. In vivo analyses demonstrated reductions in body weight gain and serum cholesterol levels in mice supplemented with the dextran, compared to control (5% and 17.2%, respectively). Additionally, blood glucose levels decreased by 16.26% following dextran supplementation, while increasing by 15.2% in non-treated mice. Overall, this study displays biotherapeutic potential of a novel EPS to improve metabolic syndrome and its individual components, warranting further investigation.
Collapse
|
7
|
An Updated Review on the Psychoactive, Toxic and Anticancer Properties of Kava. J Clin Med 2022; 11:jcm11144039. [PMID: 35887801 PMCID: PMC9315573 DOI: 10.3390/jcm11144039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Kava (Piper methysticum) has been widely consumed for many years in the South Pacific Islands and displays psychoactive properties, especially soothing and calming effects. This plant has been used in Western countries as a natural anxiolytic in recent decades. Kava has also been used to treat symptoms associated with depression, menopause, insomnia, and convulsions, among others. Along with its putative beneficial health effects, kava has been associated with liver injury and other toxic effects, including skin toxicity in heavy consumers, possibly related to its metabolic profile or interference in the metabolism of other xenobiotics. Kava extracts and kavalactones generally displayed negative results in genetic toxicology assays although there is sufficient evidence for carcinogenicity in experimental animals, most likely through a non-genotoxic mode of action. Nevertheless, the chemotherapeutic/chemopreventive potential of kava against cancer has also been suggested. Both in vitro and in vivo studies have evaluated the effects of flavokavains, kavalactones and/or kava extracts in different cancer models, showing the induction of apoptosis, cell cycle arrest and other antiproliferative effects in several types of cancer, including breast, prostate, bladder, and lung. Overall, in this scoping review, several aspects of kava efficacy and safety are discussed and some pertinent issues related to kava consumption are identified.
Collapse
|
8
|
Identification of Novel Cannabinoid CB2 Receptor Agonists from Botanical Compounds and Preliminary Evaluation of Their Anti-Osteoporotic Effects. Molecules 2022; 27:molecules27030702. [PMID: 35163968 PMCID: PMC8838898 DOI: 10.3390/molecules27030702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects—including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism—without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors–ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.
Collapse
|
9
|
Long non-coding RNA VPS9D1-AS1 promotes growth of colon adenocarcinoma by sponging miR-1301-3p and CLDN1. Hum Cell 2021; 34:1775-1787. [PMID: 34519940 DOI: 10.1007/s13577-021-00604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
Colon adenocarcinoma is a frequent malignancy among all colon cancer types. Long non-coding RNAs (lncRNAs) are involved in the progression of colon adenocarcinoma. This study aimed to uncover the molecular mechanism of VPS9D1-AS1 in regulating colon adenocarcinoma development. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) revealed that VPS9D1-AS1 expression was markedly upregulated in colon adenocarcinoma tissues and cell lines. Cell functional experiments showed that knockdown of VPS9D1-AS1 repressed the growth and invasion of colon adenocarcinoma cells but upregulated cell apoptosis. In addition, we confirmed the interaction of VPS9D1-AS1-miR-1301-3p-CLDN1 using a luciferase assay. Downregulation of miR-1301-3p promoted the progression of colon adenocarcinoma cells. In conclusion, VPS9D1-AS1 facilitated cell growth and suppressed apoptosis of colon adenocarcinoma cells by sponging miR-1301-3p and upregulating CLDN1, which may be effective therapeutic strategies for patients with colon adenocarcinoma.
Collapse
|
10
|
Biological Activity, Hepatotoxicity, and Structure-Activity Relationship of Kavalactones and Flavokavins, the Two Main Bioactive Components in Kava ( Piper methysticum). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6851798. [PMID: 34471418 PMCID: PMC8405297 DOI: 10.1155/2021/6851798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Kava (Piper methysticum Forst) is a popular and favorable edible medicinal herb which was traditionally used to prepare a nonfermented beverage with relaxant beneficial for both social and recreational purposes. Numerous studies conducted on kava have confirmed the presence of kavalactones and flavokawains, two major groups of bioactive ingredients, in this miraculous natural plant. Expectedly, both kavalactone and flavokawain components exhibited potent antianxiety and anticancer activities, and their structure-activity relationships were also revealed. However, dozens of clinical data revealed the hepatotoxicity effect which is indirectly or directly associated with kava consumption, and most of the evidence currently seems to point the compounds of flavokawains in kava were responsible. Therefore, our aim is to conduct a systematic review of kavalactones and flavokawains in kava including their biological activities, structure-activity relationships, and toxicities, and as a result of our systematic investigations, suggestions on kava and its compounds are supplied for future research.
Collapse
|
11
|
Hu B, Chen Z, Wang X, Chen F, Song Z, Cao C. MicroRNA-148a-3p Directly Targets SERPINE1 to Suppress EMT-Mediated Colon Adenocarcinoma Progression. Cancer Manag Res 2021; 13:6349-6362. [PMID: 34408494 PMCID: PMC8364830 DOI: 10.2147/cmar.s302777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/05/2021] [Indexed: 12/24/2022] Open
Abstract
Aim This research aimed at clarifying the intracellular effect of SERPINE1 in the progression of colon adenocarcinoma (COAD) and the underlying mechanism. Methods We obtained the expression profile of SERPINE1 in COAD via the Starbase database and verified it on COAD tissue samples through qRT-PCR and immunoblotting, respectively. Also, miRWalk, TargetScan and miRDB databases were adopted to generate the miRNA prediction that might target SERPINE1, and the gene target miR-148a-3p was confirmed using dual-luciferase assays. The effect of SERPINE1 and miR-148a-3p on COAD was further evaluated by cell experiments. MTT assay was used to detect the change of cell proliferation ability. The invasive and migratory capability of COAD cells was examined using transwell and would healing assays. Cell apoptosis was determined through flow cytometry. The expressions of genes and EMT-associated proteins were evaluated by qRT-PCR and immunoblotting. Further lucubration of the biological relevance of SERPINE1 and miR-148a-3p was conducted using rescue experiments. Results We found that the expression quantities of SERPINE1 in COAD tissues and cell lines were higher than those in corresponding non-cancerous tissues and normal cells. When SERPINE1 expression is reduced, EMT process is inhibited, invasion and proliferation ability of COAD cells are obviously reduced, and apoptosis level is increased. Moreover, SERPINE1 was identified as the target gene of miR-148a-3p. When the expression of miR-148a-3p was enhanced, it was found that the expression of SERPINE1 was reduced. miR-148a-3p played the similar effect of si-SERPINE1 that suppressed the COAD progression. Additionally, we found out that SERPINE1 is validated in hindering the tumor healing effect of miR148a-3p in COAD, including cell growth and invasion. Conclusion Our study suggests that SERPINE1/miR-148a-3p axis has potential as prognostic markers of COAD and provides reference for the development of new therapies.
Collapse
Affiliation(s)
- Biwen Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, People's Republic of China
| | - Zhenwei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, People's Republic of China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, People's Republic of China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, People's Republic of China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, People's Republic of China
| | - Chenxi Cao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, People's Republic of China
| |
Collapse
|
12
|
Michalkova R, Mirossay L, Gazdova M, Kello M, Mojzis J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers (Basel) 2021; 13:cancers13112730. [PMID: 34073042 PMCID: PMC8198114 DOI: 10.3390/cancers13112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite the important progress in cancer treatment in the past decades, the mortality rates in some types of cancer have not significantly decreased. Therefore, the search for novel anticancer drugs has become a topic of great interest. Chalcones, precursors of flavonoid synthesis in plants, have been documented as natural compounds with pleiotropic biological effects including antiproliferative/anticancer activity. This article focuses on the knowledge on molecular mechanisms of antiproliferative action of chalcones and draws attention to this group of natural compounds that may be of importance in the treatment of cancer disease. Abstract Although great progress has been made in the treatment of cancer, the search for new promising molecules with antitumor activity is still one of the greatest challenges in the fight against cancer due to the increasing number of new cases each year. Chalcones (1,3-diphenyl-2-propen-1-one), the precursors of flavonoid synthesis in higher plants, possess a wide spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer. A plethora of molecular mechanisms of action have been documented, including induction of apoptosis, autophagy, or other types of cell death, cell cycle changes, and modulation of several signaling pathways associated with cell survival or death. In addition, blockade of several steps of angiogenesis and proteasome inhibition has also been documented. This review summarizes the basic molecular mechanisms related to the antiproliferative effects of chalcones, focusing on research articles from the years January 2015–February 2021.
Collapse
|
13
|
Peppers: A "Hot" Natural Source for Antitumor Compounds. Molecules 2021; 26:molecules26061521. [PMID: 33802144 PMCID: PMC8002096 DOI: 10.3390/molecules26061521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.
Collapse
|
14
|
Walczak K, Langner E, Szalast K, Makuch-Kocka A, Pożarowski P, Plech T. A Tryptophan Metabolite, 8-Hydroxyquinaldic Acid, Exerts Antiproliferative and Anti-Migratory Effects on Colorectal Cancer Cells. Molecules 2020; 25:molecules25071655. [PMID: 32260268 PMCID: PMC7181169 DOI: 10.3390/molecules25071655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
8-Hydroxyquinaldic acid, the end-metabolite of tryptophan, is well-known metal chelator; however, its role in humans, especially in cancer promotion and progression, has not been fully revealed. Importantly, 8-hydroxyquinaldic acid is the analog of kynurenic acid with evidenced antiproliferative activity towards various cancer cells. In this study, we revealed that 8-hydroxyquinaldic acid inhibited not only proliferation and mitochondrial activity in colon cancer HT-29 and LS-180 cells, but it also decreased DNA synthesis up to 90.9% for HT-29 cells and 76.1% for LS-180 cells. 8-Hydroxyquinaldic acid induced changes in protein expression of cell cycle regulators (CDK4, CDK6, cyclin D1, cyclin E) and CDKs inhibitors (p21 Waf1/Cip1, p27 Kip1), but the effect was dependent on the tested cell line. Moreover, 8-hydroxyquinaldic acid inhibited migration of colon cancer HT-29 and LS-180 cells and increased the expression of β-catenin and E-cadherin. Importantly, antiproliferative and anti-migratory concentrations of 8-hydroxyquinaldic acid were non-toxic in vitro and in vivo. We reported for the first time antiproliferative and anti-migratory activity of 8-hydroxyquinaldic acid against colon cancer HT-29 and LS-180 cells.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (E.L.); (K.S.); (A.M.-K.)
- Correspondence: (K.W.); (T.P.); Tel.: +48-81-448-6772 (T.P.)
| | - Ewa Langner
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (E.L.); (K.S.); (A.M.-K.)
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Karolina Szalast
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (E.L.); (K.S.); (A.M.-K.)
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (E.L.); (K.S.); (A.M.-K.)
| | - Piotr Pożarowski
- Chair and Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (E.L.); (K.S.); (A.M.-K.)
- Correspondence: (K.W.); (T.P.); Tel.: +48-81-448-6772 (T.P.)
| |
Collapse
|
15
|
Chotsaeng N, Laosinwattana C, Charoenying P. Herbicidal Activity of Flavokawains and Related trans-Chalcones against Amaranthus tricolor L. and Echinochloa crus-galli (L.) Beauv. ACS OMEGA 2019; 4:20748-20755. [PMID: 31858061 PMCID: PMC6906942 DOI: 10.1021/acsomega.9b03144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 05/14/2023]
Abstract
Flavokawains have a broad spectrum of biological activities; however, the herbicidal activity of these naturally occurring chalcones has been less investigated. Flavokawains and their analogues were prepared by the Claisen-Schmidt condensation reaction between xanthoxyline (or aromatic ketones) and a variety of aromatic and heteroaromatic aldehydes. These compounds were then evaluated for their inhibitory effect against representative dicot and monocot plants. Among 45 synthetic chalcones, derivatives containing phenoxyacetic acid, 4-(N,N-dimethylamino)phenyl, N-methylpyrrole, or thiophenyl groups inhibited the germination and growth of Chinese amaranth (Amaranthus tricolor L.) with moderate to high degrees compared to commercial butachlor. For barnyardgrass (Echinochloa crus-galli (L.) Beauv.), most of the thiophenyl chalcones interrupted shoot and root emergence. This finding highlighted the importance of functional groups on the herbicidal activity of chalcones. The level of inhibition also depended on the applied concentrations, plant species, and plant organs. (E)-2-(2-(3-Oxo-3-(thiophen-2-yl)prop-1-enyl)phenoxy)acetic acid (14f) was the most active compound among 45 derivatives. This chalcone could be a promising structure for controlling the germination and growth of weeds. The structure-activity relationship results provide useful information about the development of active chalconoids as novel natural product-like herbicides.
Collapse
Affiliation(s)
- Nawasit Chotsaeng
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- E-mail: . Phone: +66-2329-8400 ext.
6228. Fax: +662-3298428
| | - Chamroon Laosinwattana
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
16
|
Russo A, Cardile V, Avola R, Graziano A, Montenegro I, Said B, Madrid A. Isocordoin analogues promote apoptosis in human melanoma cells via Hsp70. Phytother Res 2019; 33:3242-3250. [PMID: 31489735 DOI: 10.1002/ptr.6498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Isocordin 1 and a series of 4-oxyalkyl-isocordoin analogues 2-8 were evaluated for their cytotoxicity effect against human melanoma cells (A2058). Analogues 4, 5, and 6 showed a higher inhibitory activity with IC50 values of 12.91 ± 0.031, 24.88 ± 0.013, and 11.62 ± 0.017, respectively. These analogues, 4, 5, and 6, also induced an apoptotic response at 12.5- and 25-μM concentrations. They inhibited the expression of antiapoptotic proteins Bcl-2 and Hsp70, a critical factor that promotes tumour cell survival. In contrast, Bax and caspase-9 expression, and caspase-3 enzyme resulted activated. These results were correlated to a DNA fragmentation typical of apoptosis and an increase of intracellular reactive oxygen species (ROS) levels. Alternatively, at higher concentration (50 μM), when the capacity of the cells to sustain Hsp70 synthesis is reduced, our results seem to indicate that necrosis was induced by a further increase in ROS production. Therefore, the central finding in the present study is that these molecules downregulates Hsp70 expression. Altogether, these results suggest that 4-oxyalkyl-isocordoin analogues 4, 5, and 6 deserve to be deeply investigated for a possible application as Hsp70 inhibitor in the management of melanoma.
Collapse
Affiliation(s)
- Alessandra Russo
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Adriana Graziano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Viña del Mar, Chile
| | - Bastian Said
- Departamento de Química, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| |
Collapse
|
17
|
Celentano A, Tran A, Testa C, Thayanantha K, Tan-Orders W, Tan S, Syamal M, McCullough MJ, Yap T. The protective effects of Kava (Piper Methysticum) constituents in cancers: A systematic review. J Oral Pathol Med 2019; 48:510-529. [PMID: 31172600 DOI: 10.1111/jop.12900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Kava is a beverage made from the ground roots of the plant Piper Methysticum and has long-held a significant place within Pacific island communities. Active compounds were extracted from kava, and secondary metabolites include kavalactones, chalcones, cinnamic acid derivatives and flavanones. It is thought that components of kava may exert an antiproliferative effect through cell cycle arrest and promotion of apoptosis. METHODS We conducted a systematic review to summarize available evidence of the anticancer effects of kava components and investigate their potential use for oral squamous cell carcinoma (OSCC) treatment. Eligible studies were identified through a comprehensive search of OVID EMBASE, OVID MEDLINE and Web of Science, as at April 2018. RESULTS Of 39 papers that met the inclusion criteria, 32 included in vitro models and 13 included animal studies. A total of 26 different cancers were assessed with 32 studies solely assessing epithelial cancers, 6 mesenchymal cancers and 1 study including both. There was only one report assessing an OSCC cell line. Antiproliferative properties were demonstrated in 32 out of 39 papers. The most researched constituent of kava was flavokavain B followed by flavokavain A. Both were associated with increased expression of pro-apoptotic proteins and decreased expression of anti-apoptotic proteins. Further, they were associated with a dose-dependent reduction of angiogenesis. CONCLUSION There was heterogeneity of study models and methods of investigation across the studies identified. Components of kava appear to present an area of interest with chemotherapeutic potential in cancer prevention and treatment, particularly for epithelial neoplasms. To date, there is a paucity of literature of the utility of kava components in the prevention and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Tran
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Claire Testa
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Krishen Thayanantha
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - William Tan-Orders
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie Tan
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mitali Syamal
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Fakai MI, Abd Malek SN, Karsani SA. Induction of apoptosis by chalepin through phosphatidylserine externalisations and DNA fragmentation in breast cancer cells (MCF7). Life Sci 2019; 220:186-193. [PMID: 30682342 DOI: 10.1016/j.lfs.2019.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/30/2022]
Abstract
AIMS Chalepin, a naturally occurring compound isolated from Ruta angustifolia have been shown to exert a promising anticancer activity through various mechanisms. Hence, the need to investigate the apoptotic inducing ability of chalepin in MCF7 cells by various detection assays. MATERIALS AND METHODS Cytotoxicity screening of chalepin against MCF7 cells was conducted using SRB assay. Apoptosis induction was examined by established morphological and biochemical assays including phase contrast and Hoechst/PI staining fluorescence microscope. Similarly, Annexin-V/FITC and TUNEL assays were conducted using flow cytometry whereas caspase-3 activity was evaluated using microplate reader. KEY FINDINGS The result indicates remarkable cytotoxic activity against MCF7 cells, whereas it shows moderate cytotoxic activity against MDA-MB231 cells. Interestingly, chalepin did not present any toxicity against MRC5 normal cell line. Morphological examination using both phase contrast and fluorescence microscope displays typical apoptotic features such as membrane blebbing, DNA fragmentation, chromatin condensation and apoptotic bodies' formation following chalepin treatment against MCF7 cells at different concentration for 48 h. Apoptosis induction is significantly associated with externalisation of phosphatidylserine, and DNA fragmentation in MCF7 cells chalepin treated cells when compared with control. The protein expressions of caspase-8, 9 and cleaved PARP1 were upregulated which correlated well with increased caspase-3 activity. SIGNIFICANCE From our recent findings, chalepin was able to induced apoptosis in MCF7 cells and therefore, could be evaluated further as a potential source of anticancer agent for cancer treatment such as breast cancer.
Collapse
Affiliation(s)
- Musa Isah Fakai
- Division of Biochemistry, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biochemistry, Kebbi State University of Science and Technology, P.M.B. 1144, Aliero, Kebbi State, Nigeria
| | - Sri Nurestri Abd Malek
- Division of Biochemistry, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Division of Biochemistry, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
He PJ, Ge RF, Mao WJ, Chung PS, Ahn JC, Wu HT. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol Lett 2018; 16:7131-7138. [PMID: 30546448 PMCID: PMC6256460 DOI: 10.3892/ol.2018.9563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/07/2018] [Indexed: 12/16/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is currently a serious public health problem in China; thus, it is urgent to identify effective treatment strategies for this disease. Previous studies demonstrated that reactive oxygen species (ROS) serve important roles in the apoptosis of LSCC cells. It has also been indicated that carboplatin (CBDCA), a second-generation platinum compound with broad antineoplastic properties, is able to induce oxidative stress to produce ROS, which in turn promotes apoptosis. Thus, the present study investigated if CBDCA is cytotoxic in LSCC cells due to the oxidative stress caused by ROS. Therefore, an MTT assay was performed to determine the cell viability of HN-3 LSCC cells following treatment with different doses of CBDCA. Subsequently, the expression levels of ROS and the rate of apoptosis/necrosis were evaluated in the cells. Following this, the HN-3 cells were co-treated with CBDCA and glutathione (GSH) or H2O2, followed by an MTT assay, a cell migration assay and western blot analysis. The results demonstrated that CBDCA reduced the viability of HN-3 cells in a time- and dose-dependent manner and promoted the production of ROS and apoptosis at certain doses. Additionally, the combination treatment of CBDCA and H2O2 enhanced the inhibitory effects of CBDCA on cell viability and migration ability, and promoted apoptosis in HN-3 cells; whereas the combined treatment of CBDCA and GSH exerted opposite effects. The results of the present study demonstrated that CBDCA promotes the apoptosis of HN-3 cells through accumulation of ROS, which may provide a novel treatment strategy for treating LSCC.
Collapse
Affiliation(s)
- Pei-Jie He
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China.,Department of Otolaryngology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Rui-Feng Ge
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wen-Jing Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Phil-Sang Chung
- Department of Otolaryngology-Head and Neck Surgery, Beckman Laser Institute Korea, Dankook University, Cheonan, South Chungcheong 330-715, Republic of Korea
| | - Jin-Chul Ahn
- Department of Otolaryngology-Head and Neck Surgery, Beckman Laser Institute Korea, Dankook University, Cheonan, South Chungcheong 330-715, Republic of Korea
| | - Hai-Tao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
20
|
Yu W, Zhu K, Wang Y, Yu H, Guo J. Overexpression of miR-21-5p promotes proliferation and invasion of colon adenocarcinoma cells through targeting CHL1. Mol Med 2018; 24:36. [PMID: 30134821 PMCID: PMC6048725 DOI: 10.1186/s10020-018-0034-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
Background This study aims to investigate the effect of miR-21-5p on process of colon adenocarcinoma (COAD) cells and its connection with neural cell adhesion molecule L1 (CHL1). Methods Different expressions of mRNAs and miRNAs were calculated with microarray analysis. QRT-PCR and western blot were performed to quantify miR-21-5p and CHL1 expression. Flow Cytometry, MTT assay, colony formation assay, transwell assay and ELISA were performed to evaluate propagation and invasiveness of COAD cells. Dual luciferase reporter assay was employed to scrutinize the relationship between miR-21-5P and CHL1. We performed in vivo experiment to detect the impact of miR-21-5p and CHL1 on COAD tumor growth. Results Expression level of miR-21-5p increased in both COAD tissues and cells. MTT and Cell cycle assay showed that overexpression of miR-21-5p accelerated proliferation of COAD cells. Transwell assay indicated that miR-21-5p promoted cell invasion. The result of dual luciferase reporter assay indicated that miR-21-5p targeted CHL1 directly and inhibited its expression. The result of in vivo experiments showed that down-regulation of miR-21-5p decreased the volume and weight of tumor, while knockdown of CHLI stimulated tumor growth. Conclusions The overexpression of miR-21-5p can promote propagation and invasiveness of COAD cells through inhibiting the expression of CHL1.
Collapse
Affiliation(s)
- Weihua Yu
- Department of gastroenterology, the Second Hospital of Shandong University, No.247 Beiyuan Street, Jinan, 250000, Shandong, China
| | - Kongxi Zhu
- Department of gastroenterology, the Second Hospital of Shandong University, No.247 Beiyuan Street, Jinan, 250000, Shandong, China
| | - Yulong Wang
- Department of Pediatric Internal Medicine, the Second Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Hualong Yu
- Department of Anus and Intestine Surgery, the Second Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Jianqiang Guo
- Department of gastroenterology, the Second Hospital of Shandong University, No.247 Beiyuan Street, Jinan, 250000, Shandong, China.
| |
Collapse
|
21
|
Jabłoński A, Matczak K, Koceva-Chyła A, Durka K, Steverding D, Jakubiec-Krześniak K, Solecka J, Trzybiński D, Woźniak K, Andreu V, Mendoza G, Arruebo M, Kochel K, Krawczyk B, Szczukocki D, Kowalski K. Cymantrenyl-Nucleobases: Synthesis, Anticancer, Antitrypanosomal and Antimicrobial Activity Studies. Molecules 2017; 22:E2220. [PMID: 29240697 PMCID: PMC6149849 DOI: 10.3390/molecules22122220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
The synthesis of four cymantrene-5-fluorouracil derivatives (1-4) and two cymantrene-adenine derivatives (5 and 6) is reported. All of the compounds were characterized by spectroscopic methods and the crystal structure of two derivatives (1 and 6), together with the previously described cymantrene-adenine compound C was determined by X-ray crystallography. While the compounds 1 and 6 crystallized in the triclinic P-1 space group, compound C crystallized in the monoclinic P2₁/m space group. The newly synthesized compounds 1-6 were tested together with the two previously described cymantrene derivatives B and C for their in vitro antiproliferative activity against seven cancer cell lines (MCF-7, MCF-7/DX, MDA-MB-231, SKOV-3, A549, HepG2m and U-87-MG), five bacterial strains Staphylococcus aureus (methicillin-sensitive, methicillin-resistant and vancomycin-intermediate strains), Staphylococcus epidermidis, and Escherichia coli, including clinical isolates of S. aureus and S. epidermidis, as well as against the protozoan parasite Trypanosoma brucei. The most cytotoxic compounds were derivatives 2 and C for A549 and SKOV-3 cancer cell lines, respectively, with 50% growth inhibition (IC50) values of about 7 µM. The anticancer activity of the cymantrene compounds was determined to be due to their ability to induce oxidative stress and to trigger apoptosis and autophagy in cancer cells. Three derivatives (1, 4 and 5) displayed promising antitrypanosomal activity, with GI50 values in the low micromolar range (3-4 µM). The introduction of the 5-fluorouracil moiety in 1 enhanced the trypanocidal activity when compared to the activity previously reported for the corresponding uracil derivative. The antibacterial activity of cymantrene compounds 1 and C was within the range of 8-64 µg/mL and seemed to be the result of induced cell shrinking.
Collapse
Affiliation(s)
- Artur Jabłoński
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland;
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (K.D.); (Kr.K.)
| | - Aneta Koceva-Chyła
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (K.D.); (Kr.K.)
| | - Kamil Durka
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (K.D.); (Kr.K.)
| | - Dietmar Steverding
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK;
| | - Katarzyna Jakubiec-Krześniak
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warszawa, Poland; (K.J.-K.); (J.S.)
| | - Jolanta Solecka
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warszawa, Poland; (K.J.-K.); (J.S.)
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki and Wigury 101, 02-089 Warszawa, Poland; (D.T.); (K.W.)
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki and Wigury 101, 02-089 Warszawa, Poland; (D.T.); (K.W.)
| | - Vanesa Andreu
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (V.A.); (G.M.); (M.A.)
| | - Gracia Mendoza
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (V.A.); (G.M.); (M.A.)
| | - Manuel Arruebo
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (V.A.); (G.M.); (M.A.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Krzysztof Kochel
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (K.D.); (Kr.K.)
| | - Barbara Krawczyk
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland; (B.K.); (D.Sz.)
| | - Dominik Szczukocki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland; (B.K.); (D.Sz.)
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland;
| |
Collapse
|