1
|
Hwang J, Kim H, Moon JY, Kim SM, Yang DS. Development of Imaging Complexity Biomarkers for Prediction of Symptomatic Radiation Pneumonitis in Patients with Non-Small Cell Lung Cancer, Focusing on Underlying Lung Disease. Life (Basel) 2024; 14:1497. [PMID: 39598295 PMCID: PMC11595866 DOI: 10.3390/life14111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: We aimed to develop imaging biomarkers to predict radiation pneumonitis (RP) in non-small cell lung cancer (NSCLC) patients undergoing thoracic radiotherapy. We hypothesized that measuring morphometric complexity in the lung using simulation computed tomography may provide objective imaging biomarkers for lung parenchyma integrity, potentially forecasting the risk of RP. Materials and Methods: A retrospective study was performed on medical records of 175 patients diagnosed with NSCLC who had received thoracic radiotherapy. Three indices were utilized to measure the morphometric complexity of the lung parenchyma: box-counting fractal dimension, lacunarity, and minimum spanning tree (MST) fractal dimension. Patients were dichotomized into two groups at median values. Cox proportional hazard models were constructed to estimate the hazard ratios for grade ≥ 2 or grade ≥ 3 RP. Results and Conclusions: We found significant associations between lung parenchymal morphometric complexity and RP incidence. In univariate Cox-proportional hazard analysis, patients with a lower MST fractal dimension had a significantly higher hazard ratio of 2.296 (95% CI: 1.348-3.910) for grade ≥ 2 RP. When adjusted for age, sex, smoking status, category of the underlying lung disease, category of radiotherapy technique, clinical stage, histology, and DLCO, patients with a lower MST fractal dimension showed a significantly higher hazard ratio of 3.292 (95% CI: 1.722-6.294) for grade ≥ 2 RP and 7.952 (95% CI: 1.722 36.733) for grade ≥ 3 RP than those with a higher MST fractal dimension. Patients with lower lacunarity exhibited a significantly lower hazard ratio of 0.091 (95% CI: 0.015-0.573) for grade ≥ 3 RP in the adjusted model. We speculated that the lung tissue integrity is captured by morphometric complexity measures, particularly by the MST fractal dimension. We suggest the MST fractal dimension as an imaging biomarker for predicting the occurrence of symptomatic RP after thoracic radiotherapy.
Collapse
Affiliation(s)
- Jeongeun Hwang
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Asan-si 31538, Republic of Korea;
| | - Hakyoung Kim
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea;
| | - Joon-Young Moon
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon-si 16419, Republic of Korea;
- Sungkyunkwan University (SKKU), Suwon-si 16419, Republic of Korea
| | - Sun Myung Kim
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea;
| | - Dae Sik Yang
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea;
| |
Collapse
|
2
|
Vicente EM, Grande Gutierrez N, Oakes JM, Cammin J, Gopal A, Kipritidis J, Modiri A, Mossahebi S, Mohindra P, Citron WK, Matuszak MM, Timmerman R, Sawant A. Integrating local and distant radiation-induced lung injury: Development and validation of a predictive model for ventilation loss. Med Phys 2024; 51:6259-6275. [PMID: 38820385 DOI: 10.1002/mp.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/04/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Investigations on radiation-induced lung injury (RILI) have predominantly focused on local effects, primarily those associated with radiation damage to lung parenchyma. However, recent studies from our group and others have revealed that radiation-induced damage to branching serial structures such as airways and vessels may also have a substantial impact on post-radiotherapy (RT) lung function. Furthermore, recent results from multiple functional lung avoidance RT trials, although promising, have demonstrated only modest toxicity reduction, likely because they were primarily focused on dose avoidance to lung parenchyma. These observations emphasize the critical need for predictive dose-response models that effectively incorporate both local and distant RILI effects. PURPOSE We develop and validate a predictive model for ventilation loss after lung RT. This model, referred to as P+A, integrates local (parenchyma [P]) and distant (central and peripheral airways [A]) radiation-induced damage, modeling partial (narrowing) and complete (collapse) obstruction of airways. METHODS In an IRB-approved prospective study, pre-RT breath-hold CTs (BHCTs) and pre- and one-year post-RT 4DCTs were acquired from lung cancer patients treated with definitive RT. Up to 13 generations of airways were automatically segmented on the BHCTs using a research virtual bronchoscopy software. Ventilation maps derived from the 4DCT scans were utilized to quantify pre- and post-RT ventilation, serving, respectively, as input data and reference standard (RS) in model validation. To predict ventilation loss solely due to parenchymal damage (referred to as P model), we used a normal tissue complication probability (NTCP) model. Our model used this NTCP-based estimate and predicted additional loss due radiation-induced partial or complete occlusion of individual airways, applying fluid dynamics principles and a refined version of our previously developed airway radiosensitivity model. Predictions of post-RT ventilation were estimated in the sublobar volumes (SLVs) connected to the terminal airways. To validate the model, we conducted a k-fold cross-validation. Model parameters were optimized as the values that provided the lowest root mean square error (RMSE) between predicted post-RT ventilation and the RS for all SLVs in the training data. The performance of the P+A and the P models was evaluated by comparing their respective post-RT ventilation values with the RS predictions. Additional evaluation using various receiver operating characteristic (ROC) metrics was also performed. RESULTS We extracted a dataset of 560 SLVs from four enrolled patients. Our results demonstrated that the P+A model consistently outperformed the P model, exhibiting RMSEs that were nearly half as low across all patients (13 ± 3 percentile for the P+A model vs. 24 ± 3 percentile for the P model on average). Notably, the P+A model aligned closely with the RS in ventilation loss distributions per lobe, particularly in regions exposed to doses ≥13.5 Gy. The ROC analysis further supported the superior performance of the P+A model compared to the P model in sensitivity (0.98 vs. 0.07), accuracy (0.87 vs. 0.25), and balanced predictions. CONCLUSIONS These early findings indicate that airway damage is a crucial factor in RILI that should be included in dose-response modeling to enhance predictions of post-RT lung function.
Collapse
Affiliation(s)
- Esther M Vicente
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Noelia Grande Gutierrez
- Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Jochen Cammin
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Arun Gopal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John Kipritidis
- Department of Radiotherapy, Northern Sydney Cancer Centre, Sydney, Australia
| | - Arezoo Modiri
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wendla K Citron
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Timmerman
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Kim H, Hwang J, Kim SM, Choi J, Yang DS. Risk factor analysis of the development of severe radiation pneumonitis in patients with non-small cell lung cancer treated with curative radiotherapy, with focus on underlying pulmonary disease. BMC Cancer 2023; 23:992. [PMID: 37848850 PMCID: PMC10583362 DOI: 10.1186/s12885-023-11520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND We aim to identify the multifaceted risk factors that can affect the development of severe radiation pneumonitis (RP) in patients with non-small cell lung cancer (NSCLC) treated with curative high-dose radiotherapy with or without concurrent chemotherapy. METHODS We retrospectively reviewed the medical records of 175 patients with stage-I-III NSCLC treated with curative thoracic X-ray radiotherapy at the Korea University Guro Hospital between June 2019 and June 2022. Treatment-related complications were evaluated using the Common Terminology Criteria for Adverse Events (version 4.03). RESULTS The median follow-up duration was 15 months (range: 3-47 months). Idiopathic pulmonary fibrosis (IPF) as an underlying lung disease (P < 0.001) and clinical stage, regarded as the concurrent use of chemotherapy (P = 0.009), were associated with a high rate of severe RP. In multivariate analyses adjusting confounding variables, the presence of IPF as an underlying disease was significantly associated with severe RP (odds ratio [95% confidence interval] = 48.4 [9.09-347]; P < 0.001). In a subgroup analysis of stage-I-II NSCLC, the incidence of severe RP in the control, chronic obstructive pulmonary disease (COPD), and IPF groups was 3.2%, 4.3%, and 42.9%, respectively (P < 0.001). The incidence of severe RP was 15.2%, 10.7%, and 75.0% in the control, COPD, and IPF groups, respectively (P < 0.001) in the stage-III NSCLC group. CONCLUSIONS This study revealed that IPF as an underlying lung disease and the concurrent use of chemotherapy are associated with a high rate of severe RP. In contrast, COPD did not increase the risk of pulmonary toxicity after receiving curative high-dose radiotherapy.
Collapse
Affiliation(s)
- Hakyoung Kim
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea.
| | - Jeongeun Hwang
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Chungcheongnam-Do, Republic of Korea
| | - Sun Myung Kim
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea
| | - Juwhan Choi
- Department of Internal Medicine, Korea University Guro Hospital, Division of Pulmonary, Allergy, and Critical Care Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dae Sik Yang
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
4
|
Epshtein Y, Mathew B, Chen W, Jacobson JR. UCHL1 Regulates Radiation Lung Injury via Sphingosine Kinase-1. Cells 2023; 12:2405. [PMID: 37830619 PMCID: PMC10572187 DOI: 10.3390/cells12192405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
GADD45a is a gene we previously reported as a mediator of responses to acute lung injury. GADD45a-/- mice express decreased Akt and increased Akt ubiquitination due to the reduced expression of UCHL1 (ubiquitin c-terminal hydrolase L1), a deubiquitinating enzyme, while GADD45a-/- mice have increased their susceptibility to radiation-induced lung injury (RILI). Separately, we have reported a role for sphingolipids in RILI, evidenced by the increased RILI susceptibility of SphK1-/- (sphingosine kinase 1) mice. A mechanistic link between UCHL1 and sphingolipid signaling in RILI is suggested by the known polyubiquitination of SphK1. Thus, we hypothesized that the regulation of SphK1 ubiquitination by UCHL1 mediates RILI. Initially, human lung endothelial cells (EC) subjected to radiation demonstrated a significant upregulation of UCHL1 and SphK1. The ubiquitination of EC SphK1 after radiation was confirmed via the immunoprecipitation of SphK1 and Western blotting for ubiquitin. Further, EC transfected with siRNA specifically for UCHL1 or pretreated with LDN-5744, as a UCHL1 inhibitor, prior to radiation were noted to have decreased ubiquitinated SphK1 in both conditions. Further, the inhibition of UCHL1 attenuated sphingolipid-mediated EC barrier enhancement was measured by transendothelial electrical resistance. Finally, LDN pretreatment significantly augmented murine RILI severity. Our data support the fact that the regulation of SphK1 expression after radiation is mediated by UCHL1. The modulation of UCHL1 affecting sphingolipid signaling may represent a novel RILI therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | - Jeffrey R. Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.E.); (W.C.)
| |
Collapse
|
5
|
Liu T, Li S, Ding S, Qiu J, Ren C, Chen J, Wang H, Wang X, Li G, He Z, Dang J. Comparison of post-chemoradiotherapy pneumonitis between Asian and non-Asian patients with locally advanced non-small cell lung cancer: a systematic review and meta-analysis. EClinicalMedicine 2023; 64:102246. [PMID: 37781162 PMCID: PMC10539643 DOI: 10.1016/j.eclinm.2023.102246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Background Pneumonitis is a common complication for patients with locally advanced non-small cell lung cancer undergoing definitive chemoradiotherapy (CRT). It remains unclear whether there is ethnic difference in the incidence of post-CRT pneumonitis. Methods PubMed, Embase, Cochrane Library, and Web of Science were searched for eligible studies from January 1, 2000 to April 30, 2023. The outcomes of interest were incidence rates of pneumonitis. The random-effect model was used for statistical analysis. This meta-analysis was registered with PROSPERO (CRD42023416490). Findings A total of 248 studies involving 28,267 patients were included. Among studies of CRT without immunotherapy, the pooled rates of pneumonitis for Asian patients were significantly higher than that for non-Asian patients (all grade: 66.8%, 95% CI: 59.2%-73.9% vs. 28.1%, 95% CI: 20.4%-36.4%; P < 0.0001; grade ≥2: 25.1%, 95% CI: 22.9%-27.3% vs. 14.9%, 95% CI: 12.0%-18.0%; P < 0.0001; grade ≥3: 6.5%, 95% CI: 5.6%-7.3% vs. 4.6%, 95% CI: 3.4%-5.9%; P = 0.015; grade 5: 0.6%, 95% CI: 0.3%-0.9% vs. 0.1%, 95% CI: 0.0%-0.2%; P < 0.0001). Regarding studies of CRT plus immunotherapy, Asian patients had higher rates of all-grade (74.8%, 95% CI: 63.7%-84.5% vs. 34.3%, 95% CI: 28.7%-40.2%; P < 0.0001) and grade ≥2 (34.0%, 95% CI: 30.7%-37.3% vs. 24.6%, 95% CI: 19.9%-29.3%; P = 0.001) pneumonitis than non-Asian patients, but with no significant differences in the rates of grade ≥3 and grade 5 pneumonitis. Results from subgroup analyses were generally similar to that from the all studies. In addition, the pooled median/mean of lung volume receiving ≥20 Gy and mean lung dose were relatively low in Asian studies compared to that in non-Asian studies. Interpretation Asian patients are likely to have a higher incidence of pneumonitis than non-Asian patients, which appears to be due to the poor tolerance of lung to radiation. Nevertheless, these findings are based on observational studies and with significant heterogeneity, and need to be validated in future large prospective studies focusing on the subject. Funding None.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
- Department of Radiation Oncology, Anshan Cancer Hospital, Anshan, China
| | - Sihan Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Silu Ding
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Jingping Qiu
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Chengbo Ren
- Department of Radiation Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Jun Chen
- Department of Radiation Oncology, Shenyang Tenth People's Hospital, Shenyang, China
| | - He Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoling Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Zheng He
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Jun Dang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Abdelghany L, Xu Y, Sekiya R, Yan C, Jingu K, Li TS. Nicaraven Exerts a Limited Effect on Radiation-Induced Inhibition of Tumor Growth in a Subcutaneous Murine Tumor Model. Radiat Res 2023; 200:382-388. [PMID: 37702409 DOI: 10.1667/rade-22-00212.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
Nicaraven selectively protects normal tissue from radiation-induced injury. To further develop the clinical application of nicaraven for mitigating the side effects of cancer radiotherapy, we investigated the potential effect of nicaraven administration in radiation-induced inhibition of tumor growth. A subcutaneous tumor model was established in mice by the injection of Lewis lung cancer cells at the back of the chest. X-ray radiation was delivered to the thoracic area and different doses of nicaraven (0, 20, 50, 100 mg/kg) were administrated intraperitoneally pre- or post-irradiation. The tumor size was measured every other day. Mice were euthanized on day 30, and the tumor weight and the levels of cytokines in tumor tissue were measured. Pre- or post-irradiation administration of nicaraven up to a dose of 100 mg/kg did not significantly diminish the radiation-induced inhibition of tumor growth, but post-irradiation administration of 20 and 50 mg/kg nicaraven resulted in relatively lower tumor weight. The levels of IL-1β, IL-6, IL-10, MCP-1, MIP-2a, TGF-β1, VEGF, p53, p21, cyclin D1 and caspase-3 in tumor tissue did not change by nicaraven administration and were not significantly associated with the tumor weights. According to our experimental data, nicaraven will not significantly diminish the radiation-induced inhibition of tumor growth, even with pre-irradiation administration at a high dose.
Collapse
Affiliation(s)
- Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yong Xu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
7
|
Zhang Z, Wang Z, Yan M, Yu J, Dekker A, Zhao L, Wee L. Radiomics and Dosiomics Signature From Whole Lung Predicts Radiation Pneumonitis: A Model Development Study With Prospective External Validation and Decision-curve Analysis. Int J Radiat Oncol Biol Phys 2023; 115:746-758. [PMID: 36031028 DOI: 10.1016/j.ijrobp.2022.08.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation pneumonitis (RP) is one of the common side effects of radiation therapy in the thoracic region. Radiomics and dosiomics quantify information implicit within medical images and radiation therapy dose distributions. In this study we demonstrate the prognostic potential of radiomics, dosiomics, and clinical features for RP prediction. METHODS AND MATERIALS Radiomics, dosiomics, dose-volume histogram (DVH) metrics, and clinical parameters were obtained on 314 retrospectively collected and 35 prospectively enrolled patients diagnosed with lung cancer between 2013 to 2019. A radiomics risk score (R score) and dosiomics risk score (D score), as well as a DVH-score, were calculated based on logistic regression after feature selection. Six models were built using different combinations of R score, D score, DVH score, and clinical parameters to evaluate their added prognostic power. Overoptimism was evaluated by bootstrap resampling from the training set, and the prospectively collected cohort was used as the external test set. Model calibration and decision-curve characteristics of the best-performing models were evaluated. For ease of further evaluation, nomograms were constructed for selected models. RESULTS A model built by integrating all of the R score, D score, and clinical parameters had the best discriminative ability with areas under the curve of 0.793 (95% confidence interval [CI], 0.735-0.851), 0.774 (95% CI, 0.762-0.786), and 0.855 (95% CI, 0.719-0.990) in the training, bootstrapping, and external test sets, respectively. The calibration curve image showed good agreement between the predicted and actual values, with a slope of 1.21 and intercept of -0.04. The decision curve image showed a positive net benefit for the final model based on the nomogram. CONCLUSIONS Radiomic and dosiomic features have the potential to assist with the prediction of RP, and the combination of radiomics, dosiomics, and clinical parameters led to the best prognostic model in the present study.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Zhixiang Wang
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Meng Yan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaqi Yu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Andre Dekker
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Leonard Wee
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
8
|
Jacobson JR. Sphingolipids as a Novel Therapeutic Target in Radiation-Induced Lung Injury. Cell Biochem Biophys 2021; 79:509-516. [PMID: 34370281 PMCID: PMC8551086 DOI: 10.1007/s12013-021-01022-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022]
Abstract
Radiation-induced lung injury (RILI) is a potential complication of thoracic radiotherapy that can result in pneumonitis or pulmonary fibrosis and is associated with significant morbidity and mortality. The pathobiology of RILI is complex and includes the generation of free radicals and DNA damage that precipitate oxidative stress, endothelial cell (EC), and epithelial cell injury and inflammation. While the cellular events involved continue to be elucidated and characterized, targeted and effective therapies for RILI remain elusive. Sphingolipids are known to mediate EC function including many of the cell signaling events associated with the elaboration of RILI. Sphingosine-1-phosphate (S1P) and S1P analogs enhance EC barrier function in vitro and have demonstrated significant protective effects in vivo in a variety of acute lung injury models including RILI. Similarly, statin drugs that have pleiotropic effects that include upregulation of EC S1P receptor 1 (S1PR1) have been found to be strongly protective in a small animal RILI model. Thus, targeting of EC sphingosine signaling, either directly or indirectly, to augment EC function and thereby attenuate EC permeability and inflammatory responses, represents a novel and promising therapeutic strategy for the prevention or treatment of RILI.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Rahi MS, Parekh J, Pednekar P, Parmar G, Abraham S, Nasir S, Subramaniyam R, Jeyashanmugaraja GP, Gunasekaran K. Radiation-Induced Lung Injury-Current Perspectives and Management. Clin Pract 2021; 11:410-429. [PMID: 34287252 PMCID: PMC8293129 DOI: 10.3390/clinpract11030056] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy plays an important role in the treatment of localized primary malignancies involving the chest wall or intrathoracic malignancies. Secondary effects of radiotherapy on the lung result in radiation-induced lung disease. The phases of lung injury from radiation range from acute pneumonitis to chronic pulmonary fibrosis. Radiation pneumonitis is a clinical diagnosis based on the history of radiation, imaging findings, and the presence of classic symptoms after exclusion of infection, pulmonary embolism, heart failure, drug-induced pneumonitis, and progression of the primary tumor. Computed tomography (CT) is the preferred imaging modality as it provides a better picture of parenchymal changes. Lung biopsy is rarely required for the diagnosis. Treatment is necessary only for symptomatic patients. Mild symptoms can be treated with inhaled steroids while subacute to moderate symptoms with impaired lung function require oral corticosteroids. Patients who do not tolerate or are refractory to steroids can be considered for treatment with immunosuppressive agents such as azathioprine and cyclosporine. Improvements in radiation technique, as well as early diagnosis and appropriate treatment with high-dose steroids, will lead to lower rates of pneumonitis and an overall good prognosis.
Collapse
Affiliation(s)
- Mandeep Singh Rahi
- Division of Pulmonary Diseases and Critical Care, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA;
| | - Jay Parekh
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA; (J.P.); (P.P.); (S.A.); (G.P.J.)
| | - Prachi Pednekar
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA; (J.P.); (P.P.); (S.A.); (G.P.J.)
| | - Gaurav Parmar
- Department of Radiology, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA;
| | - Soniya Abraham
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA; (J.P.); (P.P.); (S.A.); (G.P.J.)
| | - Samar Nasir
- Department of Internal Medicine, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, USA;
| | - Rajamurugan Subramaniyam
- Department of Pulmonary Critical Care Medicine, St. Louis University, 3635 Vista Ave, St. Louis, MO 63110, USA;
| | - Gini Priyadharshini Jeyashanmugaraja
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA; (J.P.); (P.P.); (S.A.); (G.P.J.)
| | - Kulothungan Gunasekaran
- Division of Pulmonary Diseases and Critical Care, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA;
- Correspondence: ; Tel.: +1-203-384-5009
| |
Collapse
|
10
|
Li F, Liu H, Wu H, Liang S, Xu Y. Risk factors for radiation pneumonitis in lung cancer patients with subclinical interstitial lung disease after thoracic radiation therapy. Radiat Oncol 2021; 16:70. [PMID: 33849579 PMCID: PMC8045204 DOI: 10.1186/s13014-021-01798-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/31/2021] [Indexed: 02/23/2023] Open
Abstract
Background Previous studies have found that patients with subclinical interstitial lung disease (ILD) are highly susceptible to developing radiation pneumonitis (RP) after thoracic radiation therapy. In the present study we aimed to evaluate the incidence of and risk factors for RP after thoracic intensity-modulated radiation therapy in lung cancer patients with subclinical ILD. Methods We retrospectively analyzed data from lung cancer patients with subclinical ILD who were treated with thoracic intensity-modulated radiation therapy with a prescribed dose of ≥ 50 Gy in our institution between January 2016 and December 2017. Results Eighty-seven consecutive lung cancer patients with subclinical ILD were selected for the study. The median follow-up period was 14.0 months. The cumulative incidence of grades ≥ 2 and ≥ 3 RP at one year was 51.0% and 20.9%, respectively. In the multivariate analysis, a mean lung dose ≥ 12 Gy was a significant risk factor for grade ≥ 2 RP (p = 0.049). Chemotherapy with gemcitabine in the past, V5 ≥ 50%, and subclinical ILD involving ≥ 25% of the lung volume were significantly associated with grade ≥ 3 RP (p = 0.046, p = 0.040, and p = 0.024, respectively). Conclusion Mean lung dose is a significant risk factor for grade ≥ 2 RP. Lung cancer patients who have received chemotherapy with gemcitabine in the past, V5 ≥ 50%, and those with subclinical ILD involving ≥ 25% of lung volume have an increased risk of grade ≥ 3 RP in lung cancer patients with subclinical ILD.
Collapse
Affiliation(s)
- Fangjuan Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Hui Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Hongyu Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Shixiong Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China.
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
11
|
Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, Muñoz-Montaño W, Nuñez-Baez M, Arrieta O. Radiation-induced lung injury: current evidence. BMC Pulm Med 2021; 21:9. [PMID: 33407290 PMCID: PMC7788688 DOI: 10.1186/s12890-020-01376-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chemo-radiotherapy and systemic therapies have proven satisfactory outcomes as standard treatments for various thoracic malignancies; however, adverse pulmonary effects, like pneumonitis, can be life-threatening. Pneumonitis is caused by direct cytotoxic effect, oxidative stress, and immune-mediated injury. Radiotherapy Induced Lung Injury (RILI) encompasses two phases: an early phase known as Radiation Pneumonitis (RP), characterized by acute lung tissue inflammation as a result of exposure to radiation; and a late phase called Radiation Fibrosis (RF), a clinical syndrome that results from chronic pulmonary tissue damage. Currently, diagnoses are made by exclusion using clinical assessment and radiological findings. Pulmonary function tests have constituted a significant step in evaluating lung function status during radiotherapy and useful predictive tools to avoid complications or limit toxicity. Systemic corticosteroids are widely used to treat pneumonitis complications, but its use must be standardized, and consider in the prophylaxis setting given the fatal outcome of this adverse event. This review aims to discuss the clinicopathological features of pneumonitis and provide practical clinical recommendations for prevention, diagnosis, and management.
Collapse
Affiliation(s)
- Marisol Arroyo-Hernández
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México
| | - Federico Maldonado
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México
| | - Francisco Lozano-Ruiz
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México
| | - Wendy Muñoz-Montaño
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México
| | - Mónica Nuñez-Baez
- Departamento de Radioncología, Hospital Universitario HM Sanchinarro, Caracas, Venezuela
| | - Oscar Arrieta
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México.
| |
Collapse
|
12
|
Jain V, Niezink AGH, Frick M, Doucette A, Mendes A, Simone CB, Langendijk JA, Wijsman R, Feigenberg SJ, Levin W, Cengel KA, van der Schaaf A, Berman AT. Updating Photon-Based Normal Tissue Complication Probability Models for Pneumonitis in Patients With Lung Cancer Treated With Proton Beam Therapy. Pract Radiat Oncol 2020; 10:e330-e338. [PMID: 32416270 DOI: 10.1016/j.prro.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE No validated models for predicting the risk of radiation pneumonitis (RP) with proton beam therapy (PBT) currently exist. Our goal was to externally validate and recalibrate multiple established photon-based normal tissue complication probability models for RP in a cohort with locally advanced nonsmall cell lung cancer treated with contemporary doses of chemoradiation using PBT. METHODS AND MATERIALS The external validation cohort consisted of 99 consecutive patients with locally advanced nonsmall cell lung cancer treated with chemoradiation using PBT. RP was retrospectively scored at 3 and 6 months posttreatment. We evaluated the performance of the photon Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) pneumonitis model, the QUANTEC model adjusted for clinical risk factors, and the newer Netherlands updated QUANTEC model. A closed testing procedure was performed to test the need for model updating, either by recalibration-in-the-large (re-estimation of intercept), recalibration (re-estimation of intercept/slope), or model revision (re-estimation of all coefficients). RESULTS There were 21 events (21%) of ≥grade 2 RP. The closed testing procedure on the PBT data set did not detect major deviations between the models and the data and recommended adjustment of the intercept only for the photon-based Netherlands updated QUANTEC model (intercept update: -1.2). However, an update of the slope and revision of the model coefficients were not recommended by the closed testing procedure, as the deviations were not significant within the power of the data. CONCLUSIONS The similarity between the dose-response relationship for PBT and photons for normal tissue complications has been an assumption until now. We demonstrate that the preexisting, widely used photon based models fit our PBT data well with minor modifications. These now-validated and updated normal tissue complication probability models can aid in individualizing selection of the most optimal treatment technique for a particular patient.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anne G H Niezink
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Melissa Frick
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Abigail Doucette
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amberly Mendes
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven J Feigenberg
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - William Levin
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arjen van der Schaaf
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Abigail T Berman
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-Induced Lung Injury (RILI). Front Oncol 2019; 9:877. [PMID: 31555602 PMCID: PMC6743286 DOI: 10.3389/fonc.2019.00877] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation pneumonitis (RP) and radiation fibrosis (RF) are two dose-limiting toxicities of radiotherapy (RT), especially for lung, and esophageal cancer. It occurs in 5-20% of patients and limits the maximum dose that can be delivered, reducing tumor control probability (TCP) and may lead to dyspnea, lung fibrosis, and impaired quality of life. Both physical and biological factors determine the normal tissue complication probability (NTCP) by Radiotherapy. A better understanding of the pathophysiological sequence of radiation-induced lung injury (RILI) and the intrinsic, environmental and treatment-related factors may aid in the prevention, and better management of radiation-induced lung damage. In this review, we summarize our current understanding of the pathological and molecular consequences of lung exposure to ionizing radiation, and pharmaceutical interventions that may be beneficial in the prevention or curtailment of RILI, and therefore enable a more durable therapeutic tumor response.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Dirk De Ruysscher
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marc A Vooijs
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
14
|
Schröder C, Engenhart-Cabillic R, Kirschner S, Blank E, Buchali A. Changes of lung parenchyma density following high dose radiation therapy for thoracic carcinomas - an automated analysis of follow up CT scans. Radiat Oncol 2019; 14:72. [PMID: 31036015 PMCID: PMC6489276 DOI: 10.1186/s13014-019-1276-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background An objective way to qualify the effect of radiotherapy (RT) on lung tissue is the analysis of CT scans after RT. In this analysis we focused on the changes in Hounsfield units (ΔHU) and the correlation with the corresponding radiation dose after RT. Methods Pre- and post-RT CT scans were matched and ΔHU was calculated using customized research software. ΔHU was calculated in 5-Gy-intervals and the correlation between ΔHU and the corresponding dose was calculated as well as the regression coefficients. Additionally the mean ΔHU and ΔHU in 5-Gy-intervals were calculated for each tumor entity. Results The mean density changes at 12 weeks and 6 months post RT were 28,16 HU and 32,83 HU. The correlation coefficient between radiation dose and ΔHU at 12 weeks and 6 months were 0,166 (p = 0,000) and 0,158 (p = 0,000). The resulting regression coefficient were 1439 HU/Gy (p = 0,000) and 1612 HU/Gy (p = 0,000). The individual regression coefficients for each patient range from − 2,23 HU/Gy to 7,46 HU/Gy at 12 weeks and − 0,45 HU/Gy to 10,51 HU/Gy at 6 months. When looking at the three tumor entities individually the highest ΔHU at 12 weeks was seen in patients with SCLC (38,13 HU) and at 6 month in those with esophageal carcinomas (40,98 HU). Conclusion For most dose intervals there was an increase of ΔHU with an increased radiation dose. This is reflected by a statistically significant, although low correlation coefficient. The regression coefficients of all patients show large interindividual differences.
Collapse
Affiliation(s)
- Christina Schröder
- Clinic for Radiotherapy and Radiation Oncology, University Clinic Giessen and Marburg, Marburg, Germany. .,Clinic for Radiation Oncology, Universitätsspital Zürich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Rita Engenhart-Cabillic
- Clinic for Radiotherapy and Radiation Oncology, University Clinic Giessen and Marburg, Marburg, Germany
| | - Sven Kirschner
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - Eyck Blank
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - André Buchali
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| |
Collapse
|
15
|
Wang T, Yao W, He Q, Shao Y, Zheng R, Huang F. L-leucine stimulates glutamate dehydrogenase activity and glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:329-337. [PMID: 30175263 PMCID: PMC6116330 DOI: 10.1016/j.aninu.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
The liver is the most essential organ for the metabolism of ammonia, in where most of ammonia is removed by urea and glutamine synthesis. Regulated by leucine, glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to ammonia. To determine the mechanism of leucine regulating GDH, pigs weighing 20 ± 1 kg were infused for 80 min with ammonium chloride or alanine in the presence or absence of leucine. Primary pig hepatocytes were incubated with or without leucine. In the in vivo experiments with either ammonium or alanine as the nitrogen source, addition of leucine significantly inhibited ureagenesis and promoted the production of glutamate and glutamine in the perfused pig liver (P < 0.05). Similarly, leucine stimulated GDH activity and inhibited sirtuin4 (SIRT4) gene expression (P < 0.01). Leucine could also activate mammalian target of rapamycin complex 1 (mTORC1) signaling (P < 0.05), as evidenced by the increased phosphorylation levels of ribosomal protein S6 kinase 1 (S6K1) and ribosomal protein S6 (S6). Interestingly, the leucine-induced mTORC1 pathway activation suitably correlated with increased GDH activity and decreased expression of SIRT4. Similar results were observed in primary cultured hepatocytes. Notably, leucine exerted no significant change in GDH activity in SIRT4-deficient hepatocytes (P > 0.05), while mTORC1 signaling was activated. Leucine exerted no significant changes in both GDH activity and SIRT4 gene expression in rapamycin treated hepatocytes (P > 0.05). In conclusion, L-leucine increases GDH activity and stimulates glutamate synthesis from different nitrogen sources by regulating mTORC1/SIRT4 pathway in the liver of pigs.
Collapse
Affiliation(s)
| | | | | | | | | | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Hung SK, Chen YC, Chiou WY, Lai CL, Lee MS, Lo YC, Chen LC, Huang LW, Chien NC, Li SC, Liu DW, Hsu FC, Tsai SJ, Chan MWY, Lin HY. Irradiation enhanced risks of hospitalised pneumonopathy in lung cancer patients: a population-based surgical cohort study. BMJ Open 2017; 7:e015022. [PMID: 28963281 PMCID: PMC5623431 DOI: 10.1136/bmjopen-2016-015022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Pulmonary radiotherapy has been reported to increase a risk of pneumonopathy, including pneumonitis and secondary pneumonia, however evidence from population-based studies is lacking. The present study intended to explore whether postoperative irradiation increases occurrence of severe pneumonopathy in lung cancer patients. DESIGN, SETTING AND PARTICIPANTS The nationwide population-based study analysed the Taiwan National Health Insurance Research Database (covered >99% of Taiwanese) in a real-world setting. From 2000 to 2010, 4335 newly diagnosed lung cancer patients were allocated into two groups: surgery-RT (n=867) and surgery-alone (n=3468). With a ratio of 1:4, propensity score was used to match 11 baseline factors to balance groups. INTERVENTIONS/EXPOSURES Irradiation was delivered to bronchial stump and mediastinum according to peer-audited guidelines. OUTCOMES/MEASURES Hospitalised pneumonia/pneumonitis-free survival was the primary end point. Risk factors and hazard effects were secondary measures. RESULTS Multivariable analysis identified five independent risk factors for hospitalised pneumonopathy: elderly (>65 years), male, irradiation, chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD). Compared with surgery-alone, a higher risk of hospitalised pneumonopathy was found in surgery-RT patients (HR, 2.20; 95% CI, 1.93-2.51; 2-year hospitalised pneumonia/pneumonitis-free survival, 85.2% vs 69.0%; both p<0.0001), especially in elderly males with COPD and CKD (HR, 13.74; 95% CI, 6.61-28.53; p<0.0001). Unexpectedly, we observed a higher risk of hospitalised pneumonopathy in younger irradiated-CKD patients (HR, 13.07; 95% CI, 5.71-29.94; p<0.0001) than that of elderly irradiated-CKD patients (HR, 4.82; 95% CI, 2.88-8.08; p<0.0001). CONCLUSIONS A high risk of hospitalised pneumonopathy is observed in irradiated patients, especially in elderly males with COPD and CKD. For these patients, close clinical surveillance and aggressive pneumonia/pneumonitis prevention should be considered. Further investigations are required to define underlying biological mechanisms, especially for younger CKD patients.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yi-Chun Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Liang Lai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Chest Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yuan-Chen Lo
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Nai-Chuan Chien
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Thoracic Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Szu-Chi Li
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Haematology-Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Shiang-Jiun Tsai
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Michael WY Chan
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan
- Department of Life Science, National Chung Cheng University, Chia-Yi, Taiwan
- Human Epigenomics Centre, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|
17
|
Schröder C, Engenhart-Cabillic R, Vorwerk H, Schmidt M, Huhnt W, Blank E, Sidow D, Buchali A. A lot to a little or a little to a lot-which dose-volume relationship ensures the best clinical outcome in the high dose radiation therapy of thoracic tumors? A prospective approach. J Thorac Dis 2016; 8:2053-60. [PMID: 27621859 DOI: 10.21037/jtd.2016.07.92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The purpose of this prospective randomized trial is to determine which constellation of dose and corresponding volume of the lung tissue-either a lot to a little or a little to a lot-should be preferred to ensure the best possible outcome for patients with thoracic carcinomas. METHODS From Apr 2012 to Oct 2015, 81 patients with NSCLC, SCLC or esophageal carcinoma were randomized and treated with either a 4-field-IMRT or a VMAT technique with or without additional chemotherapy. Data regarding clinical outcome, pulmonary function tests (PFT) and quality of life (QoL) was collected before RT, 6 weeks, 12 weeks and 6 months after treatment, QoL data additionally 1 year post RT. Follow up CTs were done 12 weeks and 6 months after RT. RESULTS There is no significant difference regarding the local (P=0.954) and distant (P=0.206) outcome, side effects (all P>0.05) or survival (P=0.633) at any follow-up appointment. The comparison of the PFT shows a statistically significant difference for the DLCO 6 weeks post RT (P=0.028). All other parameters do not differ significantly at any follow up appointment. Regarding the QoL there is no statistically significant difference at any follow up appointment (P>0.1). There is a statistically significant difference between the mean density of the lung parenchyma at 12 weeks (P<0.0005) and 6 months post RT (P<0.0005). CONCLUSIONS Since there is no significant and relevant difference between both treatment arms regarding PFT, clinical outcome and QoL it does not seem to relevant how the DVH is shaped exactly as long as established dose constraints for the organs at risk are respected. As to whether the difference between the CT density changes is clinically relevant further analysis is needed.
Collapse
Affiliation(s)
- Christina Schröder
- Clinic for Radiotherapy and Radiation Oncology, University Clinic Giessen and Marburg, Marburg, Germany;; Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - Rita Engenhart-Cabillic
- Clinic for Radiotherapy and Radiation Oncology, University Clinic Giessen and Marburg, Marburg, Germany
| | - Hilke Vorwerk
- Clinic for Radiotherapy and Radiation Oncology, University Clinic Giessen and Marburg, Marburg, Germany
| | - Michael Schmidt
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - Winfried Huhnt
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - Eyck Blank
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - Dietrich Sidow
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - André Buchali
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| |
Collapse
|
18
|
Ozawa Y, Abe T, Omae M, Matsui T, Kato M, Hasegawa H, Enomoto Y, Ishihara T, Inui N, Yamada K, Yokomura K, Suda T. Impact of Preexisting Interstitial Lung Disease on Acute, Extensive Radiation Pneumonitis: Retrospective Analysis of Patients with Lung Cancer. PLoS One 2015; 10:e0140437. [PMID: 26460792 PMCID: PMC4603947 DOI: 10.1371/journal.pone.0140437] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION This study investigated the clinical characteristics and predictive factors for developing acute extended radiation pneumonitis with a focus on the presence and radiological characteristics of preexisting interstitial lung disease. METHODS Of 1429 irradiations for lung cancer from May 2006 to August 2013, we reviewed 651 irradiations involving the lung field. The presence, compatibility with usual interstitial pneumonia, and occupying area of preexisting interstitial lung disease were retrospectively evaluated by pretreatment computed tomography. Cases of non-infectious, non-cardiogenic, acute respiratory failure with an extended bilateral shadow developing within 30 days after the last irradiation were defined as acute extended radiation pneumonitis. RESULTS Nine (1.4%) patients developed acute extended radiation pneumonitis a mean of 6.7 days after the last irradiation. Although preexisting interstitial lung disease was found in 13% of patients (84 patients), 78% of patients (7 patients) with acute extended radiation pneumonitis cases had preexisting interstitial lung disease, which resulted in incidences of acute extended radiation pneumonitis of 0.35 and 8.3% in patients without and with preexisting interstitial lung disease, respectively. Multivariate logistic analysis indicated that the presence of preexisting interstitial lung disease (odds ratio = 22.6; 95% confidence interval = 5.29-155; p < 0.001) and performance status (≥2; odds ratio = 4.22; 95% confidence interval = 1.06-20.8; p = 0.049) were significant predictive factors. Further analysis of the 84 patients with preexisting interstitial lung disease revealed that involvement of more than 10% of the lung field was the only independent predictive factor associated with the risk of acute extended radiation pneumonitis (odds ratio = 6.14; 95% confidence interval = 1.0-37.4); p = 0.038). CONCLUSIONS Pretreatment computed tomography evaluations of the presence of and area size occupied by preexisting interstitial lung disease should be assessed for safer irradiation of areas involving the lung field.
Collapse
Affiliation(s)
- Yuichi Ozawa
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
- * E-mail:
| | - Takefumi Abe
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Minako Omae
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takashi Matsui
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Masato Kato
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hirotsugu Hasegawa
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Yasunori Enomoto
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takeaki Ishihara
- Department of Radiation Oncology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazunari Yamada
- Department of Radiation Oncology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Koshi Yokomura
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
19
|
Han S, Gu F, Lin G, Sun X, Wang Y, Wang Z, Lin Q, Weng D, Xu Y, Mao W. Analysis of Clinical and Dosimetric Factors Influencing Radiation-Induced Lung Injury in Patients with Lung Cancer. J Cancer 2015; 6:1172-8. [PMID: 26516366 PMCID: PMC4615354 DOI: 10.7150/jca.12314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/19/2015] [Indexed: 12/25/2022] Open
Abstract
Purpose: Dose escalation of thoracic radiation can improve the local tumor control and surivival, and is in the meantime limited by the occurrence of radiation-induced lung injury (RILI). This study investigated the clinical and dosimetric factors influencing RILI in lung-cancer patients receiving chemoradiotherapy for better radiation planning. Methods and Materials: A retrospective analysis was carried out on 161 patients with non-small-cell or small-cell lung cancer (NSCLC and SCLC, respectively), who underwent chemoradiotherapy between April 2010 and May 2011 with a median follow-up time of 545 days (range: 39-1453). Chemotherapy regimens were based on the histological type (squamous cell carcinoma, adenocarcinoma, or SCLC), and radiotherapy was delivered in 1.8-3.0 Gy (median, 2.0 Gy) fractions, once daily, to a total of 39-66 Gy (median, 60 Gy). Univariate analysis was performed to analyze clinical and dosimetric factors associated with RILI. Multivariate analysis using logistic regression identified independent risk factors correlated to RILI. Results: The incidence of symptomatic RILI (≥grade 2) was 31.7%. Univariate analysis showed that V5, V20, and mean lung dose (MLD) were significantly associated with RILI incidence (P=0.029, 0.048, and 0.041, respectively). The association was not statistically significant for histological type (NSCLC vs. SCLC, P = 0.092) or radiation technology (IMRT vs. 3D-CRT, P = 0.095). Multivariate analysis identified MLD as an independent risk factor for symptomatic RILI (OR=1.249, 95%CI=1.055-1.48, P= 0.01). The incidence of bilateral RILI in cases where the tumor was located unilaterally was 22.7% (32/141) and all dosimetric-parameter values were not significantly different (P>0.05) for bilateral versus ipsilateral injury, except grade-1 (low) RILI (P < 0.05). The RILI grade was higher in cases of ipsilateral lung injury than in bilateral cases (Mann-Whitney U test, z=8.216, P< 0.001). Conclusion: The dosimetric parameter, MLD, was found to be an independent predictive factor for RILI. Additional contralateral injury does not seem to be correlated with increased RILI grade under the condition of conventional radiotherapy treatment planning.
Collapse
Affiliation(s)
- Shuiyun Han
- 1. First Clinical Medical School, Wenzhou Medical University, Wenzhou, China ; 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Feiying Gu
- 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Gang Lin
- 1. First Clinical Medical School, Wenzhou Medical University, Wenzhou, China ; 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Xiaojiang Sun
- 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Yuezhen Wang
- 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Zhun Wang
- 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Qingren Lin
- 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Denghu Weng
- 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Yaping Xu
- 1. First Clinical Medical School, Wenzhou Medical University, Wenzhou, China ; 2. Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou China
| | - Weimin Mao
- 3. Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
20
|
Chiou WY, Hung SK, Lai CL, Lin HY, Su YC, Chen YC, Shen BJ, Chen LC, Tsai SJ, Lee MS, Li CY. Effect of 23-Valent Pneumococcal Polysaccharide Vaccine Inoculated During Anti-Cancer Treatment Period in Elderly Lung Cancer Patients on Community-Acquired Pneumonia Hospitalization: A Nationwide Population-Based Cohort Study. Medicine (Baltimore) 2015; 94:e1022. [PMID: 26131806 PMCID: PMC4504648 DOI: 10.1097/md.0000000000001022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To evaluate effectiveness of 23-valent pneumococcal polysaccharide vaccine (PPSV23) inoculated during defined "vaccination period," first 6 months post cancer diagnosis (ie, an anti-cancer treatment period), in elderly lung cancer patients on community-acquired pneumonia (CAP) hospitalization incidence.This was a nationwide population-based cohort study of 157 newly diagnosed elderly lung cancer patients receiving PPSV23 during "vaccination period", and 628 age and sex one-to-one matched controls enrolled in the National Health Insurance Research Database (NHIRD) of Taiwan between 2007 and 2010. All patients were ≥75 years old and still survival post "vaccination period." Incidence density (ID) of all-cause inpatient CAP and cumulative survival risk were analyzed by multivariate Poisson regression and Kaplan-Meier method, respectively.After a 4-year follow-up, IDs of all-cause inpatient CAP for vaccination and control cohorts were 297 and 444 per 1000 PYs, respectively. Less vaccinated patients had CAP incidence density >1 time per PY (12.7% vs 21.2%) than non-vaccinated patients. After adjusting for potential confounding variables, like influenza vaccination, comorbidities, cancer treatment modalities, and socioeconomic status, adjusted inpatient CAP incidence rate in PPSV23 vaccination cohort was 0.74 times lower than control cohort (incidence rate ratio [IRR] = 0.740, P = 0.0339). Two-year cumulative CAP hospitalization rates and overall survival rates were 37.1% vs. 55.4%, and 46.6% vs. 26.2%, respectively, for lung cancer patients with and without PPSV23 (both P < 0.001). Subgroup analysis showed that for elderly lung cancer patients not ever receiving influenza vaccine, PPSV23 still had trend to reduce all-cause inpatient CAP.For elderly lung cancer patients aged ≥75 years, PPSV23 inoculated during anti-cancer treatment period could reduce CAP hospitalizations and improve survival.
Collapse
Affiliation(s)
- Wen-Yen Chiou
- From the Department of Radiation Oncology, Buddhist Dalin Tzu Chi Hospital, Chiayi (W-YC, S-KH, H-YL, B-JS, L-CC, S-JT, M-SL); School of Medicine, Tzu Chi University, Hualien (W-YC, S-KH, C-LL, H-YL, Y-CS, Y-CC, M-SL); Department of Public Health, College of Medicine, National Cheng Kung University, Tainan (W-YC, C-YL); Department of Internal Medicine, Division of Chest Medicine (C-LL); Department of Internal Medicine, Division of Hematology Oncology (Y-CS); and Department of Internal Medicine, Division of Nephrology, Buddhist Dalin Tzu Chi Hospital, Chiayi, Taiwan. (Y-CC)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hansen O, Schytte T, Nielsen M, Brink C. Age dependent prognosis in concurrent chemo-radiation of locally advanced NSCLC. Acta Oncol 2015; 54:333-9. [PMID: 25291077 DOI: 10.3109/0284186x.2014.958529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Clinical trials indicate that the benefit of adding concurrent chemotherapy to radiotherapy of locally advanced non-small cell lung cancer (NSCLC) for fit elderly is similar to the benefit for younger patients. However, since elderly patients are under-represented in most trials, the results might be due to selection bias, thus reports from a cohort of consecutively treated patients are warranted. The current single institution study reports on the influence of age on survival of locally advanced NSCLC patients treated with radiotherapy combined with or without concurrent chemotherapy. MATERIAL AND METHODS Altogether, 478 patients completed radical radiotherapy in doses of 60-66 Gy/30-33 fractions from 1995 to June 2012; 137 of the patients had concurrent chemotherapy. The data was analyzed in age groups<60, 60-69, and ≥70 years. RESULTS In the analyses of overall and lung cancer specific survival the hazard ratio was related to the use of concurrent chemotherapy was 0.49 (95% CI 0.29; 0.82), 0.68 (95% CI 0.48; 0.98) and 1.01 (95% CI 0.67; 1.51) for the age groups<60, 60-69, and ≥70, respectively. CONCLUSION Use of concurrent chemotherapy to radiotherapy of locally advanced NSCLC was associated with a survival benefit in patient younger than 70 years which was not the case for patients older than 70 years, indicating the need to be careful when selecting elderly patients for concurrent chemo-radiation.
Collapse
Affiliation(s)
- Olfred Hansen
- Department of Oncology, Odense University Hospital , Odense , Denmark
| | | | | | | |
Collapse
|
22
|
Abstract
The decision to administer a radical course of radiotherapy (RT) is largely influenced by the dose-volume metrics of the treatment plan, but what are the patient-related and other factors that may independently increase the risk of radiation lung toxicity? Poor pulmonary function has been regarded as a risk factor and a relative contraindication for patients undergoing radical RT, but recent evidence suggests that patients with poor spirometry results may tolerate conventional or high-dose RT as well as, if not better than, patients with normal function. However, caution may need to be exercised in patients with underlying interstitial pulmonary fibrosis. Furthermore, there is emerging evidence of molecular markers of increased risk of toxicity. This review discusses patient-related risk factors other than dosimetry for radiation lung toxicity.
Collapse
Affiliation(s)
- Feng-Ming Spring Kong
- Department of Radiation Oncology, GRU Cancer Center and Medical College of Georgia, Augusta, GA.
| | - Shulian Wang
- Department of Radiation Oncology, GRU Cancer Center and Medical College of Georgia, Augusta, GA; Department of Radiation Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Scorsetti M, Navarria P, De Rose F, Ascolese A, Clerici E, Franzese C, Lobefalo F, Reggiori G, Mancosu P, Tomatis S, Fogliata A, Cozzi L. Outcome and toxicity profiles in the treatment of locally advanced lung cancer with volumetric modulated arc therapy. J Cancer Res Clin Oncol 2014; 140:1937-45. [PMID: 24934724 DOI: 10.1007/s00432-014-1739-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To report about the outcome of radiation treatment of advanced lung cancer patients with volumetric modulated arcs [RapidArc (RA)]. PATIENTS AND METHODS Seventy-five consecutive patients (all stages IIIA and IIIB) were treated with RA. Among them 71 % were men; 25.4 % presented unspecified non-small cell lung cancer, 41.3% adenocarcinoma and 33.3 % squamous cell carcinoma. Of them, 54.7 % received sequential chemotherapy while 45.3% were treated with concomitant regimen. Dose prescription ranged from 54 to 72 Gy. Analysis included survival, local control (LC) and toxicity profiles. RESULTS Median follow-up was 21.2 months (range 6-75). One- two- and five-year actuarial LC was 91.9 ± 3.2, 79.5 ± 5.7 and 67.4 ± 9.5 %, respectively. Median survival was 19.0 ± 1.1 months. Actuarial survival at 1-2-5 years was 80.0 ± 4.6, 38.5 ± 5.9 and 15.2 ± 4.9 %, respectively. Acute toxicity of G2 was reported in 24, 25.3 and 4.0 % of patients for lung, esophageal and hematological profiles. A total of 2.7 % of patients reported G3 toxicity in the esophagus and 5.3 % of the patients experienced G3-G4 hematological toxicity. Significant differences were observed in all cases between concomitant and sequential chemotherapy regiments. Only 1.3 % (1 patient) showed G2 lung late toxicity. No significant correlation was found between toxicity and organ's irradiation levels. CONCLUSION RA proved to be a safe and advantageous treatment modality for advanced lung cancer with results in line with expectations from earlier literature.
Collapse
Affiliation(s)
- Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, MI, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|