1
|
Chen K, Liu X, Song L, Wang Y, Zhang J, Song Y, Zhuang H, Shen J, Yang J, Peng C, Zang J, Yang Q, Li D, Gupta TB, Guo D, Li Z. The Antibacterial Activities and Effects of Baicalin on Ampicillin Resistance of MRSA and Stenotrophomonas maltophilia. Foodborne Pathog Dis 2024. [PMID: 39393928 DOI: 10.1089/fpd.2024.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
The development of novel antibacterial agents from plant sources is emerging as a successful strategy to combat antibiotic resistance in pathogens. In this study, we systemically investigated the antibacterial activity and underlying mechanisms of baicalin against methicillin-resistant Staphylococcus aureus (MRSA) and Stenotrophomonas maltophilia. Our results showed that baicalin effectively restrained bacterial proliferation, compromised the integrity of cellular membranes, increased membrane permeability, and triggered oxidative stress within bacteria. Transcriptome profiling revealed that baicalin disrupted numerous biological pathways related to antibiotic resistance, biofilm formation, cellular membrane permeability, bacterial virulence, and so on. Furthermore, baicalin demonstrated a synergistic antibacterial effect when combined with ampicillin against both MRSA and S. maltophilia. In conclusion, baicalin proves to be a potent antibacterial agent with significant potential for addressing the challenge of antibiotic resistance in pathogens.
Collapse
Affiliation(s)
- Kun Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | | | - Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ying Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jingwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Yaxin Song
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Haonan Zhuang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Jielin Yang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Chuantao Peng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Jinhong Zang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Day Li
- Tanushree B Gupta-Food System Integrity Team, Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Tanushree B Gupta
- Tanushree B Gupta-Food System Integrity Team, Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
2
|
Xu S, Kang A, Tian Y, Li X, Qin S, Yang R, Guo Y. Plant Flavonoids with Antimicrobial Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). ACS Infect Dis 2024; 10:3086-3097. [PMID: 38833551 DOI: 10.1021/acsinfecdis.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a serious threat to human public health and global economic development, and there is an urgent need to develop new antimicrobial agents. Flavonoids are the largest group of plant secondary metabolites, and the anti-S. aureus and anti-MRSA activities of flavonoids have now been widely reported. The aim of this Review is to describe plant-derived flavonoid active ingredients and their effects and mechanisms of inhibitory activity against MRSA in order to provide insights for screening novel antimicrobial agents. Here, 85 plant-derived flavonoids (14 flavones, 21 flavonols, 26 flavanones, 9 isoflavones, 12 chalcones, and 3 other classes) with anti-MRSA activity are reviewed. Among these flavonoids, flavones and isoflavones generally showed the most significant anti-MRSA activity (MICs: 1-8 μg/mL). The results of the present Review display that most of the flavonoids with excellent anti-MRSA activity were derived from Morus alba L. and Paulownia tomentosa (Thunb.) Steud. The antibacterial mechanism of flavonoids against MRSA is mainly achieved by disruption of membrane structures, inhibition of efflux pumps, and inhibition of β-lactamases and bacterial virulence factors. We hope this Review can provide insights into the development of novel antimicrobials based on natural products for treating MRSA infections.
Collapse
Affiliation(s)
- Shengnan Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Ayue Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinhui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
3
|
Mondal SK, Alam SA, Roymahapatra G, Mandal SM. Anti-MRSA activity of chlorophenyl pyrrolo benzodiazepines compound. J Antibiot (Tokyo) 2024; 77:589-599. [PMID: 38890385 DOI: 10.1038/s41429-024-00747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Antibiotic resistant is the major concern in public health to control the infectious diseases. MRSA (Methicillin-resistant Staphylococcus aureus) is a significant concern in healthcare settings due to its resistance to many antibiotics, including methicillin and other beta-lactams. MRSA infection difficult to treat and increases the risk of complications. Here, we have tested a series of highly condensed heterocyclic derivatives of pyrrolo[1,2-a][1,4]benzodiazepines. Compounds were tested against both, Gram-positive bacteria, Staphylococcus aureus and S. epidermidis, and Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to assess the antimicrobial efficacy. Compared to Gram-negative bacteria, compounds showed much stronger antibacterial activity against Gram-positive bacteria. SM-5 [Ethyl2-(7-(4-chlorophenyl)-4-methoxy-6,7,8,13-tetrahydro-5H-benzo[e]benzo[5,6][1,4]diazepino[2,1-a]isoindol-15-yl)acetate] derivative was selected as best on the basis of higher therapeutic index among the tested compounds, showed MIC value of 7.81 µg. ml-1 against Staphylococcus strains. Molecular docking analysis between cell wall biosynthesis protein of S. aureus and SM-5 revealed that PBP2a showed the highest binding energy (-8.3 Kcal mol-1), followed by beta-lactam-inducible PBP4 (-7.7 Kcal mol-1), and lipoteichoic acid synthase (-7.5 Kcal mol-1) which is comparably higher than methicillin. Ground state energy calculations by DFT analysis revealed that compound SM-5 and SM-6, almost have equal electronegativity 0.11018 au which also satisfy the quality of the compound reactivity. Analysis of their biofilm inhibition in vitro and in silico toxicity analysis demonstrated their substantial potential to be a kind of future lead antibiotic.
Collapse
Affiliation(s)
- Suresh K Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Sk Aftabul Alam
- Department of Botany, Netaji Mahavidyalaya, Arambagh, Hooghly, WB, India
| | | | - Santi M Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
4
|
Rios T, Maximiano MR, Fernandes FC, Amorim GC, Porto WF, Buccini DF, Nieto Marín V, Feitosa GC, Freitas CDP, Barra JB, Alonso A, Grossi de Sá MF, Lião LM, Franco OL. Anti-Staphy Peptides Rationally Designed from Cry10Aa Bacterial Protein. ACS OMEGA 2024; 9:29159-29174. [PMID: 39005792 PMCID: PMC11238290 DOI: 10.1021/acsomega.3c07455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Bacterial infections pose a significant threat to human health, constituting a major challenge for healthcare systems. Antibiotic resistance is particularly concerning in the context of treating staphylococcal infections. In addressing this challenge, antimicrobial peptides (AMPs), characterized by their hydrophobic and cationic properties, unique mechanism of action, and remarkable bactericidal and immunomodulatory capabilities, emerge as promising alternatives to conventional antibiotics for tackling bacterial multidrug resistance. This study focuses on the Cry10Aa protein as a template for generating AMPs due to its membrane-penetrating ability. Leveraging the Joker algorithm, six peptide variants were derived from α-helix 3 of Cry10Aa, known for its interaction with lipid bilayers. In vitro, antimicrobial assays determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) required for inhibiting the growth of Staphylococcus aureus, Escherichia coli, Acinetobacter baummanii, Enterobacter cloacae, Enterococcus facallis, Klebsiella pneumonia, and Pseudomonas aeruginosa. Time-kill kinetics were performed using the parental peptide AMPCry10Aa, as well as AMPCry10Aa_1 and AMPCry10Aa_5, against E. coli ATCC, S. aureus 111 and S. aureus ATCC strains showing that AMPCry10Aa_1 and AMPCry10Aa_5 peptides can completely reduce the initial bacterial load with less than 2 h of incubation. AMPCry10Aa_1 and AMPCry 10Aa_5 present stability in human serum and activity maintenance up to 37 °C. Cytotoxicity assays, conducted using the MTT method, revealed that all of the tested peptides exhibited cell viability >50% (IC50). The study also encompassed evaluations of the structure and physical-chemical properties. The three-dimensional structures of AMPCry10Aa and AMPCry10Aa_5 were determined through nuclear magnetic resonance (NMR) spectroscopy, indicating the adoption of α-helical segments. Electron paramagnetic resonance (EPR) spectroscopy elucidated the mechanism of action, demonstrating that AMPCry10Aa_5 enters the outer membranes of E. coli and S. aureus, causing substantial increases in lipid fluidity, while AMPCry10Aa slightly increases lipid fluidity in E. coli. In conclusion, the results obtained underscore the potential of Cry10Aa as a source for developing antimicrobial peptides as alternatives to conventional antibiotics, offering a promising avenue in the battle against antibiotic resistance.
Collapse
Affiliation(s)
- Thuanny
Borba Rios
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Mariana Rocha Maximiano
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Fabiano Cavalcanti Fernandes
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Gabriella Cavalcante Amorim
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Embrapa
Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte—Asa Norte, Brasília, DF 70770-917, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
| | - Valentina Nieto Marín
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
| | - Gabriel Cidade Feitosa
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Pós-Graduação
em Patologia Molecular, Universidade de
Brasília, Campus
Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| | | | - Juliana Bueno Barra
- Laboratório
de RMN, Instituto de Química, Universidade
Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Antonio Alonso
- Instituto
de Física, Universidade Federal de
Goiás, Goiânia, GO 74690-900, Brazil
| | - Maria Fátima Grossi de Sá
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Embrapa
Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte—Asa Norte, Brasília, DF 70770-917, Brazil
| | - Luciano Morais Lião
- Laboratório
de RMN, Instituto de Química, Universidade
Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Octávio Luiz Franco
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| |
Collapse
|
5
|
He Q, Meneely J, Grant IR, Chin J, Fanning S, Situ C. Phytotherapeutic potential against MRSA: mechanisms, synergy, and therapeutic prospects. Chin Med 2024; 19:89. [PMID: 38909250 PMCID: PMC11193263 DOI: 10.1186/s13020-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Rising resistance to antimicrobials, particularly in the case of methicillin-resistant Staphylococcus aureus (MRSA), represents a formidable global health challenge. Consequently, it is imperative to develop new antimicrobial solutions. This study evaluated 68 Chinese medicinal plants renowned for their historical applications in treating infectious diseases. METHODS The antimicrobial efficacy of medicinal plants were evaluated by determining their minimum inhibitory concentration (MIC) against MRSA. Safety profiles were assessed on human colorectal adenocarcinoma (Caco-2) and hepatocellular carcinoma (HepG2) cells. Mechanistic insights were obtained through fluorescence and transmission electron microscopy (FM and TEM). Synergistic effects with vancomycin were investigated using the Fractional Inhibitory Concentration Index (FICI). RESULTS Rheum palmatum L., Arctium lappa L. and Paeonia suffructicosaas Andr. have emerged as potential candidates with potent anti-MRSA properties, with an impressive low MIC of 7.8 µg/mL, comparable to the 2 µg/mL MIC of vancomycin served as the antibiotic control. Crucially, these candidates demonstrated significant safety profiles when evaluated on Caco-2 and HepG2 cells. Even at 16 times the MIC, the cell viability ranged from 83.3% to 95.7%, highlighting their potential safety. FM and TEM revealed a diverse array of actions against MRSA, such as disrupting the cell wall and membrane, interference with nucleoids, and inducing morphological alterations resembling pseudo-multicellular structures in MRSA. Additionally, the synergy between vancomycin and these three plant extracts was evident against MRSA (FICI < 0.5). Notably, aqueous extract of R. palmatum at 1/4 MIC significantly reduced the vancomycin MIC from 2 µg/mL to 0.03 µg/mL, making a remarkable 67-fold decrease. CONCLUSIONS This study unveil new insights into the mechanistic actions and pleiotropic antibacterial effectiveness of these medicinal plants against resistant bacteria, providing robust evidence for their potential use as standalone or in conjunction with antibiotics, to effectively combat antimicrobial resistance, particularly against MRSA.
Collapse
Affiliation(s)
- Qiqi He
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Jason Chin
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Séamus Fanning
- University College Dublin Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
6
|
Rajendran P, Renu K, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Rustagi Y, Abdelsalam SA, Ibrahim RIH, Al-Ramadan SY. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food Nutr Res 2024; 68:9650. [PMID: 38571915 PMCID: PMC10989234 DOI: 10.29219/fnr.v68.9650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 04/05/2024] Open
Abstract
Background Nimbolide, a bioactive compound derived from the neem tree, has garnered attention as a potential breakthrough in the prevention and treatment of chronic diseases. Recent updates in research highlight its multifaceted pharmacological properties, demonstrating anti-inflammatory, antioxidant, and anticancer effects. With a rich history in traditional medicine, nimbolide efficacy in addressing the molecular complexities of conditions such as cardiovascular diseases, diabetes, and cancer positions it as a promising candidate for further exploration. As studies progress, the recent update underscores the growing optimism surrounding nimbolide as a valuable tool in the ongoing pursuit of innovative therapeutic strategies for chronic diseases. Methods The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Results Most studies have shown the Nimbolide is one of the most potent limonoids derived from the flowers and leaves of neem (Azadirachta indica), which is widely used to treat a variety of human diseases. In chronic diseases, nimbolide reported to modulate the key signaling pathways, such as Mitogen-activated protein kinases (MAPKs), Wingless-related integration site-β (Wnt-β)/catenin, NF-κB, PI3K/AKT, and signaling molecules, such as transforming growth factor (TGF-β), Matrix metalloproteinases (MMPs), Vascular Endothelial Growth Factor (VEGF), inflammatory cytokines, and epithelial-mesenchymal transition (EMT) proteins. Nimbolide has anti-inflammatory, anti-microbial, and anti-cancer properties, which make it an intriguing compound for research. Nimbolide demonstrated therapeutic potential for osteoarthritis, rheumatoid arthritis, cardiovascular, inflammation and cancer. Conclusion The current review mainly focused on understanding the molecular mechanisms underlying the therapecutic effects of nimbolide in chronic diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Yashika Rustagi
- Centre for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Rashid Ismael Hag Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Botany, Faculty of Science, University of Khartoum, Sudan
| | - Saeed Yaseen Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
7
|
Jiang T, Yuan D, Wang R, Zhao C, Xu Y, Liu Y, Song W, Su X, Wang B. Echinacoside, a promising sortase A inhibitor, combined with vancomycin against murine models of MRSA-induced pneumonia. Med Microbiol Immunol 2023; 212:421-435. [PMID: 37796314 DOI: 10.1007/s00430-023-00782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for a range of severe infections, such as skin infections, bacteremia, and pneumonia. Due to its antibiotic-resistant nature, current research focuses on targeting its virulence factors. Sortase A (SrtA) is a transpeptidase that anchors surface proteins to the bacterial cell wall and is involved in adhesion and invasion to host cells. Through fluorescence resonance energy transfer (FRET), we identified echinacoside (ECH), a natural polyphenol, as a potential SrtA inhibitor with an IC50 of 38.42 μM in vitro. It was demonstrated that ECH inhibited SrtA-mediated S. aureus fibrinogen binding, surface protein A anchoring, and biofilm formation. The fluorescence quenching assay determined the binding mode of ECH to SrtA and calculated the KA-binding constant of 3.09 × 105 L/mol, demonstrating the direct interaction between the two molecules. Molecular dynamics simulations revealed that ECH-SrtA interactions occurred primarily at the binding sites of A92G, A104G, V168A, G192A, and R197A. Importantly, the combination of ECH and vancomycin offered protection against murine models of MRSA-induced pneumonia. Therefore, ECH may serve as a potential antivirulence agent against S. aureus infections, either alone or in combination with vancomycin.
Collapse
Affiliation(s)
- Tao Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Dai Yuan
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Rong Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chunhui Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yangming Xu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yinghui Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Jilin Provincial People's Hospital, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
8
|
Deng X, Xu H, Li D, Chen J, Yu Z, Deng Q, Li P, Zheng J, Zhang H. Mechanisms of Rapid Bactericidal and Anti-Biofilm Alpha-Mangostin In Vitro Activity against Staphylococcus aureus. Pol J Microbiol 2023; 72:199-208. [PMID: 37314356 DOI: 10.33073/pjm-2023-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/16/2023] [Indexed: 06/15/2023] Open
Abstract
Alpha-mangostin (α-mangostin) was discovered as a potent natural product against Gram-positive bacteria, whereas the underlying molecular mechanisms are still unclear. This study indicated that α-mangostin (at 4 × MIC) rapidly killed Staphylococcus aureus planktonic cells more effectively (at least 2-log10 CFU/ml) than daptomycin, vancomycin and linezolid at 1 and 3 h in the time-killing test. Interestingly, this study also found that a high concentration of α-mangostin (≥4×MIC) significantly reduced established biofilms of S. aureus. There were 58 single nucleotide polymorphisms (SNPs) in α-mangostin nonsensitive S. aureus isolates by whole-genome sequencing, of which 35 SNPs were located on both sides of the sarT gene and 10 SNPs in the sarT gene. A total of 147 proteins with a different abundance were determined by proteomics analysis, of which 91 proteins increased, whereas 56 proteins decreased. The abundance of regulatory proteins SarX and SarZ increased. In contrast, the abundance of SarT and IcaB was significantly reduced (they belonged to SarA family and ica system, associated with the biofilm formation of S. aureus). The abundance of cell membrane proteins VraF and DltC was augmented, but the abundance of cell membrane protein UgtP remarkably decreased. Propidium iodide and DiBaC4(3) staining assay revealed that the fluorescence intensities of DNA and the cell membrane were elevated in the α-mangostin treated S. aureus isolates. In conclusion, this study reveals that α-mangostin was effective against S. aureus planktonic cells by targeting cell membranes. The anti-biofilm effect of α-mangostin may be through inhibiting the function of SarT and IcaB.
Collapse
Affiliation(s)
- Xiangbin Deng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Hongbo Xu
- 2Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Duoyun Li
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jinlian Chen
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Zhijian Yu
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Qiwen Deng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Peiyu Li
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jinxin Zheng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Haigang Zhang
- 2Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
9
|
Wiman E, Zattarin E, Aili D, Bengtsson T, Selegård R, Khalaf H. Development of novel broad-spectrum antimicrobial lipopeptides derived from plantaricin NC8 β. Sci Rep 2023; 13:4104. [PMID: 36914718 PMCID: PMC10011573 DOI: 10.1038/s41598-023-31185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Bacterial resistance towards antibiotics is a major global health issue. Very few novel antimicrobial agents and therapies have been made available for clinical use during the past decades, despite an increasing need. Antimicrobial peptides have been intensely studied, many of which have shown great promise in vitro. We have previously demonstrated that the bacteriocin Plantaricin NC8 αβ (PLNC8 αβ) from Lactobacillus plantarum effectively inhibits Staphylococcus spp., and shows little to no cytotoxicity towards human keratinocytes. However, due to its limitations in inhibiting gram-negative species, the aim of the present study was to identify novel antimicrobial peptidomimetic compounds with an enhanced spectrum of activity, derived from the β peptide of PLNC8 αβ. We have rationally designed and synthesized a small library of lipopeptides with significantly improved antimicrobial activity towards both gram-positive and gram-negative bacteria, including the ESKAPE pathogens. The lipopeptides consist of 16 amino acids with a terminal fatty acid chain and assemble into micelles that effectively inhibit and kill bacteria by permeabilizing their cell membranes. They demonstrate low hemolytic activity and liposome model systems further confirm selectivity for bacterial lipid membranes. The combination of lipopeptides with different antibiotics enhanced the effects in a synergistic or additive manner. Our data suggest that the novel lipopeptides are promising as future antimicrobial agents, however additional experiments using relevant animal models are necessary to further validate their in vivo efficacy.
Collapse
Affiliation(s)
- Emanuel Wiman
- School of Medical Sciences, Faculty of Medicine and Health, Department of Microbiology, Immunology and Reproductive Science, Örebro University, Örebro, Sweden
| | - Elisa Zattarin
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Torbjörn Bengtsson
- School of Medical Sciences, Faculty of Medicine and Health, Department of Microbiology, Immunology and Reproductive Science, Örebro University, Örebro, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Hazem Khalaf
- School of Medical Sciences, Faculty of Medicine and Health, Department of Microbiology, Immunology and Reproductive Science, Örebro University, Örebro, Sweden.
| |
Collapse
|
10
|
Development of new spiro[1,3]dithiine-4,11'-indeno[1,2-b]quinoxaline derivatives as S. aureus Sortase A inhibitors and radiosterilization with molecular modeling simulation. Bioorg Chem 2023; 131:106307. [PMID: 36481380 DOI: 10.1016/j.bioorg.2022.106307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Multi-drug resistant microbes have become a severe threat to human health and arise a worldwide concern. A total of fifteen spiro-1,3-dithiinoindenoquinoxaline derivatives 2-7 were synthesized and evaluated for their biological activities against five standard and MDRB pathogens. The MIC and MBC/MFC for the most active derivatives were determined in vitro via broth microdilution assay. These derivatives showed significant activity against the tested strains with microbicidal behavior, with compound 4b as the most active compound (MIC range between 0.06 and 0.25 µg/mL for bacteria strains and MIC = 0.25 µg/mL for C. albicans). The most active spiro-1,3-dithiinoindenoquinoxaline derivatives were able to inhibit the activity of SrtA with IC50 values ranging from 22.15 ± 0.4 µM to 37.12 ± 1.4 µM. In addition, the active spiro-1,3-dithiinoindenoquinoxaline attenuated the in vitro virulence-related phenotype of SrtA by weakening the adherence of S. aureus to fibrinogen and reducing the biofilm formation. Surprisingly, compound 4b revealed potent SrtA inhibitory activity with IC50 = 22.15 µM, inhibiting the adhesion of S. aureus with 39.22 ± 0.15 % compared with untreated 9.43 ± 1.52 %, and showed a reduction in the biofilm biomass of S. aureus with 32.27 ± 0.52 %. We further investigated the effect of gamma radiation as a sterilization method on the microbial load and found that a dose of 5 kGy was sufficient to eradicate the microbial load. The quantum chemical studies exhibited that the tested derivatives have a small energy band gap (ΔE = -2.95 to -3.61 eV) and therefore exert potent bioactivity by interacting with receptors more stabilizing.
Collapse
|
11
|
Deciphering the antibacterial mechanism of monocaprin against methicillin-resistant Staphylococcus aureus by integrated transcriptomic and metabolomic analyses and its application in pork preservation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Suaifan GARY, Abdel Rahman DMA, Abu-Odeh AM, Abu Jbara F, Shehadeh MB, Darwish RM. Antibiotic-Lysobacter enzymogenes proteases combination as a novel virulence attenuating therapy. PLoS One 2023; 18:e0282705. [PMID: 36893145 PMCID: PMC9997937 DOI: 10.1371/journal.pone.0282705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Minimizing antibiotic resistance is a key motivation strategy in designing and developing new and combination therapy. In this study, a combination of the antibiotics (cefixime, levofloxacin and gentamicin) with Lysobacter enzymogenes (L. enzymogenes) bioactive proteases present in the cell- free supernatant (CFS) have been investigated against the Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA) and the Gram-negative Escherichia coli (E. coli O157:H7). Results indicated that L. enzymogenes CFS had maximum proteolytic activity after 11 days of incubation and higher growth inhibitory properties against MSSA and MRSA compared to E. coli (O157:H7). The combination of L. enzymogenes CFS with cefixime, gentamicin and levofloxacin at sub-MIC levels, has potentiated their bacterial inhibition capacity. Interestingly, combining cefixime with L. enzymogenes CFS restored its antibacterial activity against MRSA. The MTT assay revealed that L. enzymogenes CFS has no significant reduction in human normal skin fibroblast (CCD-1064SK) cell viability. In conclusion, L. enzymogenes bioactive proteases are natural potentiators for antimicrobials with different bacterial targets including cefixime, gentamicin and levofloxacin representing the beginning of a modern and efficient era in the battle against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Ghadeer A. R. Y. Suaifan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
- * E-mail: ,
| | - Diana M. A. Abdel Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ala’ M. Abu-Odeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Applied Science Private University, Jordan, Amman
| | | | - Mayadah B. Shehadeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Rula M. Darwish
- Department of Pharmaceutics and Pharmaceutical Biotechnology, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
13
|
Omobolanle Adesanya E, Daniel Ogunlakin A. Potential Use of African Botanicals and Other Compounds in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infections caused by the group of Staphylococcus bacteria are commonly called Staph infections, and over 30 types of Staphylococcal bacteria exist with Staphylococcus aureus causing about 90% of the infections from the genus. Staphylococcus aureus (S. aureus) is a major cause of both hospital- and community-acquired infections with major concern arising from its strain of species that is resistant to many antibiotics. One of such strain is the Methicillin-resistant Staphylococcus aureus (MRSA) that has been described to be a resistance to methicillin drugs. Another is glycopeptides-resistant emerging from the increased use of glycopeptides drugs. This continuous emergence and spread of new resistant strains of S. aureus is a major challenge which makes the search for novel anti-resistant agents imperative. The development of vaccines from natural and synthetic products is some of the measures being proposed for the protection against the infections. Also, the development of monoclonal or polyclonal antibodies for passive immunization is sought for, and attentions with regard to arriving at successful trials have been directed back to medicinal plant research as an alternative. This review discusses the treatment strategies of MRSA, the antibacterial property of various medicinal plants, and the influence of their active compounds on methicillin-resistant S. aureus (MRSA), as well as to recommend the path to future research in this area.
Collapse
|
14
|
Chen X, Lin Y, Gao Q, Huang S, Zhang Z, Li N, Zong X, Guo X. IG1, a Mansonone F Analog, Exhibits Antibacterial Activity against Staphylococcus aureus by Potentially Impairing Cell Wall Synthesis and DNA Replication. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111902. [PMID: 36431037 PMCID: PMC9697348 DOI: 10.3390/life12111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Infection caused by Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), is very common in communities and hospitals, which poses a great challenge to human health. Therefore, increasing attention has been paid to finding effective antimicrobial agents. Mansonone F is a natural compound which has an oxaphenalene skeleton and anti-S. aureus activity, but its sources are limited and its synthesis is difficult. Thus, IG1, a C9-substituent mansonone F analog, was assessed for its activity against Staphylococcus aureus and its mechanism of action was investigated. Antimicrobial susceptibility assays showed that IG1 has strong antibacterial activity against S. aureus, including MRSA, with minimum inhibitory concentrations (MICs) ranging from 0.5 to 2 μg/mL, which were very close to those of vancomycin, and these changed little, even with an increase in the amount of the inoculum. To further explore the antibacterial properties of IG1, time-kill experiments were conducted. Compared with vancomycin and moxifloxacin, treatment with different concentrations of IG1 reduced the viability of organisms in a very similar manner and the reduction was not significant, which indicated that IG1 is a potentially strong anti-S. aureus agent. Finally, the antibacterial mechanism was analyzed, with flow cytometric analysis revealing that IG1 treatment resulted in a time-dependent decrease in the DNA content of S. aureus. Transmission electron microscopy (TEM) analysis showed that very few dividing cells could be found and the cell wall was damaged in the field of IG1-treated cells. These results indicate that IG1 is a potential new antibacterial agent against S. aureus, including MRSA.
Collapse
Affiliation(s)
- Xin Chen
- School of Medicine, Foshan University, Foshan 528000, China
| | - Yueqiao Lin
- School of Medicine, Foshan University, Foshan 528000, China
| | - Qianqian Gao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510630, China
| | - Shiliang Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510630, China
| | - Zihua Zhang
- School of Medicine, Foshan University, Foshan 528000, China
| | - Nan Li
- School of Medicine, Foshan University, Foshan 528000, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou 316021, China
- Correspondence: (X.Z.); (X.G.)
| | - Xuemin Guo
- Meizhou People’s Hospital, Meizhou 514031, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
- Correspondence: (X.Z.); (X.G.)
| |
Collapse
|
15
|
Liang M, Ge X, Xua H, Ma K, Zhang W, Zan Y, Efferth T, Xue Z, Hua X. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154073. [PMID: 35397285 DOI: 10.1016/j.phymed.2022.154073] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The evolution of resistance to antimicrobials is a ubiquitous phenomenon. The evolution of antibiotic resistance in Staphylococcus aureus suggests that there is no remedy with sustaining effectiveness against this pathogen. The limited number of antibacterial drug classes and the common occurrence of cross-resistant bacteria reinforce the urgent need to discover new compounds targeting novel cellular functions. Natural products are a potential source of novel antibacterial agents. Anti-MRSA (methicillin-resistant S. aureus) bioactive compounds from Streptomyces and the anti-MRSA activity of a series of plant extracts have been reviewed respectively. However, there has been no detailed review of the precise bioactive components from plants. PURPOSE The present review aimed to summarize the phytochemicals that have been reported with anti-MRSA activities, analyze their structure-activity relationship and novel anti-MRSA mechanisms. METHODS Data contained in this review article are compiled from the authoritative databases PubMed, Web of Science, Google Scholar, and so on. RESULTS This review summarizes 100 phytochemicals (27 flavonoids, 23 alkaloids, 17 terpenes and 33 others) that have been tested for their anti-MRSA activity. Among these phytochemicals, 39 compounds showed remarkable anti-MRSA activity with MIC values less than 10 μg/ml, 14 compounds with MIC ranges including values < 10 μg/ml, 5 compounds with MIC values less than 5 μM; 11 phytochemicals show synergism anti-MRSA effects in combination with antibiotics. Phytochemicals exerted anti-MRSA activities mainly by destroying the membrane structure and inhibiting the efflux pump. CONCLUSIONS The 58 compounds with excellent anti-MRSA activity the 11 compounds with synergistic anti-MRSA effect, especially cannabinoids, xanthones and fatty acids should be further studied in vitro. Novel targets, such as cell membrane and efflux pump could be promising alternatives to develop antibacterial drugs in the future in order to prevent drug resistance.
Collapse
Affiliation(s)
- Miaomiao Liang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala SE-75124, Sweden
| | - Hui Xua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Kaifeng Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Wei Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Yibo Zan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
16
|
Shah RA, Hsu JI, Patel RR, Mui UN, Tyring SK. Antibiotic resistance in dermatology: The scope of the problem and strategies to address it. J Am Acad Dermatol 2022; 86:1337-1345. [PMID: 34555484 DOI: 10.1016/j.jaad.2021.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 01/05/2023]
Abstract
Antibiotic resistance is a growing health concern that has attracted increasing attention from clinicians and scientists in recent years. Although resistance is an inevitable consequence of bacterial evolution and natural selection, misuse and overuse of antibiotics play a significant role in its acceleration. Antibiotics are the mainstay of therapy for common dermatoses, including acne and rosacea, as well as for skin and soft tissue infections. Therefore, it is critical for dermatologists and physicians across all disciplines to identify, appropriately manage, and prevent cases of antibiotic resistance. This review explores dermatologic conditions in which the development of antibiotic resistance is a risk and discusses mechanisms underlying the development of resistance. We discuss disease-specific strategies for overcoming resistant strains and improving antimicrobial stewardship along with recent advances in the development of novel approaches to counter antibiotic resistance.
Collapse
Affiliation(s)
- Radhika A Shah
- Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas.
| | | | - Ravi R Patel
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Uyen Ngoc Mui
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Stephen K Tyring
- Center for Clinical Studies, Houston, Texas; Department of Dermatology, McGovern Medical School at UTHealth, Houston, Texas
| |
Collapse
|
17
|
Volynets GP, Barthels F, Hammerschmidt SJ, Moshynets OV, Lukashov SS, Starosyla SA, Vyshniakova HV, Iungin OS, Bdzhola VG, Prykhod'ko AO, Syniugin AR, Sapelkin VM, Yarmoluk SM, Schirmeister T. Identification of novel small-molecular inhibitors of Staphylococcus aureus sortase A using hybrid virtual screening. J Antibiot (Tokyo) 2022; 75:321-332. [PMID: 35440771 PMCID: PMC9016125 DOI: 10.1038/s41429-022-00524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/18/2023]
Abstract
Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.
Collapse
Affiliation(s)
- Galyna P Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine.
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Olena V Moshynets
- Biofilm study group, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Sergiy S Lukashov
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Sergiy A Starosyla
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine.,RECEPTOR.AI, Boston, MA, USA
| | - Hanna V Vyshniakova
- L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases NAMS of Ukraine, 5 Amosova St, 03038, Kyiv, Ukraine
| | - Olga S Iungin
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Andrii O Prykhod'ko
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine.,Research and Development Department, Scientific Services Company Otava Ltd, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Anatolii R Syniugin
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Vladislav M Sapelkin
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| |
Collapse
|
18
|
Chan YS, Chong KP. Bioactive Compounds of Ganoderma boninense Inhibited Methicillin-Resistant Staphylococcus aureus Growth by Affecting Their Cell Membrane Permeability and Integrity. Molecules 2022; 27:838. [PMID: 35164103 PMCID: PMC8840476 DOI: 10.3390/molecules27030838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Some species of Ganoderma, such as G. lucidum, are well-known as traditional Chinese medicine (TCM), and their pharmacological value was scientifically proven in modern days. However, G. boninense is recognized as an oil palm pathogen, and its biological activity is scarcely reported. Hence, this study aimed to investigate the antibacterial properties of G. boninense fruiting bodies, which formed by condensed mycelial, produced numerous and complex profiles of natural compounds. Extract was cleaned up with normal-phase SPE and its metabolites were analyzed using liquid chromatography-mass spectrometry (LCMS). From the disc diffusion and broth microdilution assays, strong susceptibility was observed in methicillin-resistant Staphylococcus aureus (MRSA) in elute fraction with zone inhibition of 41.08 ± 0.04 mm and MIC value of 0.078 mg mL-1. A total of 23 peaks were detected using MS, which were putatively identified based on their mass-to-charge ratio (m/z), and eight compounds, which include aristolochic acid, aminoimidazole ribotide, lysine sulfonamide 11v, carbocyclic puromycin, fenbendazole, acetylcaranine, tigecycline, and tamoxifen, were reported in earlier literature for their antimicrobial activity. Morphological observation via scanning electron microscope (SEM), cell membrane permeability, and integrity assessment suggest G. boninense extract induces irreversible damage to the cell membrane of MRSA, thus causing cellular lysis and death.
Collapse
Affiliation(s)
| | - Khim-Phin Chong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
19
|
Yadav M, Chauhan NS. Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterol Rep (Oxf) 2021; 10:goab046. [PMID: 35382166 PMCID: PMC8972995 DOI: 10.1093/gastro/goab046] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
20
|
Rybak M, Gudzera OI, Gorbatiuk OB, Usenko MO, Yarmoluk SM, Tukalo MA, Volynets GP. Rational Design of Hit Compounds Targeting Staphylococcus aureus Threonyl-tRNA Synthetase. ACS OMEGA 2021; 6:24910-24918. [PMID: 34604672 PMCID: PMC8482496 DOI: 10.1021/acsomega.1c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus is one of the most dangerous nosocomial pathogens which cause a wide variety of hospital-acquired infectious diseases. S. aureus is considered as a superbug due to the development of multidrug resistance to all current therapeutic regimens. Therefore, the discovery of antibiotics with novel mechanisms of action to combat staphylococcal infections is of high priority for modern medicinal chemistry. Nowadays, aminoacyl-tRNA synthetases are considered as promising molecular targets for antibiotic development. In the present study, we used for the first time S. aureus threonyl-tRNA synthetase (ThrRS) as a molecular target. Recombinant S. aureus ThrRS was obtained in the soluble form in a sufficient amount for inhibitor screening assay. Using the molecular docking approach, we selected 180 compounds for investigation of inhibitory activity toward ThrRS. Among the tested compounds, we identified five inhibitors from different chemical classes decreasing the activity of ThrRS by more than 70% at a concentration of 100 μM. The most active compound 2,4-dibromo-6-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol has an IC50 value of 56.5 ± 3.5 μM. These compounds are not cytotoxic toward eukaryotic cells HEK293 (EC50 > 100 μM) and can be useful for further optimization and biological research.
Collapse
Affiliation(s)
- Mariia
Yu. Rybak
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Olga I. Gudzera
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Oksana B. Gorbatiuk
- Department
of Cell Regulatory Mechanisms, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Mariia O. Usenko
- Department
of Cell Regulatory Mechanisms, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Sergiy M. Yarmoluk
- Department
of Medicinal Chemistry, Institute of Molecular
Biology and Genetics National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Michael A. Tukalo
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Galyna P. Volynets
- Department
of Medicinal Chemistry, Institute of Molecular
Biology and Genetics National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
- The
Scientific-Services Company “OTAVA”, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| |
Collapse
|
21
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization. Nutrients 2021; 13:3283. [PMID: 34579162 PMCID: PMC8465508 DOI: 10.3390/nu13093283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023] Open
Abstract
Persimmon (Diospyros kaki L.) fruit's phytochemical profile includes carotenoids, proanthocyanidins, and gallic acid among other phenolic compounds and vitamins. A huge antioxidant potential is present given this richness in antioxidant compounds. These bioactive compounds impact on health benefits. The intersection of nutrition and sustainability, the key idea behind the EAT-Lancet Commission, which could improve human health and decrease the global impact of food-related health conditions such as cancer, heart disease, diabetes, and obesity, bring the discussion regarding persimmon beyond the health effects from its consumption, but also on the valorization of a very perishable food that spoils quickly. A broad option of edible products with better storage stability or solutions that apply persimmon and its byproducts in the reinvention of old products or even creating new products, or with new and better packaging for the preservation of food products with postharvest technologies to preserve and extend the shelf-life of persimmon food products. Facing a global food crisis and the climate emergency, new and better day-to-day solutions are needed right now. Therefore, the use of persimmon waste has also been discussed as a good solution to produce biofuel, eco-friendly alternative reductants for fabric dyes, green plant growth regulator, biodegradable and edible films for vegetable packaging, antimicrobial activity against foodborne methicillin-resistant Staphylococcus aureus found in retail pork, anti-Helicobacter pylori agents from pedicel extracts, and persimmon pectin-based emulsifiers to prevent lipid peroxidation, among other solutions presented in the revised literature. It has become clear that the uses for persimmon go far beyond the kitchen table and the health impact consumption demonstrated over the years. The desired sustainable transition is already in progress, however, mechanistic studies and clinical trials are essential and scaling-up is fundamental to the future.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
22
|
Wang L, Wang G, Qu H, Wang K, Jing S, Guan S, Su L, Li Q, Wang D. Taxifolin, an Inhibitor of Sortase A, Interferes With the Adhesion of Methicillin-Resistant Staphylococcal aureus. Front Microbiol 2021; 12:686864. [PMID: 34295320 PMCID: PMC8290497 DOI: 10.3389/fmicb.2021.686864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
The evolution and spread of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant hidden risk to human public health. The majority of antibiotics used clinically have become mostly ineffective, and so the development of novel anti-infection strategies is urgently required. Since Staphylococcus aureus (S. aureus) cysteine transpeptidase sortase A (SrtA) mediates the surface-anchoring of proteins to its surface, compounds that inhibit SrtA are considered potential antivirulence treatments. Herein, we report on the efficacy of the potent SrtA inhibitor taxifolin (Tax), a flavonoid compound isolated from Chinese herbs. It was able to reversibly block the activity of SrtA with an IC50 of 24.53 ± 0.42 μM. Tax did not display toxicity toward mammalian cells or S. aureus at a concentration of 200 μM. In addition, Tax attenuated the virulence-related phenotype of SrtA in vitro by decreasing the adherence of S. aureus, reducing the formation of a biofilm, and anchoring of S. aureus protein A on its cell wall. The mechanism of the SrtA-Tax interaction was determined using a localized surface plasmon resonance assay. Subsequent mechanistic studies confirmed that Asp-170 and Gln-172 were the principal sites on SrtA with which it binds to Tax. Importantly, in vivo experiments demonstrated that Tax protects mice against pneumonia induced by lethal doses of MRSA, significantly improving their survival rate and reducing the number of viable S. aureus in the lung tissue. The present study indicates that Tax is a useful pioneer compound for the development of novel agents against S. aureus infections.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Han Qu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun, China
| | - Shuhan Guan
- College of Animal Science, Jilin University, Changchun, China
| | - Liyan Su
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
23
|
Adesanya EO, Sonibare MA, Ajaiyeoba EO, Egieyeh SA. Compounds isolated from hexane fraction of Alternanthera brasiliensis show synergistic activity against methicillin resistant Staphylococcus aureus. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) has been classified as a “serious threat” by the centre for Disease Control, USA. Alternanthera brasiliensis plant, usually found on wasteland, belongs to the family Amaranthaceae. It is traditionally used for wound healing and has shown antimicrobial effect. Yet, this plant has not been fully explored for its antibacterial activity. Hence, this study evaluated isolated compounds from this plant for its activity against MRSA infections. The leaves extracts and fractions were prepared and concentrated in vacuo using a rotatory evaporator. Isolated compounds were obtained through vacuum liquid chromatographic (VLC) techniques and structurally elucidated with various spectroscopic techniques. Anti-MRSA assay of the fraction and compounds were evaluated by agar-well diffusion and broth-dilution methods while checkerboard assay was used to determine the fractional inhibitory concentration index (FICi). The Gas Chromatography-Mass Spectrometry (GCMS) and High Performance Liquid Chromatography (HPLC) analysis revealed fatty acid and carboxylic acid components like hexadecanoic acid, bis (2-ethylhexyl) phthalate and Fettsäure. The compounds AbHD1 and AbHD5 were identified as hexadecanoic acid and di (ethylhexyl) phthalate. Anti-MRSA assay shows that A. brasiliensis hexane fraction (AbHF) and the compounds had zones of inhibitions (Zi) ranging from 7.3 ± 0.5 to 17.5 ± 0.5 mm with minimum inhibitory concentrations (MIC) between 1.22 × 10−5 – 2.5 mg/mL. Synergistic effects were observed between AbHF and erythromycin, AbHF and ampicillin and AbHF and ciprofloxacin with FICi 0.208–0.375 in K1St4 strain while amoxicillin revealed antagonistic effects against M91 strain (4.67). Similarly, hexadecanoic acid and di (ethylhexyl) phthalate showed synergistic behaviour only with ampicillin against K1St4 while the rest were antagonistic. The study revealed that hexadecanoic acid and di (ethylhexyl) phthalate isolated from A. brasiliensis showed synergistic activity in variations against MRSA isolate and strains.
Collapse
Affiliation(s)
| | - Mubo Adeola Sonibare
- Department of Pharmacognosy , Faculty of Pharmacy, University of Ibadan , Ibadan , Nigeria
| | | | - Samuel Ayodele Egieyeh
- Pharmacology and Clinical Pharmacy , School of Pharmacy, University of the Western Cape , Cape Town , South Africa
| |
Collapse
|
24
|
Guo Y, Yang R, Chen F, Yan T, Wen T, Li F, Su X, Wang L, Du J, Liu J. Triphenyl-sesquineolignan analogues derived from Illicium simonsii Maxim exhibit potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) by disrupting bacterial membranes. Bioorg Chem 2021; 110:104824. [PMID: 33773225 DOI: 10.1016/j.bioorg.2021.104824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Infections caused by clinical methicillin-resistant Staphylococcus aureus (MRSA) are a serious public problem. Triphenyl-sesquineolignans from Illicium genus possess antibacterial activity, but few researches have reported their antibacterial spectrums, structure-activity relationships (SARs) and antibacterial mechanism. In this study, three triphenyl-sesquineolignans, dunnianol (1), macranthol (2) and isodunnianol (3) were isolated from the stems and leaves of I. simonsii Maxim, and seven dunnianol derivatives were prepared through esterification, etherification and halogenation reactions. Among all triphenyl-sesquineolignan analogues, compound 6 showed the best antibacterial activity against four Gram-positive bacteria (MICs = 1-2 µg/mL) and ten clinical MRSA strains (MICs = 2-8 µg/mL), and also exhibited characteristics of killing MRSA more rapidly than tigecycline. Meanwhile, compound 6 did not only show a low probability of drug resistance development, but also exhibited relatively low hemolysis, and good stability in 50% plasma. Further mechanism studies revealed that 6 could kill bacterial strains by disrupting bacterial membranes. These results suggested that 6 may be developed into a new antibacterial candidate for combating MRSA infections.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China.
| | - Ruige Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Fangfang Chen
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Tingting Yan
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Tingyu Wen
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Fang Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; School of Science, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
| | - Xiaoyu Su
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Lei Wang
- School of Science, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
| | - Juan Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Jifeng Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China.
| |
Collapse
|
25
|
Wang L, Li Q, Li J, Jing S, Jin Y, Yang L, Yu H, Wang D, Wang T, Wang L. Eriodictyol as a Potential Candidate Inhibitor of Sortase A Protects Mice From Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia. Front Microbiol 2021; 12:635710. [PMID: 33679670 PMCID: PMC7929976 DOI: 10.3389/fmicb.2021.635710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
New anti-infective approaches are urgently needed to control multidrug-resistant (MDR) pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Sortase A (SrtA) is a membrane-bound cysteine transpeptidase that plays an essential role in the catalysis of covalent anchoring of surface proteins to the cell wall of Staphylococcus aureus (S. aureus). The present study reports identification of a flavonoid, eriodictyol, as a reversible inhibitor of SrtA with an IC50 of 2.229 ± 0.014 μg/mL that can be used as an innovative means to counter both resistance and virulence. The data indicated that eriodictyol inhibited the adhesion of the bacteria to fibrinogen and reduced the formation of biofilms and anchoring of staphylococcal protein A (SpA) on the cell wall. The results of fluorescence quenching experiments demonstrated a strong interaction between eriodictyol and SrtA. Subsequent mechanistic studies revealed that eriodictyol binds to SrtA by interacting with R197 amino acid residue. Importantly, eriodictyol reduced the adhesion-dependent invasion of A549 cells by S. aureus and showed a good therapeutic effect in a model of mouse pneumonia induced by S. aureus. Overall, the results indicated that eriodictyol can attenuate MRSA virulence and prevent the development of resistance by inhibiting SrtA, suggesting that eriodictyol may be a promising lead compound for the control of MRSA infections.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianxue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Science, Academy of Military Medical Science, Academy of Military Science, Changchun, China
| | - Jiaxin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Lin Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
26
|
Vallavan V, Krishnasamy G, Zin NM, Abdul Latif M. A Review on Antistaphylococcal Secondary Metabolites from Basidiomycetes. Molecules 2020; 25:E5848. [PMID: 33322256 PMCID: PMC7764641 DOI: 10.3390/molecules25245848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Fungi are a rich source of secondary metabolites with several pharmacological activities such as antifungal, antioxidant, antibacterial and anticancer to name a few. Due to the large number of diverse structured chemical compounds they produce, fungi from the phyla Ascomycota, Basidiomycota and Muccoromycota have been intensively studied for isolation of bioactive compounds. Basidiomycetes-derived secondary metabolites are known as a promising source of antibacterial compounds with activity against Gram-positive bacteria. The continued emergence of antimicrobial resistance (AMR) poses a major challenge to patient health as it leads to higher morbidity and mortality, higher hospital-stay duration and substantial economic burden in global healthcare sector. One of the key culprits for AMR crisis is Staphylococcus aureus causing community-acquired infections as the pathogen develops resistance towards multiple antibiotics. The recent emergence of community strains of S. aureus harbouring methicillin-resistant (MRSA), vancomycin-intermediate (VISA) and vancomycin-resistant (VRSA) genes associated with increased virulence is challenging. Despite the few significant developments in antibiotic research, successful MRSA therapeutic options are still needed to reduce the use of scanty and expensive second-line treatments. This paper provides an overview of findings from various studies on antibacterial secondary metabolites from basidiomycetes, with a special focus on antistaphylococcal activity.
Collapse
Affiliation(s)
- Vimalah Vallavan
- Center for Diagnostic, Therapeutics & Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (V.V.); (N.M.Z.)
| | - Getha Krishnasamy
- Bioactivity Program, Natural Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, Malaysia
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutics & Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (V.V.); (N.M.Z.)
| | - Mazlyzam Abdul Latif
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
27
|
Toor HG, Banerjee DI, Chauhan JB. In Silico Evaluation of Human Cathelicidin LL-37 as a Novel Therapeutic Inhibitor of Panton-Valentine Leukocidin Toxin of Methicillin-Resistant Staphylococcus aureus. Microb Drug Resist 2020; 27:602-615. [PMID: 33983855 DOI: 10.1089/mdr.2020.0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Incidence of drug resistance in clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) is attributed to its diverse repertoire of virulence factors. Of these virulence determinants, Panton-Valentine Leukocidin (PVL) has been experimentally validated as a prospective drug target due to its conspicuous and comprehensive role in nosocomial infections. This study encompassed an in silico approach to elucidate the antimicrobial potentiality of human cathelicidin LL-37 against PVL toxin of MRSA. Molecular docking studies of LL-37 and its segments with the PVL toxin subunits LukS and LukF were carried out using PatchDock server and the results were refined using FireDock server. The paramount ligand-receptor combination was selected and analyzed based on diverse parametric attributes and compared with the commercial inhibitors of PVL viz. Andrimid, Beclobrate, Beta-sitosterol, Diathymosulfone, and Probucol to determine the most potent inhibitor among them. Our results elucidated that the interaction of LL-37 with the LukS subunit of PVL toxin (minimum global energy of -61.82 kcal/mol) depicted 34 molecular interactions, while the commercial PVL inhibitors depicted fewer and insubstantial interactions. SWISS-ADME (Absorption, Distribution, Metabolism, and Excretion) and ToxinPred analysis of LL-37 further corroborated its null potency of toxicity in systemic milieu. The results obtained may credit this study as basis for the development of LL-37 as a potential inhibitor against virulent MRSA toxins, thereby exalting the treatment regimes for nosocomial infections in health care facilities worldwide.
Collapse
Affiliation(s)
- Himanshu G Toor
- P.G. Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), Sardar Patel University, Anand, India
| | - Devjani I Banerjee
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Jenabhai B Chauhan
- P.G. Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), Sardar Patel University, Anand, India
| |
Collapse
|
28
|
Kwiatkowski P, Łopusiewicz Ł, Pruss A, Kostek M, Sienkiewicz M, Bonikowski R, Wojciechowska-Koszko I, Dołęgowska B. Antibacterial Activity of Selected Essential Oil Compounds Alone and in Combination with β-Lactam Antibiotics Against MRSA Strains. Int J Mol Sci 2020; 21:ijms21197106. [PMID: 32993130 PMCID: PMC7582342 DOI: 10.3390/ijms21197106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the effect of selected essential oil compounds (EOCs) on the antibacterial activity of β-lactam antibiotics (βLAs) against methicillin-resistant Staphylococcus aureus (MRSA) strains. The following parameters were studied: antibiotic susceptibility testing, detection of mecA gene and evaluation of genotypic relativity of isolates using molecular techniques, analysis of chemical composition applying Fourier-transform infrared (FTIR) spectroscopy, and determination of antibacterial activity of EOCs alone and in combination with βLAs against MRSA strains using microdilution and checkerboard methods. It was found that all isolates expressed MRSA and resistance phenotypes for macrolides, lincosamides, and streptogramins B. All isolates harbored the mecA gene and belonged to three distinct genotypes. Eight of the 10 EOCs showed efficient antimicrobial activity against the MRSA reference strain. The analysis of interaction between EOCs and βLAs against the MRSA reference strain revealed a synergistic and additive effect of the following combinations: methicillin (Met)-linalyl acetate (LinAc), penicillin G (Pen)-1,8-cineole (Cin), and Pen-LinAc. Analysis of EOC-βLA interactions showed a synergistic and additive effect in the following combinations: Met-LinAc (against low- and high-level βLAs resistance strains), Pen-Cin, and Pen-LinAc (against low-level βLAs resistance strains). It was also confirmed that changes in phosphodiester, -OH, -CH2 and -CH3 groups may change the interactions with βLAs. Moreover, the presence of two CH3O- moieties in the Met molecule could also play a key role in the synergistic and additive mechanism of LinAc action with Met against MRSA strains. Direct therapy using a Met-LinAc combination may become an alternative treatment method for staphylococcal infections caused by MRSA. However, this unconventional therapy must be preceded by numerous cytotoxicity tests.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
- Correspondence: ; Tel.: +48-91-466-1659
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (Ł.Ł.); (M.K.)
| | - Agata Pruss
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Mateusz Kostek
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (Ł.Ł.); (M.K.)
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Łódź, Żeligowskiego 7/9, 90-752 Łódź, Poland;
| | - Radosław Bonikowski
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland;
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| |
Collapse
|
29
|
The Antistaphylococcal Activity of Amoxicillin/Clavulanic Acid, Gentamicin, and 1,8-Cineole Alone or in Combination and Their Efficacy through a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Osteomyelitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4271017. [PMID: 32419804 PMCID: PMC7206863 DOI: 10.1155/2020/4271017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/15/2020] [Indexed: 02/04/2023]
Abstract
The aim of this research paper is to test the antistaphylococcal effect of 1,8-cineole, amoxicillin/clavulanic acid (AMC), and gentamicin, either separately or in combination against three Staphylococcus aureus strains isolated from patients suffering from osteomyelitis. This activity was tested in vitro by using the microdilution method and the checkerboard assay. The efficacy of these three antibacterial agents was then tested in vivo by using an experimental model of methicillin-resistant S. aureus osteomyelitis in rabbits. This efficacy was assessed after four days of treatment by counting the number of bacteria in the bone marrow. The obtained results in vitro showed that the combination of the AMC with gentamicin did not induce a synergistic effect, whereas the combination of the two antibiotics with 1,8-cineole did. This effect is stronger when AMC is combined with 1,8-cineole as a total synergistic effect was obtained on the three strains used (FIC ≤ 0.5). In vivo, a significant reduction was noted in the number of colonies in the bone marrow when rabbits were treated with AMC associated with either 1,8-cineole or gentamicin compared to rabbits treated with AMC, gentamicin, or 1,8-cineole alone. These results demonstrated that 1,8-cineole showed a synergistic effect in combination with both AMC and gentamicin, which offer possibilities for reducing antibiotic usage. Also, the AMC associated with 1,8-cineole could be used to treat MRSA osteomyelitis.
Collapse
|
30
|
Bengtsson T, Selegård R, Musa A, Hultenby K, Utterström J, Sivlér P, Skog M, Nayeri F, Hellmark B, Söderquist B, Aili D, Khalaf H. Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics. Sci Rep 2020; 10:3580. [PMID: 32107445 PMCID: PMC7046733 DOI: 10.1038/s41598-020-60570-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The use of conventional antibiotics has substantial clinical efficacy, however these vital antimicrobial agents are becoming less effective due to the dramatic increase in antibiotic-resistant bacteria. Novel approaches to combat bacterial infections are urgently needed and bacteriocins represent a promising alternative. In this study, the activities of the two-peptide bacteriocin PLNC8 αβ were investigated against different Staphylococcus spp. The peptide sequences of PLNC8 α and β were modified, either through truncation or replacement of all L-amino acids with D-amino acids. Both L- and D-PLNC8 αβ caused rapid disruption of lipid membrane integrity and were effective against both susceptible and antibiotic resistant strains. The D-enantiomer was stable against proteolytic degradation by trypsin compared to the L-enantiomer. Of the truncated peptides, β1–22, β7–34 and β1–20 retained an inhibitory activity. The peptides diffused rapidly (2 min) through the bacterial cell wall and permeabilized the cell membrane, causing swelling with a disorganized peptidoglycan layer. Interestingly, sub-MIC concentrations of PLNC8 αβ substantially enhanced the effects of different antibiotics in an additive or synergistic manner. This study shows that PLNC8 αβ is active against Staphylococcus spp. and may be developed as adjuvant in combination therapy to potentiate the effects of antibiotics and reduce their overall use.
Collapse
Affiliation(s)
- Torbjörn Bengtsson
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden
| | - Robert Selegård
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.,Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Amani Musa
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Division of Clinical Research Centre, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Johanna Utterström
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | | | | | - Fariba Nayeri
- PEAS Research Institute, Department of Infection Control, Linköping, SE-58273, Sweden
| | - Bengt Hellmark
- Department of Clinical Microbiology, Örebro University Hospital, Örebro, SE-70185, Sweden
| | - Bo Söderquist
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.,Department of Clinical Microbiology, Örebro University Hospital, Örebro, SE-70185, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hazem Khalaf
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.
| |
Collapse
|
31
|
de Figueiredo CS, Menezes Silva SMPD, Abreu LS, da Silva EF, da Silva MS, Cavalcanti de Miranda GE, Costa VCDO, Le Hyaric M, Siqueira Junior JPD, Barbosa Filho JM, Tavares JF. Dolastane diterpenes from Canistrocarpus cervicornis and their effects in modulation of drug resistance in Staphylococcus aureus. Nat Prod Res 2019; 33:3231-3239. [PMID: 29733689 DOI: 10.1080/14786419.2018.1470512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/25/2018] [Indexed: 01/22/2023]
Abstract
One new diterpene (4R,7R,14S)-4α,7α-diacetoxy-10-one-14α-hydroxydolasta-1(15),8-diene (1), and five known compounds (4R,7R,14S)-4α,7α-diacetoxy-14α-hydroxydolasta-1(15),8-diene (2), (4R,14S)-4α,14α-dihydroxydolasta-1(15),8-diene (3), (4S,9R,14S)-4α-acetoxy-9β,14α-dihydroxydolasta-1(15),7-diene (4), 4-acetoxy-14-hydroxydolasta-1(15),7,9-triene (5) and isolinearol (6), were isolated from Canistrocarpus cervicornis. In this study, dolastane diterpenes were isolated from the alga C. cervicornis and evaluated as modifiers of antibiotic activity in Staphylococcus aureus: SA-1199B, which overexpresses the norA gene RN-4220, which encodes for the protein efflux of macrolides (MRSA), and IS-58 which has the gene encoding the protein TetK. The minimum inhibitory concentrations (MICs) for norfloxacin, tetracycline and erythromycin were determined by the microdilution broth nutrient in the absence and presence of diterpenes at a sub-inhibitory concentration (MIC/4). The extracts of C. cervicornis and isolated diterpenes showed no antibacterial activity, but showed modulatory activity, decreasing the MIC of antibiotics by 4-256 fold. The results indicate that seaweed extracts and diterpenes are potential sources of antibiotic adjuvant, acting as potential inhibitors of efflux pump.
Collapse
Affiliation(s)
- Camilla Silva de Figueiredo
- Departamento de Ciências Farmacêuticas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba , João Pessoa , Brasil
| | | | - Lucas Silva Abreu
- Departamento de Ciências Farmacêuticas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba , João Pessoa , Brasil
| | - Evandro Ferreira da Silva
- Departamento de Ciências Farmacêuticas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba , João Pessoa , Brasil
| | - Marcelo Sobral da Silva
- Departamento de Ciências Farmacêuticas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba , João Pessoa , Brasil
| | | | - Vicente Carlos de O Costa
- Departamento de Ciências Farmacêuticas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba , João Pessoa , Brasil
| | - Mireille Le Hyaric
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora , Juiz de Fora , Brasil
| | - José Pinto de Siqueira Junior
- Departamento de Biologia Molecular, Laboratório de Genética de Microrganismos, Universidade Federal da Paraíba , João Pessoa , Brasil
| | - José Maria Barbosa Filho
- Departamento de Ciências Farmacêuticas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba , João Pessoa , Brasil
| | - Josean Fechine Tavares
- Departamento de Ciências Farmacêuticas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba , João Pessoa , Brasil
| |
Collapse
|
32
|
Yu H, Liu M, Liu Y, Qin L, Jin M, Wang Z. Antimicrobial Activity and Mechanism of Action of Dracocephalum moldavica L. Extracts Against Clinical Isolates of Staphylococcus aureus. Front Microbiol 2019; 10:1249. [PMID: 31244794 PMCID: PMC6563755 DOI: 10.3389/fmicb.2019.01249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Dracocephalum moldavica L. is a popular traditional medicine used by many countries, which has a wide range of pharmacological effects. The aim of this work was to investigate the antimicrobial effects of D. moldavica L. extracts against clinical isolates of Staphylococcus aureus. Our results demonstrated that the minimal inhibitory concentration (MIC) for 50 and 90% of S. aureus isolates (MIC50 and MIC90) of the ethyl acetate (EtOAc) fraction from D. moldavica L. ethanol extract were 780 and 1,065 μg/ml, respectively. We further observed that the EtOAc fraction disrupted 24-h biofilm caused cell membrane damage and irregular cell shape. Additionally, the EtOAc fraction showed slight to moderate toxic effects on human epidermal keratinocyte (HaCaT) cells. Moreover, the results of the differential proteome revealed that 231 proteins were upregulated, while 61 proteins were downregulated in S. aureus after treatment with the EtOAc fraction. The differentially expressed proteins were functionally categorized by the Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. These proteins contribute to membrane damage, inhibition of biofilm formation, and changes in energy metabolism. Thus, the EtOAc fraction of D. moldavica L. ethanol extract, as a natural product, has the potential to be used as an antimicrobial agent to control the clinical isolates of S. aureus.
Collapse
Affiliation(s)
- Hui Yu
- The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Min Liu
- School of Public Health, Baotou Medical College, Baotou, China
| | - Yun Liu
- School of Public Health, Baotou Medical College, Baotou, China
| | - Lei Qin
- The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Min Jin
- School of Public Health, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
33
|
Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol 2019; 5:117-137. [PMID: 31384707 PMCID: PMC6642907 DOI: 10.3934/microbiol.2019.2.117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022] Open
Abstract
The increasing emergence of multidrug-resistant infection causing microorganisms has become a significant burden globally. Despite the efforts of pharmaceuticals in producing relatively new antimicrobial drugs, they have resulted in a high rate of mortality, disability and diseases across the world especially in developing countries. Supporting this claim was the report of the Centre for Disease Control and Prevention (CDC) who estimated that over 2 million illnesses and 23,000 deaths per year are attributable to antibiotic resistant pathogens in the United States. They include Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-intermediate Staphylococcus aureus (VISA), Vancomycin-resistant Staphylococcus aureus (VRSA), Vancomycin-resistant enterococci (VRE), Extended spectrum beta-lactamases (ESBLs) producing gram-negative bacilli, Multidrug-resistant Streptococcus pneumoniae (MDRSP), Carbapenem-resistant Enterobacteriaceae (CRE) and Multidrug-resistant Acinetobacter baumannii. For MRSA, resistance is as a result of Methicillin-sensitive S. aureus (MSSA) strains that have acquired Staphylococcal Cassette Chromosome mec (SCCmec) which carries mecA gene. The gene encodes the penicillin-binding protein (PBP2a) which confers resistance to all β-lactam antibiotics. Vancomycin was previously the widely preferred drug for the treatment of MRSA infections. It is no longer the case with the emergence of S. aureus strains with reduced vancomycin sensitivity limiting the conventional treatment options for MRSA infections to very scanty expensive drugs. Presently, many researchers have reported the antibacterial activity of many plant extracts on MRSA. Hence, these medicinal plants might be promising candidates for treatment of MRSA infections. This work is a brief review on Methicillin-resistant Staphylococcus aureus (MRSA) and the anti-MRSA activities of extracts of selected medicinal plants.
Collapse
Affiliation(s)
- Maureen U. Okwu
- Department of Biological Sciences, College of Natural and Applied Sciences, Igbinedion University Okada, Edo State, Nigeria
| | - Mitsan Olley
- Department of Pathology, Igbinedion University Teaching Hospital, Okada, Edo State, Nigeria
| | - Augustine O. Akpoka
- Department of Biological Sciences, College of Natural and Applied Sciences, Igbinedion University Okada, Edo State, Nigeria
| | - Osazee E. Izevbuwa
- Department of Biological Sciences, College of Natural and Applied Sciences, Igbinedion University Okada, Edo State, Nigeria
| |
Collapse
|
34
|
Ben Braïek O, Merghni A, Smaoui S, Mastouri M. Enterococcus lactis Q1 and 4CP3 strains from raw shrimps: Potential of antioxidant capacity and anti-biofilm activity against methicillin-resistant Staphylococcus aureus strains. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Liu M, Yang K, Wang J, Zhang J, Qi Y, Wei X, Fan M. Young astringent persimmon tannin inhibits methicillin-resistant Staphylococcus aureus isolated from pork. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Selegård R, Musa A, Nyström P, Aili D, Bengtsson T, Khalaf H. Plantaricins markedly enhance the effects of traditional antibiotics against Staphylococcus epidermidis. Future Microbiol 2019; 14:195-205. [PMID: 30648887 PMCID: PMC6393846 DOI: 10.2217/fmb-2018-0285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Bacteriocins are considered as promising alternatives to antibiotics against infections. In this study, the plantaricins (Pln) A, E, F, J and K were investigated for their antimicrobial activity against Staphylococcus epidermidis. Materials & methods: The effects on membrane integrity were studied using liposomes and viable bacteria, respectively. Results: We show that PlnEF and PlnJK caused rapid and significant lysis of S. epidermidis, and induced lysis of liposomes. The PlnEF and PlnJK displayed similar mechanisms by targeting and disrupting the bacterial cell membrane. Interestingly, Pln enhanced the effects of different antibiotics by 30- to 500-fold. Conclusion: This study shows that Pln in combination with low concentrations of antibiotics is efficient against S. epidermidis and may be developed as potential treatment of infections.
Collapse
Affiliation(s)
- Robert Selegård
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Amani Musa
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Pontus Nyström
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry & Biology (IFM), Linköping University, Linköping, Sweden
| | - Torbjörn Bengtsson
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
37
|
Li J, Liu D, Tian X, Koseki S, Chen S, Ye X, Ding T. Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit Rev Food Sci Nutr 2018; 59:S153-S161. [PMID: 30501508 DOI: 10.1080/10408398.2018.1541865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious bacterial pathogen that induces high mortality and morbidity. Due to the emergence of multiple resistance, antibiotic treatments are rapidly becoming ineffective for the related infections. Natural products, especially those derived from plants, have been proven to be effective agents with unique antibacterial properties through different mechanisms. This review interprets the resistance mechanisms of MRSA with the aim to conquer public health threat. Further, recent researches about plant antimicrobials that showed remarkable antibacterial activity against MRSA are recorded, including the crude plant extracts and purified plant-derived bioactive compounds. Novel anti-MRSA modalities of plant antimicrobials such as alteration in efflux pump, inhibition of pyruvate kinase, and disturbance of quorum sensing in MRSA are also summarized which may be promising alternatives to antibacterial drug development in future.
Collapse
Affiliation(s)
- Jiao Li
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Donghong Liu
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xiaojun Tian
- c School of Biological and Health Systems Engineering , Arizona State University , Tempe , AZ , USA
| | - Shigenobu Koseki
- d Graduate School of Agricultural Science , Hokkaido University , Sapporo , Japan
| | - Shiguo Chen
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xingqian Ye
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Tian Ding
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| |
Collapse
|
38
|
Gómez MA, Bonilla JM, Coronel MA, Martínez J, Morán-Trujillo L, Orellana SL, Vidal A, Giacaman A, Morales C, Torres-Gallegos C, Concha M, Oyarzun-Ampuero F, Godoy P, Lisoni JG, Henríquez-Báez C, Bustos C, Moreno-Villoslada I. Antibacterial activity against Staphylococcus aureus of chitosan/chondroitin sulfate nanocomplex aerogels alone and enriched with erythromycin and elephant garlic (Allium ampeloprasum L. var. ampeloprasum) extract. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2016-1112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
The antibacterial activity against Staphylococcus aureus of aerogels fabricated from colloidal suspensions of chitosan/chondroitin sulfate nanocomplexes is analyzed. Upon freeze-drying the colloidal suspensions, the aerogels presented a porous structure made of microsheets and microfibers. The aerogels could, in addition, be loaded with antimicrobial agents. Loaded with the antibiotic erythromycin, the aerogels showed crystalline deposits, affecting the topography of the samples as well as their mechanical properties, showing a decrease on the apparent Young’s modulus and hardness at 40% deformation. Loaded with elephant garlic (Allium ampeloprasum L. var. ampeloprasum) extract, the aerogels showed texturization of the microsheets and microfibers, and the higher relative mass allowed an increase on the apparent Young’s modulus and hardness at 40% deformation with respect to pristine aerogels. Unloaded aerogels showed activity against Staphylococcus aureus, including a methicillin-resistant strain. The release of erythromycin from the aerogels to an agar environment is governed by equilibrium forces with the polysaccharides, which allow modulating the load of antibiotic and its concomitant diffusion from the material. The diffusion of the active components of the elephant garlic extract did not show a dependence on the polysaccharide content, revealing a week interaction. The elephant garlic extract resulted active against the methicillin-resistant Staphylococcus aureus strain, while resistance was found for the antibiotic, revealing the therapeutic potential of the natural extract. The antimicrobial aerogels may be used for several therapeutic purposes, such as healing of infected chronic wounds.
Collapse
Affiliation(s)
- María Angélica Gómez
- Facultad de Ciencias de la Salud , Universidad Colegio Mayor de Cundinamarca , Bogotá , Colombia
| | - Jennifer Marcela Bonilla
- Facultad de Ciencias de la Salud , Universidad Colegio Mayor de Cundinamarca , Bogotá , Colombia
| | - María Alejandra Coronel
- Facultad de Ciencias de la Salud , Universidad Colegio Mayor de Cundinamarca , Bogotá , Colombia
| | - Jonathan Martínez
- Facultad de Ciencias de la Salud , Universidad Colegio Mayor de Cundinamarca , Bogotá , Colombia
| | - Luis Morán-Trujillo
- Instituto de Ciencias Químicas, Facultad de Ciencias , Universidad Austral de Chile , Valdivia , Chile
| | - Sandra L. Orellana
- Instituto de Ciencias Químicas, Facultad de Ciencias , Universidad Austral de Chile , Valdivia , Chile
| | - Alejandra Vidal
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina , Universidad Austral de Chile , Valdivia , Chile
| | - Annesi Giacaman
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina , Universidad Austral de Chile , Valdivia , Chile
| | - Carlos Morales
- Instituto de Ciencias Químicas, Facultad de Ciencias , Universidad Austral de Chile , Valdivia , Chile
| | - César Torres-Gallegos
- Instituto de Ciencias Químicas, Facultad de Ciencias , Universidad Austral de Chile , Valdivia , Chile
| | - Miguel Concha
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina , Universidad Austral de Chile , Valdivia , Chile
| | - Felipe Oyarzun-Ampuero
- Department of Sciences and Pharmaceutical Technologies , Universidad de Chile , Santiago , Chile
| | - Patricio Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina , Universidad Austral de Chile , Valdivia , Chile
| | - Judit G. Lisoni
- Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias , Universidad Austral de Chile , Valdivia , Chile
| | - Carla Henríquez-Báez
- Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias , Universidad Austral de Chile , Valdivia , Chile
| | - Carlos Bustos
- Instituto de Ciencias Químicas, Facultad de Ciencias , Universidad Austral de Chile , Valdivia , Chile
| | - Ignacio Moreno-Villoslada
- Instituto de Ciencias Químicas, Facultad de Ciencias , Universidad Austral de Chile , Isla Teja, Casilla 567 , Valdivia , Chile , Tel.: +56 63 2293520
| |
Collapse
|
39
|
RETRACTED ARTICLE: Rhodozepinone, a new antitrypanosomal azepino-diindole alkaloid from the marine sponge-derived bacterium Rhodococcus sp. UA13. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1974-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Subramani R, Narayanasamy M, Feussner KD. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 2017; 7:172. [PMID: 28660459 PMCID: PMC5489455 DOI: 10.1007/s13205-017-0848-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
Antibiotic resistance is becoming a pivotal concern for public health that has accelerated the search for new antimicrobial molecules from nature. Numbers of human pathogens have inevitably evolved to become resistant to various currently available drugs causing considerable mortality and morbidity worldwide. It is apparent that novel antibiotics are urgently warranted to combat these life-threatening pathogens. In recent years, there have been an increasing number of studies to discover new bioactive compounds from plant origin with the hope to control antibiotic-resistant bacteria. This review attempts to focus and record the plant-derived compounds and plant extracts against multi-drug-resistant (MDR) pathogens including methicillin-resistant Staphylococcus aureus (MRSA), MDR-Mycobacterium tuberculosis and malarial parasites Plasmodium spp. reported between 2005 and 2015. During this period, a total of 110 purified compounds and 60 plant extracts were obtained from 112 different plants. The plants reviewed in this study belong to 70 different families reported from 36 countries around the world. The present review also discusses the drug resistance in bacteria and emphasizes the urge for new drugs.
Collapse
Affiliation(s)
- Ramesh Subramani
- Department of Biology, School of Sciences, College of Engineering, Science and Technology, Fiji National University, Natabua Campus, Lautoka, Fiji.
| | | | - Klaus-D Feussner
- Centre for Drug Discovery and Conservation, Institute of Applied Sciences, The University of the South Pacific, Laucala Campus, Suva, Fiji
| |
Collapse
|
41
|
Lima ZM, da Trindade LS, Santana GC, Padilha FF, da Costa Mendonça M, da Costa LP, López JA, Macedo MLH. Effect of Tamarindus indica L. and Manihot esculenta Extracts on Antibiotic-resistant Bacteria. Pharmacognosy Res 2017; 9:195-199. [PMID: 28539745 PMCID: PMC5424562 DOI: 10.4103/0974-8490.204648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: The chemical composition of plants used in traditional medicine exhibits biologically active compounds, such as tannins, flavonoids, and alkaloids and becomes a promising approach to treat microbial infections, mainly with drug-resistant bacteria. Objective: The aim of the present study was to evaluate the hydroethanolic leaf extracts of Tamarindus indica (tamarind) and Manihot esculenta (cassava) as antimicrobial potential against Pseudomonas aeruginosa clinical isolated and Methicillin-resistant Staphylococcus aureus. Materials and Methods: Hydroethanolic leaf extracts were prepared and characterized by high-performance liquid chromatography/diode array detection, Fourier transform infrared, 1,1-diphenyl-2-picrylhydrazyl, and ultraviolet-visible methods. The antimicrobial activity against four strains of clinical relevance was evaluated by the microdilution method at minimum inhibitory concentrations. Results: Phenolic compounds such as flavonoids were detected in the plant extracts. T. indica extract at 500 μg/mL showed antimicrobial activity against S. aureus and P. aeruginosa; however, M. esculenta showed only activity against P. aeruginosa in this concentration. Conclusions: Our results suggested that polyphenols and flavonoids present in T. indica leaf extracts are a potential source of antimicrobial compound. The T. indica extract showed antibacterial activity against S. aureus and P. aeruginosa while M. esculenta had effect only on P. aeruginosa meropenem resistant. SUMMARY Antibacterial effect of T. indica and M. esculenta leaf extract was evaluated. T. indica extract displayed activity against S. aureus and P. aeruginosa strains. M. esculenta showed effect on P. aeruginosa meropenem resistant.
Abbreviations Used: BHI: Agar brain heart infusion, CAPES: Coordination for the improvement of higher education personnel, DPPH: 1,1-diphenyl-2-picrylhydrazyl, FAPITEC/SE: Foundation for support to research and technological innovation of the state of sergipe, FTIR: Fourier transform infrared spectroscopy, HPLC: High-performance liquid chromatography, KBr: Potassium bromide, MIC: Minimum inhibitory concentration, MRSA: Methicillin-resistant Staphylococcus aureus, RSC: Radical scavenging capacity, UV-vis: Ultraviolet-visible.
Collapse
Affiliation(s)
- Zenon Machado Lima
- Program in Industrial Biotechnology- Tiradentes University/ Institute of Technology and Research, Aracaju-SE, Brazil
| | - Lenilson Santos da Trindade
- Program in Industrial Biotechnology- Tiradentes University/ Institute of Technology and Research, Aracaju-SE, Brazil
| | | | - Francine Ferreira Padilha
- Program in Industrial Biotechnology- Tiradentes University/ Institute of Technology and Research, Aracaju-SE, Brazil
| | - Marcelo da Costa Mendonça
- Program in Industrial Biotechnology- Tiradentes University/ Institute of Technology and Research, Aracaju-SE, Brazil
| | - Luiz Pereira da Costa
- Program in Industrial Biotechnology- Tiradentes University/ Institute of Technology and Research, Aracaju-SE, Brazil.,Biomaterials and Nanotechnology Laboratory- Technological Institute and Research of the Sergipe State, Aracaju-SE, Brazil
| | - Jorge A López
- Program in Industrial Biotechnology- Tiradentes University/ Institute of Technology and Research, Aracaju-SE, Brazil
| | - Maria Lucila Hernández Macedo
- Program in Industrial Biotechnology- Tiradentes University/ Institute of Technology and Research, Aracaju-SE, Brazil
| |
Collapse
|
42
|
Synthesis and biological evaluation of indole core-based derivatives with potent antibacterial activity against resistant bacterial pathogens. J Antibiot (Tokyo) 2017; 70:832-844. [PMID: 28465626 DOI: 10.1038/ja.2017.55] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 01/17/2023]
Abstract
The emergence of drug resistance in bacterial pathogens is a growing clinical problem that poses difficult challenges in patient management. To exacerbate this problem, there is currently a serious lack of antibacterial agents that are designed to target extremely drug-resistant bacterial strains. Here we describe the design, synthesis and antibacterial testing of a series of 40 novel indole core derivatives, which are predicated by molecular modeling to be potential glycosyltransferase inhibitors. Twenty of these derivatives were found to show in vitro inhibition of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Four of these strains showed additional activity against Gram-negative bacteria, including extended-spectrum beta-lactamase producing Enterobacteriaceae, imipenem-resistant Klebsiella pneumoniae and multidrug-resistant Acinetobacter baumanii, and against Mycobacterium tuberculosis H37Ra. These four compounds are candidates for developing into broad-spectrum anti-infective agents.
Collapse
|
43
|
Costa RS, Lins MO, Le Hyaric M, Barros TF, Velozo ES. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Nipanikar S, Chitlange S, Nagore D. Evaluation of Anti-inflammatory and Antimicrobial Activity of AHPL/AYCAP/0413 Capsule. Pharmacognosy Res 2017; 9:273-276. [PMID: 28827969 PMCID: PMC5541484 DOI: 10.4103/0974-8490.210328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Conventional therapeutic agents used for treatment of Acne are associated with various adverse effects necessitating development of safe and effective alternative therapeutic agents. In this context, a polyherbal formulation AHPL/AYCAP/0413 was developed for treatment of Acne. Objectives: To evaluate Anti-inflammatory and antimicrobial activity of AHPL/AYCAP/0413. Material and Methods: 1) Anti-inflammatory activity: Anti-inflammatory activity of AHPL/AYCAP/0413 in comparison with Diclofenac was assessed in carrageenan induced rat Paw edema model. 2) Anti-microbial activity for P. acne: Propionibacterium acnes were incubated under anaerobic conditions. Aliquots of molten BHI with glucose agar were used as the agar base. Formulation and clindamycin (10 μg/ml) were introduced in to the Agar wells randomly. 3) Anti-microbial activity for Staphylococcus epidermidis and Staphylococcus aureus: Staphylococcus epidermidis and Staphylococcus aureus were incubated under aerobic conditions at 37°C. TSB with glucose agar was used as the agar base. 0.5ml of formulation and clindamycin (10 μg/ml) were introduced in to the wells randomly. The antibacterial activity was evaluated by measuring zones of inhibition (in mm). Result: Significant reduction in rat paw edema (51% inhibition) was observed with formulation AHPL/AYCAP/0413 which was also comparable to that of Diclofenac (58% inhibition). Zone of inhibition for formulation was 18.33 mm, 19.20 mm and 26.30 mm for P. acnes, S. epidermidis and S. aureus respectively. This activity was also comparable to that of Clindamycin. Conclusion: AHPL/AYCAP/0413 capsule possesses significant Anti-inflammatory and Anti-microbial activities which further justifies its role in the management of Acne vulgaris. SUMMARY Anti-inflammatory and antimicrobial activities of polyherbal formulation AHPL/AYCAP/0413 were evaluated AHPL/AYCAP/0413 contains Guduchi extract (Tinospora cordifolia), Manjishtha extract (Rubia cordifolia), Sariva extract (Hemidesmus indicus), Nimba extract (Azardirachta indica), Khadira extract (Acacia catechu) and Kakmachi extract (Solanum nigrum) Anti-inflammatory activity of AHPL/AYCAP/0413 in comparison with Diclofenac was assessed in carrageenan induced rat Paw edema model. Significant reduction in rat paw edema (51% inhibition) was observed with formulation AHPL/AYCAP/0413 which was also comparable to that of Diclofenac (58% inhibition) Anti-microbial activity of AHPL/AYCAP/0413 was assessed against Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus. Zone of inhibition for formulation was 18.33 mm, 19.20 mm and 26.30 mm for P. acnes, S. epidermidis and S. aureus respectively indicating 68.42%, 85.71% and 81.17% activity. This activity was also comparable to that of Clindamycin Therefore it is evident that, AHPL/AYCAP/0413 capsule possesses significant Anti-inflammatory and Anti-microbial activities which further justifies its role in the management of Acne vulgaris.
Abbreviations Used: mg: Milligram, kg: Kilogram, w/v: Weight by volume, ml: Milliliters, h: Hour, BHI: Brain Heart Infusion, CFU: Colony forming units, μg: Microgram, A.I.: Activity index, P.I.: Percent inhibition, TSB: Trypticsoy Broth, mm: millimeters, P. acnes: Propionibacterium acnes, S. epidermidis: Staphylococcus epidermidis, S. aureus: Staphylococcus aureus.
Collapse
Affiliation(s)
- Sanjay Nipanikar
- Head- R & D, R & D Center, Ari Healthcare Private Limited, Unit No. 401, International Biotech Park, BTS 2 Building, Chrysalis Enclave, 4 Floor, Plot No - 2A, MIDC Phase II, Hinjewadi, Pune, Maharashtra, India
| | - Sohan Chitlange
- Principal, Padm. Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, Maharashtra, India
| | - Dheeraj Nagore
- Manager - Analytical Department, R & D Center, Ari Healthcare Private Limited, Unit No. 401, International Biotech Park, BTS 2 Building, Chrysalis Enclave, 4 Floor, Plot No - 2A, MIDC Phase II, Hinjewadi, Pune, Maharashtra, India
| |
Collapse
|
45
|
Zhang Y, Sun D, Meng Q, Guo W, Chen Q, Zhang Y. Calcium channels contribute to albiflorin-mediated antinociceptive effects in mouse model. Neurosci Lett 2016; 628:105-9. [DOI: 10.1016/j.neulet.2016.03.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 12/27/2022]
|
46
|
Simard F, Gauthier C, Legault J, Lavoie S, Mshvildadze V, Pichette A. Structure elucidation of anti-methicillin resistant Staphylococcus aureus (MRSA) flavonoids from balsam poplar buds. Bioorg Med Chem 2016; 24:4188-4198. [PMID: 27436809 DOI: 10.1016/j.bmc.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
There is nowadays an urgent need for developing novel generations of antibiotic agents due to the increased resistance of pathogenic bacteria. As a rich reservoir of structurally diverse compounds, plant species hold promise in this regard. Within this framework, we isolated a unique series of antibacterial flavonoids, named balsacones N-U, featuring multiple cinnamyl chains on the flavan skeleton. The structures of these compounds, isolated as racemates, were determined using extensive 1D and 2D NMR analysis in tandem with HRMS. Balsacones N-U along with previously isolated balsacones A-M were evaluated for their antibacterial activity against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA). Several of the tested balsacones were potent anti-MRSA agents showing MIC values in the low micromolar range. Structure-activity relationships study highlighted some important parameters involved in the antibacterial activity of balsacones such as the presence of cinnamyl and cinnamoyl chains at the C-3 and C-8 positions of the flavan skeleton, respectively. These results suggest that balsacones could represent a potential novel class of naturally occurring anti-MRSA agents.
Collapse
Affiliation(s)
- François Simard
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
| | - Charles Gauthier
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi (Québec) G7H 2B1, Canada; INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval (Québec) H7V 1B7, Canada
| | - Jean Legault
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
| | - Serge Lavoie
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
| | - Vakhtang Mshvildadze
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
| | - André Pichette
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi (Québec) G7H 2B1, Canada.
| |
Collapse
|
47
|
He M, Shao L, Liu Q, Li J, Lin H, Jing L, Li M, Chen D. Mechanism of synergy between SIPI-8294 and β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2016; 63:3-10. [PMID: 27173151 DOI: 10.1111/lam.12583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/18/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED SIPI-8294, as an erythromycin derivative, has only weak antibacterial effects on MRSA and MSSA. Interestingly, synergistic effect of SIPI-8294 with oxacillin was observed both in vitro and in vivo. Western blot and RT-PCR results demonstrate that mecA expressions were suppressed by SIPI-8294 in MRSA. Furthermore, the knock out of mecA in ATCC 43300 led to the loss of synergy of the combinations while mecA complemented strain showed almost the same synergistic capability compared to the wild type strain. However, the knock out of mecR1 and mecI in MRSA displayed no impact on the synergy of the combinations and the ability of SIPI-8294 to suppress mecA expression. In summary, our study has demonstrated that SIPI-8294 could dramatically reverse MRSA resistance to β-lactams both in vitro and in vivo owing to inhibiting mecA expression. However, mecR1 and mecI, as the pivotal regulatory genes of mecA, do not participate in SIPI-8294-mecA pathway. The research indicates that it may be a promising strategy for combating MRSA infections with the combinations of SIPI-8294 and β-lactam antibiotics. The research of the mechanism is important for structure modification and new drug development. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first report on the mechanism of synergy between SIPI-8294 and β-lactams against MRSA on the molecular level. In this study, SIPI-8294 showed strong synergistic effects on β-lactam antibiotics both in vitro and in vivo owing to inhibiting mecA expression. As pivotal regulatory genes of mecA, mecR1 and mecI do not participate in SIPI-8294-mecA pathway and are not involved in the synergism of SIPI-8294 and β-lactams. The research indicates that it may be a promising strategy for combating MRSA infections with the combinations of SIPI-8294 and β-lactams. The research is important for structure modification and new drug development.
Collapse
Affiliation(s)
- M He
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - L Shao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Q Liu
- Department of Laboratory Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J Li
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - H Lin
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - L Jing
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - M Li
- Department of Laboratory Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - D Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
48
|
Sharma K, Thanbuana BT, Gupta AK, Rajkumari N, Mathur P, Gunjiyal J, Misra MC. A prospective study of wound infection among post-discharge patients at a level 1 trauma centre of India. Indian J Med Microbiol 2016; 34:198-201. [PMID: 27080772 DOI: 10.4103/0255-0857.180299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIM To study the rate of wound infections in the post-discharged patient population and to assess the usefulness of post-discharge surveillance. METHODS A prospective surveillance of all the post-discharged trauma patients was done during a period of 6 months. Discharge instructions were given to all the patients regarding identification of the signs and symptoms of wound infections. They were telephonically followed up after a week to enquire about the wound condition and followed up in the outpatient department (OPD). Microbiology culture samples of those showing any signs and symptoms of infections were sent and their antimicrobial therapy, any change in the treatment schedule and the length of their hospital stay were noted. Factors such as wound class, type of surgeries and readmissions were noted. RESULTS A total of 281 postdischarge patients were enrolled, of which 101 were completely followed up for wound infections. Males were predominant (89%). Of the 101 patients, 42 (41.6%) patients wound showed infection during the intense follow-up in the OPD. However, 59 patients (59/101, 58.4%) showed wound swab culture positivity before discharge. These 42 patients developed signs and symptoms of infection post-discharge; 23 (22.7%) of them had change of antibiotic therapy during the follow-up period due to culture positivity. Acinetobacter sp., Staphylococcus aureus and Klebsiella pneumoniae were the predominant organisms isolated in the study. A total of 45 patients (44.5%) had to be readmitted due to wound site infections. CONCLUSIONS Wound infections are common after discharge among trauma patients highlighting the importance of active surveillance and participation of patients.
Collapse
Affiliation(s)
| | | | | | | | - P Mathur
- Department of Laboratory Medicine, Division of Clinical Microbiology, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
49
|
Krakauer T, Pradhan K, Stiles BG. Staphylococcal Superantigens Spark Host-Mediated Danger Signals. Front Immunol 2016; 7:23. [PMID: 26870039 PMCID: PMC4735405 DOI: 10.3389/fimmu.2016.00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/18/2016] [Indexed: 12/19/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific Vβ regions of T-cell receptors (TCR) and major histocompatibility complex (MHC) class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes/macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. Because of superantigen-induced T cells skewed toward TH1 helper cells, and the induction of proinflammatory cytokines, superantigens can exacerbate autoimmune diseases. Upon TCR/MHC ligation, pathways induced by superantigens include the mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in activation of NFκB and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Various mouse models exist to study SEB-induced shock including those with potentiating agents, transgenic mice and an “SEB-only” model. However, therapeutics to treat toxic shock remain elusive as host response genes central to pathogenesis of superantigens have only been identified recently. Gene profiling of a murine model for SEB-induced shock reveals novel molecules upregulated in multiple organs not previously associated with SEB-induced responses. The pivotal genes include intracellular DNA/RNA sensors, apoptosis/DNA damage-related molecules, immunoproteasome components, as well as antiviral and IFN-stimulated genes. The host-wide induction of these, and other, antimicrobial defense genes provide evidence that SEB elicits danger signals resulting in multi-organ damage and toxic shock. Ultimately, these discoveries might lead to novel therapeutics for various superantigen-based diseases.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick , Frederick, MD , USA
| | - Kisha Pradhan
- Biology Department, Wilson College , Chambersburg, PA , USA
| | | |
Collapse
|
50
|
Cell wall-affecting antibiotics modulate natural transformation in SigH-expressing Staphylococcus aureus. J Antibiot (Tokyo) 2015; 69:464-6. [DOI: 10.1038/ja.2015.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022]
|