1
|
Yang ZQ, Guo LY, Xiao KW, Zhang C, Wu MH, Yan FF, Cai L. Molecular characterization of ferroptosis in soft tissue sarcoma constructs a prognostic and immunotherapeutic signature through experimental and bioinformatics analyses. Aging (Albany NY) 2023; 15:11412-11447. [PMID: 37874682 PMCID: PMC10637810 DOI: 10.18632/aging.205133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
Ferroptosis regulators have been found to affect tumor progression. However, studies focusing on ferroptosis and soft tissue sarcoma (STS) are rare. Somatic mutation, copy number variation, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, consensus clustering, differentially expressed genes analysis (DEGs), principal component analysis (PCA) and gene set enrichment analysis (GSEA) were used to identify and explore different ferroptosis modifications in STS. A nomogram was constructed to predict the prognosis of STS. Moreover, three immunotherapy datasets were used to assess the Fescore. Western blotting, siRNA transfection, EdU assay and reactive oxygen species (ROS) measurement were performed. 16 prognostic ferroptosis regulators were screened and significant differences were observed in somatic mutation, copy number variation (CNV) and RT-qPCR among these ferroptosis regulators. 2 different ferroptosis modification patterns were found (Fe cluster A and B). Fe cluster A with higher Fescore was correlated with p53 pathway and had better prognosis of STS (p = 0.002) while Fe cluster B with lower Fescore was correlated with angiogenesis and MYC pathway and showed a poorer outcome. Besides, the nomogram effectively predicted the outcome of STS and the Fescore could also well predict the prognosis of other 16 tumors and immunotherapy response. Downregulation of LOX also inhibited growth and increased ROS production in sarcoma cells. The molecular characterization of ferroptosis regulators in STS was explored and an Fescore was constructed. The Fescore quantified ferroptosis modification in STS patients and effectively predicted the prognosis of a variety of tumors, providing novel insights for precision medicine.
Collapse
Affiliation(s)
- Zhi-Qiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People’s Republic of China
| | - Liang-Yu Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People’s Republic of China
| | - Kang-Wen Xiao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People’s Republic of China
- School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Chong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430071, People’s Republic of China
| | - Min-Hao Wu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People’s Republic of China
| | - Fei-Fei Yan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People’s Republic of China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People’s Republic of China
| |
Collapse
|
2
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
3
|
Klingelhöfer I, Pham Ngoc L, van der Burg B, Morlock GE. A bioimaging system combining human cultured reporter cells and planar chromatography to identify novel bioactive molecules. Anal Chim Acta 2021; 1183:338956. [PMID: 34627516 DOI: 10.1016/j.aca.2021.338956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/19/2022]
Abstract
For the first time, a human cancer cell line was shown to grow and be functionally active on the particulate porous adsorbent surface of separated sample mixtures. This allowed the novel combination of chromatographic separations with human cells as biological detector. As exemplary screening for cancer treatment drugs, cytotoxic substances were directly discovered in Saussurea costus and ginseng samples using the Cytotox CALUX® osteosarcoma cells (with luciferase expressing reporter gene) as detector. In addition, rosiglitazone and pioglitazone were detected as luminescent zones upon binding to the PPARγ receptor expressed in the respective CALUX cell line that was grown on the surface of the adsorbent. This demonstrates the ability to address receptor-mediated signaling with this method, and opens the perspective to use our novel bioimaging method to identify bioactive molecules targeting a wide range of pathways with toxicological, pharmaceutical and nutraceutical relevance. The new bioimaging directly pointed to individual effective compounds in multi-component mixtures. Furthermore, discovered effective compounds were directly characterized by online elution to high-resolution mass spectrometry and fragmentation.
Collapse
Affiliation(s)
- Ines Klingelhöfer
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Long Pham Ngoc
- BioDetection Systems B.v., Science Park 406, 1098, XH Amsterdam, the Netherlands
| | - Bart van der Burg
- BioDetection Systems B.v., Science Park 406, 1098, XH Amsterdam, the Netherlands
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
4
|
Straughn AR, Kelm NQ, Kakar SS. Withaferin A and Ovarian Cancer Antagonistically Regulate Skeletal Muscle Mass. Front Cell Dev Biol 2021; 9:636498. [PMID: 33718372 PMCID: PMC7947350 DOI: 10.3389/fcell.2021.636498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a complex wasting syndrome that overwhelmingly affects the majority of late-stage cancer patients. Additionally, there are currently no efficacious therapeutic agents to treat the muscle atrophy induced by the cancer. While several preclinical studies have investigated the molecular signals orchestrating cachexia, very little information exists pertaining to ovarian cancer and the associated cachexia. Work from our lab has recently demonstrated that the steroidal lactone Withaferin A (WFA) is capable of attenuating the atrophying effects of ovarian cancer in a preclinical mouse model. However, it remained to be determined whether WFA's effect was in response to its anti-tumorigenic properties, or if it was capable of targeting skeletal muscle directly. The purpose of this study was to uncover whether WFA was capable of regulating muscle mass under tumor-free and tumor-bearing conditions. Treatment with WFA led to an improvement in functional muscle strength and mass under tumor-bearing and naïve conditions. WFA and ovarian cancer were observed to act antagonistically upon critical skeletal muscle regulatory systems, notably myogenic progenitors and proteolytic degradation pathways. Our results demonstrated for the first time that, while WFA has anti-tumorigenic properties, it also exerts hypertrophying effects on skeletal muscle mass, suggesting that it could be an anti-cachectic agent in the settings of ovarian cancer.
Collapse
Affiliation(s)
- Alex R. Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Natia Q. Kelm
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Sham S. Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
5
|
Kelm NQ, Straughn AR, Kakar SS. Withaferin A attenuates ovarian cancer-induced cardiac cachexia. PLoS One 2020; 15:e0236680. [PMID: 32722688 PMCID: PMC7386592 DOI: 10.1371/journal.pone.0236680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cachexia is a common multifactorial syndrome in the advanced stages of cancer and accounts for approximately 20–30% of all cancer-related fatalities. In addition to the progressive loss of skeletal muscle mass, cancer results in impairments in cardiac function. We recently demonstrated that WFA attenuates the cachectic skeletal muscle phenotype induced by ovarian cancer. The purpose of this study was to investigate whether ovarian cancer induces cardiac cachexia, the possible pathway involved, and whether WFA attenuates cardiac cachexia. Xenografting of ovarian cancer induced cardiac cachexia, leading to the loss of normal heart functions. Treatment with WFA rescued the heart weight. Further, ovarian cancer induced systolic dysfunction and diastolic dysfunction Treatment with WFA preserved systolic function in tumor-bearing mice, but diastolic dysfunction was partially improved. In addition, WFA abrogated the ovarian cancer-induced reduction in cardiomyocyte cross-sectional area. Finally, treatment with WFA ameliorated fibrotic deposition in the hearts of tumor-bearing animals. We observed a tumor-induced MHC isoform switching from the adult MHCα to the embryonic MHCβ isoform, which was prevented by WFA treatment. Circulating Ang II level was increased significantly in the tumor-bearing, which was lowered by WFA treatment. Our results clearly demonstrated the induction of cardiac cachexia in response to ovarian tumors in female NSG mice. Further, we observed induction of proinflammatory markers through the AT1R pathway, which was ameliorated by WFA, in addition to amelioration of the cachectic phenotype, suggesting WFA as a potential therapeutic agent for cardiac cachexia in oncological paradigms.
Collapse
Affiliation(s)
- Natia Q. Kelm
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Alex R. Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Sham S. Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
- * E-mail:
| |
Collapse
|
6
|
Dom M, Vanden Berghe W, Van Ostade X. Broad-spectrum antitumor properties of Withaferin A: a proteomic perspective. RSC Med Chem 2020; 11:30-50. [PMID: 33479603 PMCID: PMC7523023 DOI: 10.1039/c9md00296k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The multifunctional antitumor properties of Withaferin A (WA), the manifold studied bioactive compound of the plant Withania somnifera, have been well established in many different in vitro and in vivo cancer models. This undoubtedly has led to a much better insight in the underlying mechanisms of WAs broad antitumor activity range, but also raises additional challenging questions on how all these antitumor properties could be explained on a molecular level. Therefore, a lot of effort was made to characterize the cellular WA target proteins, since these binding events will lead and initiate the observed downstream effects. Based on a proteomic perspective, this review provides novel insights in the molecular chain of events by which WA potentially exercises its antitumor activities. We illustrate that WA triggers multiple cellular stress pathways such as the NRF2-mediated oxidative stress response, the heat shock response and protein translation events and at the same time inhibits these cellular protection mechanisms, driving stressed cancer cells towards a fatal state of collapse. If cancer cells manage to restore homeostasis and survive, a stress-independent WA antitumor response comes into play. These include the known inhibition of cytoskeleton proteins, NFκB pathway inhibition and cell cycle inhibition, among others. This review therefore provides a comprehensive overview which integrates the numerous WA-protein binding partners to formulate a general WA antitumor mechanism.
Collapse
Affiliation(s)
- Martin Dom
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Xaveer Van Ostade
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| |
Collapse
|
7
|
Straughn AR, Kakar SS. Withaferin A ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. J Ovarian Res 2019; 12:115. [PMID: 31767036 PMCID: PMC6878639 DOI: 10.1186/s13048-019-0586-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer is the fifth leading cause of cancer-related deaths amongst women in the United States. Cachexia is the primary cause of death in approximately 30% of cancer patients, and is often evidenced in ovarian cancer patients. We tested the steroidal lactone Withaferin A to examine if it could ameliorate ovarian cancer-induced cachexia. METHODS Six-week-old severely immunodeficient female mice were xenografted with the ovarian cancer cell line A2780 followed by treatment with Withaferin A or vehicle. Changes in functional grip strength were assessed on a weekly basis. Postmortem, H&E staining was performed on skeletal muscle sections and immunofluorescent immunohistochemistry was performed on skeletal muscle and tumor sections. The levels of NF-κB-related proinflammatory cytokines were assessed in the xenografted tumors and in resident host skeletal muscle. RESULTS Xenografting of the A2780 cell line resulted in a significant rate of mortality, which was attenuated by a therapeutic dosage of Withaferin A. Mice that received vehicle treatment following xenografting exhibited functional muscle decline over the course of the study. The therapeutic dosage Withaferin A treatment attenuated this reduction in grip strength, whereas the supratherapeutic dosage of Withaferin A was found to be toxic/lethal and demonstrated a further decline in functional muscle strength and an increased rate of mortality on par with vehicle treatment. At a histological level, the vehicle treated tumor-bearing mice exhibited a profound reduction in myofibrillar cross-sectional area compared to the vehicle treated tumor-free control group. The atrophic changes induced by the xenografted tumor were significantly ameliorated by treatment with Withaferin A. The combination of functional muscle weakening and induction of myofibrillar atrophy corroborate a cachectic phenotype, which was functionally rescued by Withaferin A. Further, treatment completely abolished the slow-to-fast myofiber type conversion observed in the settings of cancer-induced cachexia. In both host resident skeletal muscle and the xenografted tumors, we report an increase in NF-κB-related proinflammatory cytokines that was reversed by Withaferin A treatment. Finally, we demonstrated that Withaferin A significantly downregulates cytosolic and nuclear levels of phospho-p65, the active canonical NF-κB transcription factor, in xenografted tumors. CONCLUSIONS Cumulatively, our results demonstrate a previously overlooked role of Withaferin A in a xenograft model of ovarian cancer. We propose mechanisms by which Withaferin A reduces NF-κB-dependent pro-inflammatory cytokine production leading to an attenuation of the cachectic phenotype in an i.p. xenograft model of ovarian cancer.
Collapse
Affiliation(s)
- Alex R Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Sham S Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Physiology, University of Louisville, School of Medicine, 500 South Floyd Street, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Jiang Y, Zhu D, Liu W, Qin Q, Fang Z, Pan Z. Hedgehog pathway inhibition causes primary follicle atresia and decreases female germline stem cell proliferation capacity or stemness. Stem Cell Res Ther 2019; 10:198. [PMID: 31277696 PMCID: PMC6612207 DOI: 10.1186/s13287-019-1299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Follicle depletion is one of the causes of premature ovarian failure (POF) and primary ovarian insufficiency (POI). Hence, maintenance of a certain number of female germline stem cells (FGSCs) is optimal to produce oocytes and replenish the primordial follicle pool. The mechanism that regulates proliferation or stemness of FGSCs could contribute to restoring ovarian function, but it remains uncharacterized in postnatal mammalian ovaries. This study aims to investigate the mechanism by which inhibiting the activity of the hedgehog (Hh) signaling pathway regulates follicle development and FGSC proliferation. Methods and results To understand the role of the Hh pathway in ovarian aging, we measured Hh signaling activity at different reproductive ages and the correlation between them in physiological and pathological mice. Furthermore, we evaluated the follicle number and development and the changes in FGSC proliferation or stemness after blocking the Hh pathway in vitro and in vivo. In addition, we aimed to explain one of the mechanisms for the FGSC phenotype changes induced by treatment with the Hh pathway-specific inhibitor GANT61 via oxidative stress and apoptosis. The results show that the activity of Hh signaling is decreased in the ovaries in physiological aging and POF models, which is consistent with the trend of expression levels of the germline stem cell markers Mvh and Oct4. In vitro, blocking the Hh pathway causes follicular developmental disorders and depletes ovarian germ cells and FGSCs after treating ovaries with GANT61. The proliferation or stemness of cultured primary FGSCs is reduced when Hh activity is blocked. Our results show that the antioxidative enzyme level and the ratio of Bcl-2/Bax decrease, the expression level of caspase 3 increases, the mitochondrial membrane potential is abnormal, and ROS accumulate in this system. Conclusions We observed that the inhibition of the Hh signaling pathway with GANT61 could reduce primordial follicle number and decrease FGSC reproductive capacity or stemness through oxidative damage and apoptosis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Jiang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Dantian Zhu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wenfeng Liu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qiushi Qin
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi Fang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China. .,Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
9
|
Sivamaruthi BS, Ramkumar VS, Archunan G, Chaiyasut C, Suganthy N. Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula – In vitro evaluation of anticancer and antimicrobial activity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Matsuzaka Y, Uesawa Y. Optimization of a Deep-Learning Method Based on the Classification of Images Generated by Parameterized Deep Snap a Novel Molecular-Image-Input Technique for Quantitative Structure-Activity Relationship (QSAR) Analysis. Front Bioeng Biotechnol 2019; 7:65. [PMID: 30984753 PMCID: PMC6447703 DOI: 10.3389/fbioe.2019.00065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Numerous chemical compounds are distributed around the world and may affect the homeostasis of the endocrine system by disrupting the normal functions of hormone receptors. Although the risks associated with these compounds have been evaluated by acute toxicity testing in mammalian models, the chronic toxicity of many chemicals remains due to high cost of the compounds and the testing, etc. However, computational approaches may be promising alternatives and reduce these evaluations. Recently, deep learning (DL) has been shown to be promising prediction models with high accuracy for recognition of images, speech, signals, and videos since it greatly benefits from large datasets. Recently, a novel DL-based technique called DeepSnap was developed to conduct QSAR analysis using three-dimensional images of chemical structures. It can be used to predict the potential toxicity of many different chemicals to various receptors without extraction of descriptors. DeepSnap has been shown to have a very high capacity in tests using Tox21 quantitative qHTP datasets. Numerous parameters must be adjusted to use the DeepSnap method but they have not been optimized. In this study, the effects of these parameters on the performance of the DL prediction model were evaluated in terms of the loss in validation as an indicator for evaluating the performance of the DL using the toxicity information in the Tox21 qHTP database. The relations of the parameters of DeepSnap such as (1) number of molecules per SDF split into (2) zoom factor percentage, (3) atom size for van der waals percentage, (4) bond radius, (5) minimum bond distance, and (6) bond tolerance, with the validation loss following quadratic function curves, which suggests that optimal thresholds exist to attain the best performance with these prediction models. Using the parameter values set with the best performance, the prediction model of chemical compounds for CAR agonist was built using 64 images, at 105° angle, with AUC of 0.791. Thus, based on these parameters, the proposed DeepSnap-DL approach will be highly reliable and beneficial to establish models to assess the risk associated with various chemicals.
Collapse
Affiliation(s)
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
11
|
You L, Dong X, Ni B, Fu J, Yang C, Yin X, Leng X, Ni J. Triptolide Induces Apoptosis Through Fas Death and Mitochondrial Pathways in HepaRG Cell Line. Front Pharmacol 2018; 9:813. [PMID: 30093863 PMCID: PMC6070613 DOI: 10.3389/fphar.2018.00813] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/09/2018] [Indexed: 11/23/2022] Open
Abstract
Triptolide isolated from the traditional Chinese herb Tripterygium wilfordii Hook F., possesses anti-tumor, anti-fertility, and anti-inflammatory properties. Triptolide-induced hepatotoxicity has continued to engage the attention of researchers. However, not much is yet known about the cytotoxicity of triptolide, and the precise mechanisms involved. In the present study, we investigated the cytotoxicity of triptolide and its underlying mechanisms, using the in vitro model (HepaRG cell). The results demonstrated that triptolide significantly reduced cell viability and induced apoptosis in HepaRG cells in a dose- and time-dependent manner. Triptolide treatment also provoked reactive oxygen species (ROS) generation and depolarization of mitochondrial membrane potential (MMP). Moreover, triptolide dose-dependently increased the protein expression levels of Fas, Bax, p53, p21, cyclin E, cleaved caspase-3, 8, and 9; and subsequent cleavage of poly (ADP-ribose) polymerase (PARP). However, the protein expression of Bcl-2, cyclin A, and CDK 2 were significantly decreased. These results suggest that triptolide inhibits cell proliferation and induces apoptosis via the Fas death pathway and the mitochondrial pathway.
Collapse
Affiliation(s)
- Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Boran Ni
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Fu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital University of Medicine Sciences, Beijing, China
| | - Chunjing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Leng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|