1
|
Dhir R, Chauhan S, Subham P, Kumar S, Sharma P, Shidiki A, Kumar G. Plant-mediated synthesis of silver nanoparticles: unlocking their pharmacological potential-a comprehensive review. Front Bioeng Biotechnol 2024; 11:1324805. [PMID: 38264582 PMCID: PMC10803431 DOI: 10.3389/fbioe.2023.1324805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
In recent times, nanoparticles have experienced a significant upsurge in popularity, primarily owing to their minute size and their remarkable ability to modify physical, chemical, and biological properties. This burgeoning interest can be attributed to the expanding array of biomedical applications where nanoparticles find utility. These nanoparticles, typically ranging in size from 10 to 100 nm, exhibit diverse shapes, such as spherical, discoidal, and cylindrical configurations. These variations are not solely influenced by the manufacturing processes but are also intricately linked to interactions with surrounding stabilizing agents and initiators. Nanoparticles can be synthesized through physical or chemical methods, yet the biological approach emerges as the most sustainable and eco-friendly alternative among the three. Among the various nanoparticle types, silver nanoparticles have emerged as the most encountered and widely utilized due to their exceptional properties. What makes the synthesis of silver nanoparticles even more appealing is the application of plant-derived sources as reducing agents. This approach not only proves to be cost-effective but also significantly reduces the synthesis time. Notably, silver nanoparticles produced through plant-mediated processes have garnered considerable attention in recent years due to their notable medicinal capabilities. This comprehensive review primarily delves into the diverse medicinal attributes of silver nanoparticles synthesized using plant-mediated techniques. Encompassing antimicrobial properties, cytotoxicity, wound healing, larvicidal effects, anti-angiogenesis activity, antioxidant potential, and antiplasmodial activity, the paper extensively covers these multifaceted roles. Additionally, an endeavor is made to provide an elucidated summary of the operational mechanisms underlying the pharmacological actions of silver nanoparticles.
Collapse
Affiliation(s)
- Rajan Dhir
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Sakshi Chauhan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Praddiuman Subham
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Saksham Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Pratham Sharma
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Amrullah Shidiki
- Department of Microbiology, National Medical College and Teaching Hospital, Birgunj, Nepal
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| |
Collapse
|
2
|
Qamer S, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, Amin-Nordin S. Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation. Antibiotics (Basel) 2023; 12:1403. [PMID: 37760700 PMCID: PMC10526060 DOI: 10.3390/antibiotics12091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
This study is based on the premise of investigating antibacterial activity through a novel conjugate of silver nanoparticles (AgNPs) and antimicrobial peptides (AMPs) in line with a green synthesis approach by developing antimicrobial-coated implants to prevent bacterial resistance. The AMPs were obtained from Bellamya Bengalensis (BB), a freshwater snail, to prepare the nanocomposite conjugate, e.g., AgNPs@BB extract, by making use of UV-Visible spectroscopy. The antimicrobial assessment of AgNPs@BB extract conjugate was performed using the Resazurin Microtiter Assay Method (REMA), followed by the use of three biocompatible implant materials (titanium alloys, Ti 6AL-4V stainless steel 316L, and polyethylene). Finally, the coating was analyzed under confocal microscopy. The results revealed a significant reduction of biofilm formation on the surfaces of implants coated with conjugate (AgNPs@BB extract) in comparison to uncoated implants. For the MTT assay, no significant changes were recorded for the cells grown on the AgNPs/AMP++ sample in high concentrations. Staphylococcus epidermidis, however, showed more prominent growth on all implants in comparison to Staphylococcus aureus. It is evident from the results that Staphylococcus epidermidis is more susceptible to AgNPs@BB extract, while the minimum inhibitory concentration (MIC) value of AgNPs@BB extract conjugates and biosynthesized AgNPs was also on the higher side. This study indicates that AgNPs@BB extract carries antibacterial activity, and concludes that an excessive concentration of AgNPs@BB extract may affect the improved biocompatibility. This study recommends using robust, retentive, and antimicrobial coatings of AgNPs@BB extract for implantable biocompatible materials in accordance with the novel strategy of biomaterial applications.
Collapse
Affiliation(s)
- Shafqat Qamer
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia; (S.Q.); (N.M.); (N.M.S.J.)
| | - Fahrudin Che-Hamzah
- Orthopedic Department, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia;
| | - Norashiqin Misni
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia; (S.Q.); (N.M.); (N.M.S.J.)
| | - Narcisse M. S. Joseph
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia; (S.Q.); (N.M.); (N.M.S.J.)
| | - Nagi A. Al-Haj
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a 009671, Yemen;
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia; (S.Q.); (N.M.); (N.M.S.J.)
| |
Collapse
|
3
|
Sheikh-Oleslami S, Tao B, D'Souza J, Butt F, Suntharalingam H, Rempel L, Amiri N. A Review of Metal Nanoparticles Embedded in Hydrogel Scaffolds for Wound Healing In Vivo. Gels 2023; 9:591. [PMID: 37504470 PMCID: PMC10379627 DOI: 10.3390/gels9070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
An evolving field, nanotechnology has made its mark in the fields of nanoscience, nanoparticles, nanomaterials, and nanomedicine. Specifically, metal nanoparticles have garnered attention for their diverse use and applicability to dressings for wound healing due to their antimicrobial properties. Given their convenient integration into wound dressings, there has been increasing focus dedicated to investigating the physical, mechanical, and biological characteristics of these nanoparticles as well as their incorporation into biocomposite materials, such as hydrogel scaffolds for use in lieu of antibiotics as well as to accelerate and ameliorate healing. Though rigorously tested and applied in both medical and non-medical applications, further investigations have not been carried out to bring metal nanoparticle-hydrogel composites into clinical practice. In this review, we provide an up-to-date, comprehensive review of advancements in the field, with emphasis on implications on wound healing in in vivo experiments.
Collapse
Affiliation(s)
- Sara Sheikh-Oleslami
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brendan Tao
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jonathan D'Souza
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Fahad Butt
- Faculty of Science, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Hareshan Suntharalingam
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Lucas Rempel
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nafise Amiri
- International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
4
|
Bor E, Koca Caliskan U, Anlas C, Durbilmez GD, Bakirel T, Ozdemir N. Synthesis of Persea americana extract based hybrid nanoflowers as a new strategy to enhance hyaluronidase and gelatinase inhibitory activity and the evaluation of their toxicity potential. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2072342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emrah Bor
- Faculty of Pharmacy, Department of Pharmacognosy, Gazi University, Ankara, Turkey
| | - Ufuk Koca Caliskan
- Faculty of Pharmacy, Department of Pharmacognosy, Gazi University, Ankara, Turkey
- Faculty of Pharmacy, Department of Pharmacognosy, Duzce University, Duzce, Turkey
| | - Ceren Anlas
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Tulay Bakirel
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nalan Ozdemir
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Che Abdullah CA, Ahmad SA. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:427. [PMID: 35057145 PMCID: PMC8779869 DOI: 10.3390/ma15020427] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.
Collapse
Affiliation(s)
- Ashwini Naganthran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Gayathiri Verasoundarapandian
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Farah Eryssa Khalid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, Shibaura Institute of Technology, College of Systems Engineering and Science, 307 Fukasaku, Saitama 337-8570, Japan;
| | - Norazah Mohammad Nawawi
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia;
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Timur Tambahan, Bestari Jaya 45600, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
6
|
Kaur K, Singh A, Sharma H, Punj S, Bedi N. Formulation Strategies and Therapeutic Applications of Shikonin and Related Derivatives. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:55-67. [PMID: 35236278 DOI: 10.2174/2667387816666220302112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Shikonin and its derivatives are excellent representatives of biologically active naphthoquinones. A wide range of investigations carried out in the last few decades validated their pharmacological efficacy. Besides having magnificent therapeutic potential, shikonin and its derivatives suffer from various pharmacokinetic, toxicity, and stability issues like poor bioavailability, nephrotoxicity, photodegradation, etc. Recently, various research groups have developed an extensive range of formulations to tackle these issues to ease their path to clinical practice. The latest formulation approaches have been focused on exploiting the unique features of novel functional excipients, which in turn escalate the therapeutic effect of shikonin. Moreover, the codelivery approach in various drug delivery systems has been taken into consideration in a recent while to reduce toxicity associated with shikonin and its derivatives. This review sheds light on the essential reports and patents published related to the array of formulations containing shikonin and its derivatives.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Hamayal Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sanha Punj
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
7
|
Wani IA, Ahmad T, Khosla A. Recent advances in anticancer and antimicrobial activity of silver nanoparticles synthesized using phytochemicals and organic polymers. NANOTECHNOLOGY 2021; 32:462001. [PMID: 34340224 DOI: 10.1088/1361-6528/ac19d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Development of eco-friendly synthetic methods has resulted in the production of biocompatible Ag NPs for applications in medical sector. To overcome the prevailing antibiotic resistance in bacteria, Ag NPs are being extensively researched over the past few years due to their broad spectrum and robust antimicrobial properties. Silver nanoparticles are also being studied widely in advanced anticancer therapy as an alternative anticancer agent to combat cancer in an effective manner. Keeping this backdrop in consideration, this review aims to provide an extensive coverage of the recent progresses in the green synthesis of Ag NPs specifically using plant derived reducing agents such phytochemicals and numerous other biopolymers. Current development in antimicrobial activity of Ag NPs against various pathogens has been deliberated at length. Recent advances in potent anticancer activity of the biogenic Ag NPs against various cancerous cell lines has also been discussed in detail. Mechanistic details of the synthesis of Ag NPs, their anticancer and antimicrobial action has also been highlighted.
Collapse
Affiliation(s)
- Irshad A Wani
- Postgraduate Department of Chemistry, Govt. Degree College Bhadarwah, University of Jammu, Jammu & Kashmir-182222, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
8
|
Singh KR, Nayak V, Singh J, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv 2021; 11:24722-24746. [PMID: 35481029 PMCID: PMC9036962 DOI: 10.1039/d1ra04273d] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
To date, various reports have shown that metallic gold bhasma at the nanoscale form was used as medicine as early as 2500 B.C. in India, China, and Egypt. Owing to their unique physicochemical, biological, and electronic properties, they have broad utilities in energy, environment, agriculture and more recently, the biomedical field. The biomedical domain has been used in drug delivery, imaging, diagnostics, therapeutics, and biosensing applications. In this review, we will discuss and highlight the increasing control over metal and metal oxide nanoparticle structures as smart nanomaterials utilized in the biomedical domain to advance the role of biosynthesized nanoparticles for improving human health through wide applications in the targeted drug delivery, controlled release drug delivery, wound dressing, tissue scaffolding, and medical implants. In addition, we have discussed concerns related to the role of these types of nanoparticles as an anti-viral agent by majorly highlighting the ways to combat the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, along with their prospects.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Vanya Nayak
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh (221005) India
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| |
Collapse
|
9
|
Kaur N, Bains A, Kaushik R, Dhull SB, Melinda F, Chawla P. A Review on Antifungal Efficiency of Plant Extracts Entrenched Polysaccharide-Based Nanohydrogels. Nutrients 2021; 13:2055. [PMID: 34203999 PMCID: PMC8232670 DOI: 10.3390/nu13062055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Human skin acts as a physical barrier; however, sometimes the skin gets infected by fungi, which becomes more severe if the infection occurs on the third layer of the skin. Azole derivative-based antifungal creams, liquids, or sprays are available to treat fungal infections; however, these formulations show various side effects on the application site. Over the past few years, herbal extracts and various essential oils have shown effective antifungal activity. Additionally, autoxidation and epimerization are significant problems with the direct use of herbal extracts. Hence, to overcome these obstacles, polysaccharide-based nanohydrogels embedded with natural plant extracts and oils have become the primary choice of pharmaceutical scientists. These gels protect plant-based bioactive compounds and are effective delivery agents because they release multiple bioactive compounds in the targeted area. Nanohydrogels can be applied to infected areas, and due to their contagious nature and penetration power, they get directly absorbed through the skin, quickly reaching the skin's third layer and effectively reducing the fungal infection. In this review, we explain various skin fungal infections, possible treatments, and the effective utilization of plant extract and oil-embedded polysaccharide-based nanohydrogels.
Collapse
Affiliation(s)
- Navkiranjeet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Biotechnology, Chandigarh Group of Colleges Landran, Mohali 140307, Punjab, India;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India;
| | - Sanju B. Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India;
| | - Fogarasi Melinda
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| |
Collapse
|
10
|
Tan KB, Sun D, Huang J, Odoom-Wubah T, Li Q. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Tehri N, Vashishth A, Gahlaut A, Hooda V. Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: current progress and future prospects. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Amit Vashishth
- Department of Biochemistry, International Institute of Veterinary Education and Research (LUVAS), Rohtak, Haryana, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
12
|
Park I, Yang S, Song JH, Moon BC. Dissection for Floral Micromorphology and Plastid Genome of Valuable Medicinal Borages Arnebia and Lithospermum (Boraginaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:606463. [PMID: 33343605 PMCID: PMC7746654 DOI: 10.3389/fpls.2020.606463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
The genera Arnebia and Lithospermum (Lithospermeae-Boraginaceae) comprise 25-30 and 50-60 species, respectively. Some of them are economically valuable, as their roots frequently contain a purple-red dye used in the cosmetic industry. Furthermore, dried roots of Arnebia euchroma, A. guttata, and Lithospermum erythrorhizon, which have been designated Lithospermi Radix, are used as traditional Korean herbal medicine. This study is the first report on the floral micromorphology and complete chloroplast (cp) genome sequences of A. guttata (including A. tibetana), A. euchroma, and L. erythrorhizon. We reveal great diversity in floral epidermal cell patterns, gynoecium, and structure of trichomes. The cp genomes were 149,361-150,465 bp in length, with conserved quadripartite structures. In total, 112 genes were identified, including 78 protein-coding regions, 30 tRNA genes, and four rRNA genes. Gene order, content, and orientation were highly conserved and were consistent with the general structure of angiosperm cp genomes. Comparison of the four cp genomes revealed locally divergent regions, mainly within intergenic spacer regions (atpH-atpI, petN-psbM, rbcL-psaI, ycf4-cemA, ndhF-rpl32, and ndhC-trnV-UAC). To facilitate species identification, we developed molecular markers psaA- ycf3 (PSY), trnI-CAU- ycf2 (TCY), and ndhC-trnV-UAC (NCTV) based on divergence hotspots. High-resolution phylogenetic analysis revealed clear clustering and a close relationship of Arnebia to its Lithospermum sister group, which was supported by strong bootstrap values and posterior probabilities. Overall, gynoecium characteristics and genetic distance of cp genomes suggest that A. tibetana, might be recognized as an independent species rather than a synonym of A. guttata. The present morphological and cp genomic results provide useful information for future studies, such as taxonomic, phylogenetic, and evolutionary analysis of Boraginaceae.
Collapse
Affiliation(s)
| | | | - Jun-Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| |
Collapse
|
13
|
Patil S, Chandrasekaran R. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J Genet Eng Biotechnol 2020; 18:67. [PMID: 33104931 PMCID: PMC7588575 DOI: 10.1186/s43141-020-00081-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Translating the conventional scientific concepts into a new robust invention is a much needed one at a present scenario to develop some novel materials with intriguing properties. Particles in nanoscale exhibit superior activity than their bulk counterpart. This unique feature is intensively utilized in physical, chemical, and biological sectors. Each metal is holding unique optical properties that can be utilized to synthesize metallic nanoparticles. At present, versatile nanoparticles were synthesized through chemical and biological methods. Metallic nanoparticles pose numerous scientific merits and have promising industrial applications. But concerning the pros and cons of metallic nanoparticle synthesis methods, researchers elevate to drive the synthesis process of nanoparticles through the utilization of plant resources as a substitute for use of chemicals and reagents under the theme of green chemistry. These synthesized nanoparticles exhibit superior antimicrobial, anticancer, larvicidal, leishmaniasis, wound healing, antioxidant, and as a sensor. Therefore, the utilization of such conceptualized nanoparticles in treating infectious and environmental applications is a warranted one. CONCLUSION Green chemistry is a keen prudence method, in which bioresources is used as a template for the synthesis of nanoparticles. Therefore, in this review, we exclusively update the context of plant-based metallic nanoparticle synthesis, characterization, and applications in detailed coverage. Hopefully, our review will be modernizing the recent trends going on in metallic nanoparticles synthesis for the blooming research fraternities.
Collapse
Affiliation(s)
- Sunita Patil
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
- Department of Biotechnology, Sri Krishna College of Arts and Science, Coimbatore, India
| | | |
Collapse
|
14
|
Eichhornia crassipes Mediated Bioinspired Synthesis of Crystalline Nano Silver as an Integrated Medicinal Material: A Waste to Value Approach. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01797-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Renu S, Shivashangari KS, Ravikumar V. Incorporated plant extract fabricated silver/poly-D,l-lactide-co-glycolide nanocomposites for antimicrobial based wound healing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117673. [PMID: 31735599 DOI: 10.1016/j.saa.2019.117673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Polymeric nanocomposites have gained extensive attention in modern nanotechnology by reason of its design, flexibility, sole applications and lower life cycle costs. Preparation of composites using spreading of inorganic metal nanoparticles in organic polymeric matrices has plenty of scope and applications in the biomedical field. Poly-D,l-lactide-co-glycolide (PLGA) is an appreciated polymer for composites preparation because of its non-toxic and promising biodistribution. The consideration of metal nanoparticles has extended rapidly with the presence of new nanocomposites into a range of products and technologies. Compared to bulk materials the synthesized metal nanoparticles have unique character and biomedical uses due to its shape, size, and huge surface to volume ratio. Among different inorganic metal nanoparticles, silver nanoparticles (Ag NPs) have dominated in the biomedical field owing to its diverse potential applications including imaging, sensor, diagnosis and disease treatment. Further, medicinal plant extract mediated Ag NPs shown superior advantages and its antimicrobial based wound healing prospective has been established. However, not much information on plant extract mediated Ag NPs integrated PLGA nanocomposites wound healing applications. In the present review, we discussed necessity, preparation, characterization and antimicrobial based wound healing mechanism of incorporated plant extract mediated silver/PLGA nanocomposites.
Collapse
Affiliation(s)
- Sankar Renu
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, United States.
| | | | - Vilwanathan Ravikumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
16
|
Yadav M, Garg S, Chandra A, Hernadi K. Fabrication of leaf extract mediated bismuth oxybromide/oxyiodide (BiOBrxI1−x) photocatalysts with tunable band gap and enhanced optical absorption for degradation of organic pollutants. J Colloid Interface Sci 2019; 555:304-314. [DOI: 10.1016/j.jcis.2019.07.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022]
|
17
|
Seydi N, Saneei S, Jalalvand AR, Zangeneh MM, Zangeneh A, Tahvilian R, Pirabbasi E. Synthesis of titanium nanoparticles using
Allium eriophyllum
Boiss aqueous extract by green synthesis method and evaluation of their remedial properties. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Niloofar Seydi
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
| | - Sania Saneei
- Department of Dermatology, School of MedicineKermanshah University of Medical Sciences Kermanshah Iran
| | - Ali R. Jalalvand
- Research Center of Oils and FatsKermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Reza Tahvilian
- Pharmaceutical Sciences Research Center, Health InstituteKermanshah University of Medical Sciences Kermanshah Iran
| | | |
Collapse
|
18
|
Garg S, Yadav M, Chandra A, Sapra S, Gahlawat S, Ingole PP, Todea M, Bardos E, Pap Z, Hernadi K. Facile Green Synthesis of BiOBr Nanostructures with Superior Visible-Light-Driven Photocatalytic Activity. MATERIALS 2018; 11:ma11081273. [PMID: 30042360 PMCID: PMC6117687 DOI: 10.3390/ma11081273] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022]
Abstract
Novel green bismuth oxybromide (BiOBr-G) nanoflowers were successfully synthesized via facile hydrolysis route using an Azadirachta indica (Neem plant) leaf extract and concurrently, without the leaf extract (BiOBr-C). The Azadirachta indica leaf extract was employed as a sensitizer and stabilizer for BiOBr-G, which significantly expanded the optical window and boosted the formation of photogenerated charge carriers and transfer over the BiOBr-G surface. The photocatalytic performance of both samples was investigated for the degradation of methyl orange (MO) and phenol (Ph) under the irradiation of visible light. The leaf extract mediated BiOBr-G photocatalyst displayed significantly higher photocatalytic activity when compared to BiOBr-C for the degradation of both pollutants. The degradation rate of MO and Ph by BiOBr-G was found to be nearly 23% and 16% more when compared to BiOBr-C under visible light irradiation, respectively. The substantial increase in the photocatalytic performance of BiOBr-G was ascribed to the multiple synergistic effects between the efficient solar energy harvesting, narrower band gap, high specific surface area, porosity, and effective charge separation. Furthermore, BiOBr-G displayed high stability for five cycles of photocatalytic activity, which endows its practical application as a green photocatalyst in the long run.
Collapse
Affiliation(s)
- Seema Garg
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
| | - Mohit Yadav
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
- Amity Institute of Nanotechnology, Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
| | - Amrish Chandra
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
| | - Sameer Sapra
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Soniya Gahlawat
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Milica Todea
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca 400271, Romania.
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania.
| | - Eniko Bardos
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich tér 1, H-6720 Szeged, Hungary.
| | - Zsolt Pap
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca 400271, Romania.
- Institute of Environmental Science and Technology, University of Szeged, Tisza Lajos krt. 103, H-6720 Szeged, Hungary.
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich tér 1, H-6720 Szeged, Hungary.
| |
Collapse
|
19
|
Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Appl Microbiol Biotechnol 2018; 102:4305-4318. [DOI: 10.1007/s00253-018-8939-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022]
|
20
|
Das RK, Brar SK, Verma M. Checking the Biocompatibility of Plant-Derived Metallic Nanoparticles: Molecular Perspectives. Trends Biotechnol 2016; 34:440-449. [PMID: 26948438 DOI: 10.1016/j.tibtech.2016.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022]
Abstract
Understanding the biocompatibility of metallic nanoparticles (MNPs) is pivotal for biomedical applications. The biocompatibility of plant-derived MNPs has been mostly attributed to capped plant molecules. This claim seems to be straightforward but lacks conclusive evidence. The capped phytochemicals and the metallic core might have decisive and individual roles in imparting the overall biocompatibility. Whether capped phytochemicals really make sense in diminishing the toxicity effect of the otherwise naked or metallic core needs further analysis. Here, we readdress the biocompatibility of plant-derived MNPs with references to contemporary cellular assays, different reactants for green synthesis, possible epigenetic involvement, and nanobiocompatibility at the molecular level. Finally, we discuss relevant in vivo studies and large-scale production issues.
Collapse
Affiliation(s)
- Ratul Kumar Das
- ETE Centre, INRS Université, 490, Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Satinder Kaur Brar
- ETE Centre, INRS Université, 490, Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| | - Mausam Verma
- CO(2) Solutions Inc., 2300, rue Jean-Perrin, Québec, QC, G2C 1T9, Canada
| |
Collapse
|
21
|
Yugandhar P, Haribabu R, Savithramma N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech 2015; 5:1031-1039. [PMID: 28324410 PMCID: PMC4624132 DOI: 10.1007/s13205-015-0307-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/03/2015] [Indexed: 12/03/2022] Open
Abstract
Today green synthesis of silver nanoparticles (SNPs) from plants is an utmost emerging filed in nanotechnology. In the present study, we have reported a green method for synthesis of SNPs from aqueous stem bark extract of Syzygium alternifolium, an endemic medicinal plant of South Eastern Ghats. These green-synthesised nanoparticles are characterised by colour change pattern, and the broad peak obtained at 448 nm with UV–Vis surface plasmon resonance studies confirm that the synthesised nanoparticles are SNPs. FT-IR spectroscopic studies confirm that phenols and proteins of stem bark extract is mainly responsible for capping and stabilisation of synthesised SNPs. Crystallographic studies from XRD indicates, the SNPs are crystalline in nature owing to 44 nm size. EDAX analysis shows 19.28 weight percentage of Ag metal in the sample indicates the purity of sample. AFM, SEM and TEM microscopic studies reveal that the nanoparticles are spherical in shape with sizes ranging from 4 to 48 nm. Antimicrobial studies of the synthesised SNPs on clinically isolated microbes showed very toxic effects. It indicates that stem bark extract of S. alternifolium is suitable for synthesising stable silver nanoparticles which act as excellent antimicrobial agents.
Collapse
Affiliation(s)
- Pulicherla Yugandhar
- Department of Botany, Sri Venkateswara University, Tirupati, 517502, A.P, India.
| | - Reddla Haribabu
- Department of Botany, Sri Venkateswara University, Tirupati, 517502, A.P, India
| | - Nataru Savithramma
- Department of Botany, Sri Venkateswara University, Tirupati, 517502, A.P, India
| |
Collapse
|
22
|
Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0428-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1150-7. [PMID: 25771716 DOI: 10.3109/21691401.2015.1011809] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The biosynthesis of nanoparticles has received attention because of the development of economic and environmentally friendly technology for the synthesis of nanoparticles. The study develops a convenient method for the green synthesis of silver and gold nanoparticles by utilizing fresh root extract of the four-year old Panax ginseng plant, and evaluated the antimicrobial applications of silver nanoparticles against pathogenic microorganisms. P. ginseng is a well-known herbal medicinal plant, and its active ingredients are mainly ginsenosides. The fresh root of the 4 year old P. ginseng plant has been explored for the synthesis of silver and gold nanoparticles without the use of any additional reducing and capping agents. The reduction of silver nitrate led to the formation of silver nanoparticles within 2 h of reaction at 80°C. The gold nanoparticles were also successfully synthesized by the reduction of auric acid at 80°C, within 5 min of reaction. The biosynthesized gold and silver nanoparticles were characterized by techniques using various instruments, viz. ultraviolet-visible spectroscopy (UV-Vis spectroscopy), field emission transmission electron microscopy (FE-TEM), energy dispersive X-ray analysis (EDX), elemental mapping, and X-ray diffraction (XRD). In addition, the silver nanoparticles have shown antimicrobial potential against Bacillus anthracis, Vibrio parahaemolyticus, Staphylococcus aureus, Escherichia coli, and Bacillus cereus.
Collapse
Affiliation(s)
- Priyanka Singh
- a Department of Oriental Medicinal Biotechnology , College of Life Sciences, Kyung Hee University , Yongin 446-701 , Republic of Korea
| | - Yeon Ju Kim
- a Department of Oriental Medicinal Biotechnology , College of Life Sciences, Kyung Hee University , Yongin 446-701 , Republic of Korea
| | - Chao Wang
- a Department of Oriental Medicinal Biotechnology , College of Life Sciences, Kyung Hee University , Yongin 446-701 , Republic of Korea
| | - Ramya Mathiyalagan
- b Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University , Yongin , Republic of Korea
| | - Deok Chun Yang
- a Department of Oriental Medicinal Biotechnology , College of Life Sciences, Kyung Hee University , Yongin 446-701 , Republic of Korea.,b Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University , Yongin , Republic of Korea
| |
Collapse
|
24
|
Abstract
Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phytomediated synthesis of silver nanoparticles, its significant applications in various fields, and characterization techniques involved.
Collapse
|