1
|
Moyo P, Bodede O, Wooding M, Famuyide IM, Makhubu FN, Khorommbi NK, Ofori M, Danquah CA, McGaw LJ, Maharaj VJ. Quorum sensing inhibition by South African medicinal plants species: an in vitro and an untargeted metabolomics study. BMC Complement Med Ther 2025; 25:138. [PMID: 40221765 PMCID: PMC11994000 DOI: 10.1186/s12906-025-04880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance (AMR) is imperiling global health, hence, the need to remedy this challenge by discovering new therapeutic strategies and agents. Quorum sensing inhibition (QSI) is opined as a potential novel strategic approach in the fight against AMR by abrogation of bacterial virulence and pathogenicity. Currently, there are no clinically approved QSI drugs. Based on this, this study evaluated the QSI properties of South African plant species. METHODS Twenty-nine extracts and their corresponding 203 fractions generated using solid phase extraction were screened for QSI activity in vitro against Chromobacterium violaceum ATCC 12472. Active and inactive fractions of the most potent plant species were analysed using UPLC-HRMS. The acquired mass spectral data was subjected to chemometric analysis. RESULTS From the QSI assays, three plant species showed remarkable QSI activity, measured by dose-dependent inhibition of violacein production (IVP), at sublethal concentrations. Terminalia phanerophlebia emerged as the most active species, with the extract and five of its fractions showing good activity in IVP (IVP IC50 ≤ 0.1 mg/mL). This was closely followed by Momordica cardiospermoides whose crude extract and two of its corresponding fractions showed good activity (IVP IC50 ≤ 0.1 mg/mL). Three fractions of Helichrysum odoratissimum also had good activity (IVP IC50 ≤ 0.1 mg/mL) marking it one of the most potent selected species. Chemometric analysis identified five compounds including olivetol and hydroxytyrosol as chemical markers positively associated with the QSI activity of T. phanerophlebia. CONCLUSION In conclusion, the findings of our study provided insight into the QSI properties of South African plant species. Further studies will focus on the isolation of the putative active compounds and the in vitro evaluation of their QSI activity.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Olusola Bodede
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Madelien Wooding
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Ibukun M Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Fikile N Makhubu
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Ndivhuwo K Khorommbi
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Michael Ofori
- Department of Pharmaceutical Sciences, Dr Hilla Limann Technical University, Wa, Ghana
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Cynthia A Danquah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | - Vinesh J Maharaj
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
2
|
Alhadrami HA, Sayed AM, Hassan HM, Rateb ME, Taha MN. Optimized peptide inhibitor Aqs1C targets LasR to disrupt quorum sensing and biofilm formation in Pseudomonas aeruginosa: Insights from MD simulations and in vitro studies. Int J Biol Macromol 2025; 300:140119. [PMID: 39855517 DOI: 10.1016/j.ijbiomac.2025.140119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Pseudomonas aeruginosa (PA) is a critical pathogen, and its antibiotic resistance is largely driven by the quorum-sensing regulator LasR. Herein, we report the design, synthesis, and characterization of Aqs1C, a mutated peptide derivative of Aqs1, optimized to inhibit LasR and its quorum-sensing pathway. By introducing a targeted mutation, Aqs1C exhibited enhanced stability and binding affinity for LasR protein compared to its predecessor, Aqs1B. Using molecular dynamics simulations (MDS), the Aqs1C-LasR complex demonstrated a marked increase in structural stability, reflected in reduced root mean square deviation (RMSD) values and lower binding free energy. Electrostatic complementarity analysis showed stronger and more favorable interactions between Aqs1C and LasR. Further, GaMD experiments were able to reproduce the binding state between Aqs1C and LasR, indicating the binding mechanism between them. These molecular insights correlated with functional in vitro assays. Aqs1C effectively inhibited quorum-sensing-associated virulence factors in PA, involving biofilm formation (77.6 % inhibition), pyocyanin production (75.7 % inhibition), protease secretion (61.1 % inhibition), and rhamnolipid production (74.1 % inhibition), at a 100 μg/mL concentration, in a comparable or superior pattern to azithromycin (AZM). Molecular modelling, MDS, and GaMD insights and in vitro assays established Aqs1C as a promising candidate for therapeutic development to mitigate PA infections through targeted quorum-sensing disruption.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia; King Fahd Medical Research Centre, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mostafa N Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt
| |
Collapse
|
3
|
Aggarwal S, Chakraborty A, Singh V, Lory S, Karalis K, Rahme LG. Revealing the impact of Pseudomonas aeruginosa quorum sensing molecule 2'-aminoacetophenone on human bronchial-airway epithelium and pulmonary endothelium using a human airway-on-a-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644589. [PMID: 40196568 PMCID: PMC11974707 DOI: 10.1101/2025.03.21.644589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Pseudomonas aeruginosa (PA) causes severe respiratory infections utilizing multiple virulence functions. Our previous findings on PA quorum sensing (QS)-regulated small molecule, 2'-aminoacetophenone (2-AA), secreted by the bacteria in infected tissues, revealed its effect on immune and metabolic functions favouring a long-term presence of PA in the host. However, studies on 2-AA's specific effects on bronchial-airway epithelium and pulmonary endothelium remain elusive. To evaluate 2AA's spatiotemporal changes in the human airway, considering endothelial cells as the first point of contact when the route of lung infection is hematogenic, we utilized the microfluidic airway-on-chip lined by polarized human bronchial-airway epithelium and pulmonary endothelium. Using this platform, we performed RNA-sequencing to analyse responses of 2-AA-treated primary human pulmonary microvascular endothelium (HPMEC) and adjacent primary normal human bronchial epithelial (NHBE) cells from healthy female donors and potential cross-talk between these cells. Analyses unveiled specific signaling and biosynthesis pathways to be differentially regulated by 2-AA in epithelial cells, including HIF-1 and pyrimidine signaling, glycosaminoglycan, and glycosphingolipid biosynthesis, while in endothelial cells were fatty acid metabolism, phosphatidylinositol and estrogen receptor signaling, and proinflammatory signaling pathways. Significant overlap in both cell types in response to 2-AA was found in genes implicated in immune response and cellular functions. In contrast, we found that genes related to barrier permeability, cholesterol metabolism, and oxidative phosphorylation were differentially regulated upon exposure to 2-AA in the cell types studied. Murine in-vivo and additional in vitro cell culture studies confirmed cholesterol accumulation in epithelial cells. Results also revealed specific biomarkers associated with cystic fibrosis and idiopathic pulmonary fibrosis to be modulated by 2-AA in both cell types, with the cystic fibrosis transmembrane regulator expression to be affected only in endothelial cells. The 2-AA-mediated effects on healthy epithelial and endothelial primary cells within a microphysiological dynamic environment mimicking the human lung airway enhance our understanding of this QS signaling molecule. This study provides novel insights into their functions and potential interactions, paving the way for innovative, cell-specific therapeutic strategies to combat PA lung infections.
Collapse
|
4
|
Silverman A, Melamed S. Biological Insights from RNA-RNA Interactomes in Bacteria, as Revealed by RIL-seq. Methods Mol Biol 2025; 2866:189-206. [PMID: 39546204 DOI: 10.1007/978-1-0716-4192-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Bacteria reside in constantly changing environments and require rapid and precise adjustments of gene expression to ensure survival. Small regulatory RNAs (sRNAs) are a crucial element that bacteria utilize to achieve this. sRNAs are short RNA molecules that modulate gene expression usually through base-pairing interactions with target RNAs, primarily mRNAs. These interactions can lead to either negative outcomes such as mRNA degradation or translational repression or positive outcomes such as mRNA stabilization or translation enhancement. In recent years, high-throughput approaches such as RIL-seq (RNA interaction by ligation and sequencing) revolutionized the sRNA field by enabling the identification of sRNA targets on a global scale, unveiling intricate sRNA-RNA networks. In this review, we discuss the insights gained from investigating sRNA-RNA networks in well-studied bacterial species as well as in understudied bacterial species. Having a complete understanding of sRNA-mediated regulation is critical for the development of new strategies for controlling bacterial growth and combating bacterial infections.
Collapse
Affiliation(s)
- Aviezer Silverman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2025; 22:39-53. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Li X, Zhang C, Li S, Liang S, Xu X, Zhao Z. Quorum sensing positively regulates CPS-dependent Autographiviridae phage infection in Vibrio alginolyticus. Appl Environ Microbiol 2024; 90:e0221023. [PMID: 39072624 PMCID: PMC11337841 DOI: 10.1128/aem.02210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Quorum sensing (QS) orchestrates many bacterial behaviors, including virulence and biofilm formation, across bacterial populations. Nevertheless, the underlying mechanism by which QS regulates capsular polysaccharide (CPS)-dependent phage-bacterium interactions remains unclear. In this study, we report that QS upregulates the expression of CPS-dependent phage receptors, thus increasing phage adsorption and infection rates in Vibrio alginolyticus. We found that QS upregulated the expression of the ugd gene, leading to increased synthesis of Autographiviridae phage receptor CPS synthesis in V. alginolyticus. The signal molecule autoinducer-2 released by Vibrio from different sources can potentially enhance CPS-dependent phage infections. Therefore, our data suggest that inhibiting QS may reduce, rather than improve, the therapeutic efficacy of CPS-specific phages. IMPORTANCE Phage resistance is a direct threat to phage therapy, and understanding phage-host interactions, especially how bacteria block phage infection, is essential for developing successful phage therapy. In the present study, we demonstrate for the first time that Vibrio alginolyticus uses quorum sensing (QS) to promote capsular polysaccharide (CPS)-specific phage infection by upregulating ugd expression, which is necessary for the synthesis of Autographiviridae phage receptor CPS. Although increased CPS-specific phage susceptibility is a novel trade-off mediated by QS, it results in the upregulation of virulence factors, promoting biofilm development and enhanced capsular polysaccharide production in V. alginolyticus. This suggests that inhibiting QS may improve the effectiveness of antibiotic treatment, but it may also reduce the efficacy of phage therapy.
Collapse
Affiliation(s)
- Xixi Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Chen Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Shenao Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Sixuan Liang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Xuefei Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Cuahtecontzi Delint R, Ishak MI, Tsimbouri PM, Jayawarna V, Burgess KVE, Ramage G, Nobbs AH, Damiati L, Salmeron-Sanchez M, Su B, Dalby MJ. Nanotopography Influences Host-Pathogen Quorum Sensing and Facilitates Selection of Bioactive Metabolites in Mesenchymal Stromal Cells and Pseudomonas aeruginosa Co-Cultures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43374-43386. [PMID: 39113638 PMCID: PMC11345723 DOI: 10.1021/acsami.4c09291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Orthopedic implant-related bacterial infections and resultant antibiotic-resistant biofilms hinder implant-tissue integration and failure. Biofilm quorum sensing (QS) communication determines the pathogen colonization success. However, it remains unclear how implant modifications and host cells are influenced by, or influence, QS. High aspect ratio nanotopographies have shown to reduce biofilm formation of Pseudomonas aeruginosa, a sepsis causing pathogen with well-defined QS molecules. Producing such nanotopographies in relevant orthopedic materials (i.e., titanium) allows for probing QS using mass spectrometry-based metabolomics. However, nanotopographies can reduce host cell adhesion and regeneration. Therefore, we developed a polymer (poly(ethyl acrylate), PEA) coating that organizes extracellular matrix proteins, promoting bioactivity to host cells such as human mesenchymal stromal cells (hMSCs), maintaining biofilm reduction. This allowed us to investigate how hMSCs, after winning the race for the surface against pathogenic cells, interact with the biofilm. Our approach revealed that nanotopographies reduced major virulence pathways, such as LasR. The enhanced hMSCs support provided by the coated nanotopographies was shown to suppress virulence pathways and biofilm formation. Finally, we selected bioactive metabolites and demonstrated that these could be used as adjuncts to the nanostructured surfaces to reduce biofilm formation and enhance hMSC activity. These surfaces make excellent models to study hMSC-pathogen interactions and could be envisaged for use in novel orthopedic implants.
Collapse
Affiliation(s)
- Rosalia Cuahtecontzi Delint
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Mohd I. Ishak
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Penelope M. Tsimbouri
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Vineetha Jayawarna
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Karl V. E. Burgess
- EdinOmics, University
of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Gordon Ramage
- Safeguarding
Health through Infection Prevention (SHIP) Research Group, Research
Centre for Health, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Angela H. Nobbs
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Laila Damiati
- Department
of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Manuel Salmeron-Sanchez
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Bo Su
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| |
Collapse
|
8
|
Yi Y, Zhou Y, Lin S, Shi K, Mei J, Ying G, Wu S. Screening and isolation of quorum sensing inhibitors of Pseudomonas aeruginosa from Phellodendron amurense extracts using bio-affinity chromatography. J Sep Sci 2024; 47:e2400222. [PMID: 39091177 DOI: 10.1002/jssc.202400222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Drug-resistant bacterial infections pose a significant challenge in the field of bacterial disease treatment. Finding new antibacterial pathways and targets to combat drug-resistant bacteria is crucial. The bacterial quorum sensing (QS) system regulates the expression of bacterial virulence factors. Inhibiting bacterial QS and reducing bacterial virulence can achieve antibacterial therapeutic effects, making QS inhibition an effective strategy to control bacterial pathogenicity. This article mainly focused on the PqsA protein in the QS system of Pseudomonas aeruginosa. An affinity chromatography medium was developed using the SpyTag/SpyCatcher heteropeptide bond system. Berberine, which can interact with the PqsA target, was screened from Phellodendron amurense by affinity chromatography. We characterized its structure, verified its inhibitory activity on P. aeruginosa, and preliminarily analyzed its mechanism using molecular docking technology. This method can also be widely applied to the immobilization of various protein targets and the effective screening of active substances.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Ye Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Susu Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Kefan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Shujiang Wu
- HangZhouBiotest Biotech Co., Ltd, Hangzhou, China
| |
Collapse
|
9
|
Gokhale KM, Patravale V, Pingale R, Pandey P, Vavilala SL. Se-functionalized ZIF-8 nanoparticles: synthesis, characterization and disruption of biofilms and quorum sensing in Serratia marcescens. Biomed Mater 2024; 19:055020. [PMID: 39025122 DOI: 10.1088/1748-605x/ad6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The majority of research on nanomaterials has been concentrated on metal nanoparticles since they are easily made and manipulated. Nanomaterials have shown a wide range of applications in biology. Nevertheless, their bioactivity declines due to their extreme susceptibility to and novel Se@ZIF-8 by chemical method. The sizes and morphologies of Se (0) and Se@ZIFchemical and physical stimuli. The goal of encapsulating these nanomaterials in a matrix is gradually being pursued, which boosts their affordability, stability, and usability. Metal-organic frameworks, often known as MOFs, have the potential to be the best platforms for encapsulating metal nanoparticles due to their well-defined frameworks, persistent porosity, and flexibility in modification. In this investigation, we report the synthesis and optimization of polyvinylpyrrolidone-stabilized Se(0) nanoparticles -8 were affected by the ratios of Se/Zn2+and [hmim]/Zn2+used. The optimized Se@ZIF-8 nanoparticles exhibited a particle size and zeta potential of 319 nm and -34 mv respectively. Transmission electron microscopy displayed spherical morphology for Se(0) nanoparticles, whereas the surface morphology of novel Se@ZIF-8 nanoparticles was drastically changed to hexagonal shaped structures with smooth surface morphologies in scanning electron microscopy (SEM). The DTA, TG/DTG, XRD analysis confirmed the presence of novel Se incorporated ZIF-8 nanoparticulate framework. The synthesized novel Se@ZIF-8 nanoparticles showed efficient antibacterial activity as evidenced by low MIC values. Interestingly, these Se@ZIF-8 NPs not only inhibited biofilm formation inS. marcescens,but also effectively eradicated mature biofilms by degrading the eDNA of the EPS layer. It was validated by confocal laser scanning microscopy and SEM analysis. It was observed that Se@ZIF-8 targeted the Quroum Sensing pathway and reduced its associated virulence factors production. This work opens up a different approach of Se@ZIF-8 nanoparticles as novel antibiotics to treat biofilm-associated infections caused byS. marcescensand offer a solution for antimicrobial resistance.
Collapse
Affiliation(s)
- Kunal M Gokhale
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle, Mumbai 400056, India
| | - Vandana Patravale
- Institute of Chemical Technology, Department of Pharm. Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Rutuja Pingale
- Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar 421003, India
| | - Pooja Pandey
- School of Biological Sciences, UM DAE Centre for Excellence in basic Sciences, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM DAE Centre for Excellence in basic Sciences, Mumbai 400098, India
| |
Collapse
|
10
|
Arya S, Usha R. Bioprospecting and Exploration of Phytochemicals as Quorum Sensing Inhibitors against Cariogenic Dental Biofilm. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:100-117. [DOI: 10.22207/jpam.18.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Dental caries is a polymicrobial infection affecting the dental hard tissues. Excessive carbohydrate intake leads to the accumulation of acid-producing and acid-resistant microorganisms in the oral region. It is a biofilm-dependent oral infection with cariogenic pathogens and the most prevalent disease globally. The prevention and control of caries play a vital role in global health management. Periodontal diseases and subgingival plaque etiology are due to the combined action of bacterial invasion and immune reaction, resulting in the devastation of periodontal tissues, culminating in tooth loss. The compact micro colony inhabiting the dental surfaces attaches with secreted polymer, forming a biofilm. Bacterial biofilm impervious to various drugs and chemicals poses a significant challenge in therapeutic scenarios of medical and odonatological infections. The quorum-sensing signaling mechanism in bacteria controls the metabolic and physiologic properties involved in bacterial existence, pathogenesis, and virulence. Hence, studies monitoring the molecular mechanism of quorum sensing and their restricted social interactions will be highly beneficial in the treatment regimen of the modern era. Natural bioactive compounds can be exploited for their medicinal value in combating oro-dental infections. Phytochemicals are promising candidates that could provide novel strategies for fighting infections. The current review highlights the mechanism of quorum sensing, plant products’ effect in controlling quorum sensing, and biofilm-induced dental infections like Periodontitis.
Collapse
|
11
|
Alasiri A, Soltane R, Taha MN, Abd El-Aleam RH, Alshehri F, Sayed AM. Bakuchiol inhibits Pseudomonas aeruginosa's quorum sensing-dependent biofilm formation by selectively inhibiting its transcriptional activator protein LasR. Int J Biol Macromol 2024; 255:128025. [PMID: 37979739 DOI: 10.1016/j.ijbiomac.2023.128025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
In the present study, we characterized Bakuchiol (Bak) as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm formation. Upon extensive in vitro investigations, Bak was found to suppress the P. aeruginosa biofilm formation (75.5 % inhibition) and its associated virulence factor e.g., pyocyanin and rhamnolipids (% of inhibition = 71.5 % and 66.9 %, respectively). Upon LuxR-type receptors assay, Bak was found to selectively inhibit P. aeruginosa's LasR in a dose-dependent manner. Further in-depth molecular investigations (e.g., sedimentation velocity and thermal shift assays) revealed that Bak destabilized LasR upon binding and disrupted its functioning quaternary structure (i.e., the functioning dimeric form). The subsequent modeling and molecular dynamics (MD) simulations explained in more molecular detail how Bak interacts with LasR and how it can induce its dimeric form disruption. In conclusion, our study identified Bak as a potent and specific LasR antagonist that should be widely used as a chemical probe of QS in P. aeruginosa, offering new insights into LasR antagonism processes. The new findings shed light on the cryptic world of LuxR-type QS in this important opportunistic pathogen.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Mostafa N Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo 11571, Egypt.
| | - Fatma Alshehri
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ahmed M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt; Department of Pharmacognosy, College of Pharmacy, Almaaqal University, 61014 Basra, Iraq.
| |
Collapse
|
12
|
Padayao MHR, Padayao FRP, Patalinghug JM, Raña GS, Yee J, Geraldino PJ, Quilantang N. Antimicrobial and quorum sensing inhibitory activity of epiphytic bacteria isolated from the red alga Halymenia durvillei. Access Microbiol 2023; 5:000563.v4. [PMID: 38188234 PMCID: PMC10765052 DOI: 10.1099/acmi.0.000563.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Halymenia durvillei is a red alga that is commonly utilized in the Philippines as food and as a source of high-value natural products for industrial applications. However, there are no studies regarding the microbial community associated with H. durvillei and its potential applications. This study aimed to isolate and identify the epiphytic bacteria of H. durvillei and determine their antimicrobial and quorum sensing inhibitory (QSI) effects. The thalli of H. durvillei were collected at the shores of Santa Fe, Bantayan, Cebu, Philippines. Bacterial isolates were identified using 16S rRNA, and their ethyl acetate (EtOAc) extracts were subjected to antimicrobial susceptibility tests against representative species of yeast and Gram-negative and Gram-positive bacteria. Their QSI activity against Chromobacterium violaceum was also determined. Fourteen distinct bacterial colonies belonging to four genera, namely Alteromonas (3), Bacillus (5), Oceanobacillus (1) and Vibrio (5), were successfully isolated and identified. All 14 bacterial isolates exhibited antibacterial effects. EPB9, identified as Bacillus safensis , consistently showed the strongest inhibition against Escherichia coli , Staphylococcus aureus and Staphylococcus epidermidis , with minimum inhibitory concentrations (MICs) ranging from 0.0625 to 1.0 mg ml-1. In contrast, all 14 isolates showed weak antifungal effects. Both B. safensis (EPB9) and Bacillus australimaris (EPB15) exhibited QSI effects at 100 mg ml-1, showing opaque zones of 3.1±0.9 and 3.8±0.4 mm, respectively. This study is the first to isolate and identify the distinct microbial epiphytic bacterial community of H. durvillei and its potential as an abundant resource for new antibacterial and QSI bioactives.
Collapse
Affiliation(s)
- Mary Hannah Rose Padayao
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Francis Reuben Paul Padayao
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Jenny Marie Patalinghug
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Gem Stephen Raña
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Jonie Yee
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Paul John Geraldino
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Norman Quilantang
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| |
Collapse
|
13
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
14
|
Kushwaha A, Agarwal V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone mediates Ca +2 dysregulation, mitochondrial dysfunction, and apoptosis in human peripheral blood lymphocytes. Heliyon 2023; 9:e21462. [PMID: 38027911 PMCID: PMC10660034 DOI: 10.1016/j.heliyon.2023.e21462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone is a Pseudomonas aeruginosa secreted quorum-sensing molecule that mediates the secretion of virulence factors, biofilm formation and plays a pivotal role in proliferation and persistence in the host. Apart from regulating quorum-sensing, the autoinducer signal molecule N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL or C12) of a LasI-LasR circuit exhibits immunomodulatory effects and induces apoptosis in various host cells. However, the precise pathophysiological impact of C12 on human peripheral blood lymphocytes and its involvement in mitochondrial dysfunction remained largely elusive. In this study, the results suggest that C12 (100 μM) induces upregulation of cytosolic and mitochondrial Ca+2 levels and triggers mitochondrial dysfunction through the generation of mitochondrial ROS (mROS), disruption of mitochondrial transmembrane potential (ΔΨm), and opening of the mitochondrial permeability transition pore (mPTP). Additionally, it was observed that C12 induces phosphatidylserine (PS) exposure and promotes apoptosis in human peripheral blood lymphocytes. However, apoptosis plays a critical role in the homeostasis and development of lymphocytes, whereas enhanced apoptosis can cause immunodeficiency through cell loss. These findings suggest that C12 exerts a detrimental effect on lymphocytes by mediating mitochondrial dysfunction and enhancing apoptosis, which might further impair the effective mounting of immune responses during Pseudomonas aeruginosa-associated infections.
Collapse
Affiliation(s)
- Ankit Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
15
|
Soltane R, Alasiri A, Taha MN, Abd El-Aleam RH, Alghamdi KS, Ghareeb MA, Keshek DEG, Cardoso SM, Sayed AM. Norlobaridone Inhibits Quorum Sensing-Dependent Biofilm Formation and Some Virulence Factors in Pseudomonas aeruginosa by Disrupting Its Transcriptional Activator Protein LasR Dimerization. Biomolecules 2023; 13:1573. [PMID: 38002255 PMCID: PMC10669572 DOI: 10.3390/biom13111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023] Open
Abstract
In the present study, norlobaridone (NBD) was isolated from Parmotrema and then evaluated as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm development. This phenolic natural product was found to reduce P. aeruginosa biofilm formation (64.6% inhibition) and its related virulence factors, such as pyocyanin and rhamnolipids (% inhibition = 61.1% and 55%, respectively). In vitro assays inhibitory effects against a number of known LuxR-type receptors revealed that NBD was able to specifically block P. aeruginosa's LasR in a dose-dependent manner. Further molecular studies (e.g., sedimentation velocity and thermal shift assays) demonstrated that NBD destabilized LasR upon binding and damaged its functional quaternary structure (i.e., the functional dimeric form). The use of modelling and molecular dynamics (MD) simulations also allowed us to further understand its interaction with LasR, and how this can disrupt its dimeric form. Finally, our findings show that NBD is a powerful and specific LasR antagonist that should be widely employed as a chemical probe in QS of P. aeruginosa, providing new insights into LasR antagonism processes. The new discoveries shed light on the mysterious world of LuxR-type QS in this key opportunistic pathogen.
Collapse
Affiliation(s)
- Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mostafa N. Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt;
| | - Rehab H. Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Kawthar Saad Alghamdi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin 39511, Saudi Arabia;
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt;
| | - Doaa El-Ghareeb Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Giza 11571, Egypt
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ahmed M. Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| |
Collapse
|
16
|
Francis D, Veeramanickathadathil Hari G, Koonthanmala Subash A, Bhairaddy A, Joy A. The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:327-400. [PMID: 38220430 DOI: 10.1016/bs.apcsb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus is a major healthcare concern due to its ability to inflict life-threatening infections and evolve antibiotic resistance at an alarming pace. It is frequently associated with hospital-acquired infections, especially device-associated infections. Systemic infections due to S. aureus are difficult to treat and are associated with significant mortality and morbidity. The situation is worsened by the ability of S. aureus to form social associations called biofilms. Biofilms embed a community of cells with the ability to communicate with each other and share resources within a polysaccharide or protein matrix. S. aureus establish biofilms on tissues and conditioned abiotic surfaces. Biofilms are hyper-tolerant to antibiotics and help evade host immune responses. Biofilms exacerbate the severity and recalcitrance of device-associated infections. The development of a biofilm involves various biomolecules, such as polysaccharides, proteins and nucleic acids, contributing to different structural and functional roles. Interconnected signaling pathways and regulatory molecules modulate the expression of these molecules. A comprehensive understanding of the molecular biology of biofilm development would help to devise effective anti-biofilm therapeutics. Although bactericidal agents, antimicrobial peptides, bacteriophages and nano-conjugated anti-biofilm agents have been employed with varying levels of success, there is still a requirement for effective and clinically viable anti-biofilm therapeutics. Proteins that are expressed and utilized during biofilm formation, constituting the biofilm proteome, are a particularly attractive target for anti-biofilm strategies. The proteome can be explored to identify potential anti-biofilm drug targets and utilized for rational drug discovery. With the aim of uncovering the biofilm proteome, this chapter explores the mechanism of biofilm formation and its regulation. Furthermore, it explores the antibiofilm therapeutics targeted against the biofilm proteome.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India.
| | | | | | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| |
Collapse
|
17
|
Zhang Y, Bhasme P, Reddy DS, Liu D, Yu Z, Zhao T, Zheng Y, Kumar A, Yu H, Ma LZ. Dual functions: A coumarin-chalcone conjugate inhibits cyclic-di-GMP and quorum-sensing signaling to reduce biofilm formation and virulence of pathogens. MLIFE 2023; 2:283-294. [PMID: 38817812 PMCID: PMC10989777 DOI: 10.1002/mlf2.12087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 06/01/2024]
Abstract
Antibiotic resistance or tolerance of pathogens is one of the most serious global public health threats. Bacteria in biofilms show extreme tolerance to almost all antibiotic classes. Thus, use of antibiofilm drugs without bacterial-killing effects is one of the strategies to combat antibiotic tolerance. In this study, we discovered a coumarin-chalcone conjugate C9, which can inhibit the biofilm formation of three common pathogens that cause nosocomial infections, namely, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, with the best antibiofilm activity against P. aeruginosa. Further investigations indicate that C9 decreases the synthesis of the key biofilm matrix exopolysaccharide Psl and bacterial second messenger cyclic-di-GMP. Meanwhile, C9 can interfere with the regulation of the quorum sensing (QS) system to reduce the virulence of P. aeruginosa. C9 treatment enhances the sensitivity of biofilm to several antibiotics and reduces the survival rate of P. aeruginosa under starvation or oxidative stress conditions, indicating its excellent potential for use as an antibiofilm-forming and anti-QS drug.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Pramod Bhasme
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dinesh S. Reddy
- Centre for Nano and Material SciencesJain UniversityBangaloreKarnatakaIndia
| | - Dejian Liu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhaoxiao Yu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Tianhu Zhao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yaqian Zheng
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Amit Kumar
- Centre for Nano and Material SciencesJain UniversityBangaloreKarnatakaIndia
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Singh S. Maiden Impact Factor to Journal of Laboratory Physicians : An Encouragement for Editors and Authors. J Lab Physicians 2023; 15:327-328. [PMID: 37564224 PMCID: PMC10411174 DOI: 10.1055/s-0043-1771389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Affiliation(s)
- Sarman Singh
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
19
|
Priya PS, Boopathi S, Murugan R, Haridevamuthu B, Arshad A, Arockiaraj J. Quorum sensing signals: Aquaculture risk factor. REVIEWS IN AQUACULTURE 2023; 15:1294-1310. [DOI: 10.1111/raq.12774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 10/16/2023]
Abstract
AbstractBacteria produce several virulence factors and cause massive mortality in fish and crustaceans. Abundant quorum sensing (QS) signals and high cell density are essentially required for the production of such virulence factors. Although several strategies have been developed to control aquatic pathogens through antibiotics and QS inhibition, the impact of pre‐existing QS signals in the aquatic environment has been overlooked. QS signals cause detrimental effects on mammalian cells and induce cell death by interfering with multiple cellular pathways. Moreover, QS signals not only function as a messenger, but also annihilate the functions of the host immune system which implies that QS signals should be designated as a major virulence factor. Despite QS signals' role has been well documented in mammalian cells, their impact on aquatic organisms is still at the budding stage. However, many aquatic organisms produce enzymes that degrade and detoxify such QS signals. In addition, physical and chemical factors also determine the stability of the QS signals in the aqueous environment. The balance between QS signals and existing QS signals degrading factors essentially determines the disease progression in aquatic organisms. In this review, we highlight the impact of QS signals on aquatic organisms and further discussed potential alternative strategies to control disease progression.
Collapse
Affiliation(s)
- P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Seenivasan Boopathi
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
20
|
Vashistha A, Sharma N, Nanaji Y, Kumar D, Singh G, Barnwal RP, Yadav AK. Quorum sensing inhibitors as Therapeutics: Bacterial biofilm inhibition. Bioorg Chem 2023; 136:106551. [PMID: 37094480 DOI: 10.1016/j.bioorg.2023.106551] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
The overuse and inappropriate use of antibiotics to treat bacterial infections has led to the development of multiple drug resistant strains. Biofilm is a complex microorganism aggregation defined by the presence of a dynamic, sticky, and protective extracellular matrix made of polysaccharides, proteins, and nucleic acids. The infectious diseases are caused by bacteria that flourish within quorum sensing (QS) mediated biofilms. Efforts to disrupt biofilms have enabled the identification of bioactive molecules produced by prokaryotes and eukaryotes. The QS system is quenched predominantly by these molecules. The phenomenon is also termed as quorum sensing (QS). Both synthetic and natural substances have been discovered to be useful in QS. This review describes natural and synthetic quorum sensing inhibitors (QSIs) with the potential to treat bacterial infections. It includes the discussion on quorum sensing, mechanism of quorum sensing, effect of substituents on the activity. These discoveries could result in effective therapies using far lower dosages of medications, particularly antibiotics, are currently needed.
Collapse
Affiliation(s)
- Aditi Vashistha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Nikhil Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Yerramsetti Nanaji
- Texas Tech University Health Sciences Center, Ophthalmology Dept Lbk Genl, Lubbock, Texas, USA, 3601 4th Street, Lubbock TX 79430, United States
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
21
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
22
|
Salman MK, Abuqwider J, Mauriello G. Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms 2023; 11:microorganisms11030793. [PMID: 36985366 PMCID: PMC10056907 DOI: 10.3390/microorganisms11030793] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Background: Quorum sensing (QS) is a cell-to-cell communication mechanism that occurs between inter- and intra-bacterial species and is regulated by signaling molecules called autoinducers (AIs). It has been suggested that probiotics can exert a QS inhibitory effect through their metabolites. Purpose: To provide an overview of (1) the anti-QS activity of probiotics and its mechanism against foodborne pathogenic and spoilage bacteria; (2) the potential role of the QS of probiotics in gut health; and (3) the impact of microencapsulation on QS. Results: Lactobacillus species have been extensively studied for their anti-QS activity and have been found to effectively disrupt QS in vitro. However, their effectiveness in a food matrix is yet to be determined as they interfere with the AI receptor or its synthesis. QS plays an important role in both the biofilm formation of probiotics and pathogenic bacteria. Moreover, in vitro and animal studies have shown that QS molecules can modulate cytokine responses and gut dysbiosis and maintain intestinal barrier function. In this scenario, microencapsulation was found to enhance AI activity. However, its impact on the anti-QS activity of probiotics and its underlying mechanism remains unclear. Conclusions: Probiotics are potential candidates to block QS activity in foodborne pathogenic and food spoilage bacteria. Microencapsulation increases QS efficacy. However, more research is still needed for the identification of the QS inhibitory metabolites from probiotics and for the elucidation of the anti-QS mechanism of probiotics (microcapsules and free cells) in food and the human gut.
Collapse
|
23
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
24
|
Kachhadia R, Kapadia C, Datta R, Jajda H, Danish S, Glick BR. Cloning and characterization of Aiia, an acylhomoserine lactonase from Bacillus cereus RC1 to control soft rot causing pathogen Lelliottia amnigena RCE. Arch Microbiol 2022; 204:665. [DOI: 10.1007/s00203-022-03271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
|
25
|
Akbarian M, Chen SH, Kianpour M, Farjadian F, Tayebi L, Uversky VN. A review on biofilms and the currently available antibiofilm approaches: Matrix-destabilizing hydrolases and anti-bacterial peptides as promising candidates for the food industries. Int J Biol Macromol 2022; 219:1163-1179. [PMID: 36058386 DOI: 10.1016/j.ijbiomac.2022.08.192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Biofilms are communities of microorganisms that can be harmful and/or beneficial, depending on location and cell content. Since in most cases (such as the formation of biofilms in laboratory/medicinal equipment, water pipes, high humidity-placed structures, and the food packaging machinery) these bacterial and fungal communities are troublesome, researchers in various fields are trying to find a promising strategy to destroy or slow down their formation. In general, anti-biofilm strategies are divided into the plant-based and non-plant categories, with the latter including nanoparticles, bacteriophages, enzymes, surfactants, active peptides and free fatty acids. In most cases, using a single strategy will not be sufficient to eliminate biofilm, and consequently, two or more strategies will inevitably be used to deal with this unwanted phenomenon. According to the analysis of potential biofilm inhibition strategies, the best option for the food industry would be the use of hydrolase enzymes and peptides extracted from natural sources. This article represents a systematic review of the previous efforts made in these directions.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Maryam Kianpour
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, Russia.
| |
Collapse
|
26
|
Kunčič A, Bucar F, Smole Možina S. Rhodiola rosea Reduces Intercellular Signaling in Campylobacter jejuni. Antibiotics (Basel) 2022; 11:1220. [PMID: 36140000 PMCID: PMC9494958 DOI: 10.3390/antibiotics11091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen and the leading cause of bacterial gastroenteritis, i.e., campylobacteriosis. Besides searching for novel antimicrobials, identification of new targets for their action is becoming increasingly important. Rhodiola rosea has long been used in traditional medicine. Ethanolic extracts from the roots and rhizomes of the plant contain a wide range of bioactive compounds with various pharmacological activities. In this study, cultivated plant materials have been used, i.e., "Mattmark" and "Rosavine". Through optimized protocols, we obtained fractions of the initial ethanolic extracts rich in most important bioactive compounds from R. rosea, including salidroside, rosavins, proanthocyanidins (PACs), and flavonoids. The antimicrobial activity in relation to the chemical composition of the extracts and their fractions was studied with an emphasis on C. jejuni AI-2-mediated intercellular signaling. At concentration 15.625 mg/L, bioluminescence reduction rates varied from 27% to 72%, and the membrane remained intact. Fractions rich in PACs had the strongest antimicrobial effect against C. jejuni, with the lowest minimal inhibitory concentrations (MICs) (M F3 40%: 62.5 mg/L; R F3 40%: 250 mg/L) and the highest intercellular signaling reduction rates (M F3 40%: 72%; R F3 40%: 65%). On the other hand, fractions without PACs were less effective (MICs: M F5 PVP: 250 mg/L; R F5 PVP: 1000 mg/L and bioluminescence reduction rates: M F5 PVP: 27%; R F5 PVP: 43%). Additionally, fractions rich in flavonoids had strong antimicrobial activity (MICs: M F4 70%: 125 mg/L; R F4 70%: 250 mg/L and bioluminescence reduction rates: M F4 70%: 68%; R F4 70%: 50%). We conclude that PACs and flavonoids are crucial compound groups responsible for the antimicrobial activity of R. rosea roots and rhizomes in C. jejuni.
Collapse
Affiliation(s)
- Ajda Kunčič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Ko YJ, Kim S, Pan CH, Park K. Identification of Functional Microbial Modules Through Network-Based Analysis of Meta-Microbial Features Using Matrix Factorization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2851-2862. [PMID: 34329170 DOI: 10.1109/tcbb.2021.3100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the microbiome is composed of a variety of microbial interactions, it is imperative in microbiome research to identify a microbial sub-community that collectively conducts a specific function. However, current methodologies have been highly limited to analyzing conditional abundance changes of individual microorganisms without considering group-wise collective microbial features. To overcome this limitation, we developed a network-based method using nonnegative matrix factorization (NMF) to identify functional meta-microbial features (MMFs) that, as a group, better discriminate specific environmental conditions of samples using microbiome data. As proof of concept, large-scale human microbiome data collected from different body sites were used to identify body site-specific MMFs by applying NMF. The statistical test for MMFs led us to identify highly discriminative MMFs on sample classes, called synergistic MMFs (SYMMFs). Finally, we constructed a SYMMF-based microbial interaction network (SYMMF-net) by integrating all of the SYMMF information. Network analysis revealed core microbial modules closely related to critical sample properties. Similar results were also found when the method was applied to various disease-associated microbiome data. The developed method interprets high-dimensional microbiome data by identifying functional microbial modules on sample properties and intuitively representing their systematic relationships via a microbial network.
Collapse
|
28
|
Aminotransferase SsAro8 Regulates Tryptophan Metabolism Essential for Filamentous Growth of Sugarcane Smut Fungus
Sporisorium scitamineum. Microbiol Spectr 2022; 10:e0057022. [PMID: 35862944 PMCID: PMC9431617 DOI: 10.1128/spectrum.00570-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sugarcane smut caused by the basidiomycetous fungus Sporisorium scitamineum leads to severe economic losses globally. Sexual mating/filamentation of S. scitamineum is critical for its pathogenicity, as only the dikaryotic hyphae formed after sexual mating are capable of invading the host cane. Our comparative transcriptome analysis showed that the mitogen-activated protein kinase (MAPK) pathway and the AGC kinase Agc1 (orthologous to yeast Rim15), both governing S. scitamineum mating/filamentation, were induced by elevated tryptophol level, supporting a positive regulation of S. scitamineum mating/filamentation by tryptophol. However, the biosynthesis pathway of tryptophol remains unknown in S. scitamineum. Here, we identified an aminotransferase orthologous to the established tryptophan aminotransferase Tam1/Aro8, catalyzing the first step of tryptophan-dependent indole-3-acetic acid (IAA) production as well as that of the Ehrlich pathway for tryptophol production. We designated this S. scitamineum aminotransferase as SsAro8 and found that it was essential for mating/filamentation. Comparative metabolomics analysis revealed that SsAro8 was involved in tryptophan metabolism, likely for producing important intermediate products, including tryptophol. Exogenous addition of tryptophan or tryptophol could differentially restore mating/filamentation in the ssaro8Δ mutant, indicating that in addition to tryptophol, other product(s) of tryptophan catabolism may also be involved in S. scitamineum mating/filamentation regulation. S. scitamineum could also produce IAA, partially dependent on SsAro8 function. Surprisingly, photodestruction of IAA produced the compound(s) able to suppress S. scitamineum growth/differentiation. Lastly, we found that SsAro8 was required for proper biofilm formation, oxidative stress tolerance, and full pathogenicity in S. scitamineum. Overall, our study establishes the aminotransferase SsAro8 as an essential regulator of S. scitamineum pathogenic differentiation, as well as fungus-host interaction, and therefore of great potential as a molecular target for sugarcane smut disease control. IMPORTANCE Sugarcane smut caused by the basidiomycete fungus S. scitamineum leads to massive economic losses in sugarcane plantation globally. Dikaryotic hyphae formation (filamentous growth) and biofilm formation are two important aspects in S. scitamineum pathogenesis, yet the molecular regulation of these two processes was not as extensively investigated as that in the model pathogenic fungi, e.g., Candida albicans, Ustilago maydis, or Cryptococcus neoformans. In this study, a tryptophan aminotransferase ortholog was identified in S. scitamineum, designated SsAro8. Functional characterization showed that SsAro8 positively regulates both filamentous growth and biofilm formation, respectively, via tryptophol-dependent and -independent manners. Furthermore, SsAro8 is required for full pathogenicity and, thus, is a promising molecular target for designing anti-smut strategy.
Collapse
|
29
|
Arendse M, Khan S, Wani MY, Aqlan FM, Al-Bogami AS, Ahmad A. Quorum Sensing and Biofilm Disrupting Potential of Imidazole Derivatives in Chromobacterium violaceum Using Antimicrobial and Drug Discovery Approaches. Braz J Microbiol 2022; 53:565-582. [PMID: 35301694 PMCID: PMC9151946 DOI: 10.1007/s42770-022-00702-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Population of drug-resistant bacteria have increased at an alarming rate in the past few decades. The major reason for increasing drug resistance is the lack of new antibiotics and limited drug targets. It has therefore been a vital task to develop new antibiotics with different drug targets. Two such targets are biofilm formation and quorum sensing. Quorum sensing is cell to cell communication used by bacteria that initiates many important survival processes and aids in establishing pathogenesis. Both biofilm and quorum sensing are inter-related processes and play a major role in physiological and pathogenesis processes. In this study, five novel imidazole derivatives (IMA-1-IMA-5) were synthesised and tested for their antibacterial and anti-quorum sensing activities against Chromobacterium violaceum using different in silico and in vitro techniques following the standard protocols. In silico results revealed that all compounds were able to effectively bind to and interact sufficiently with the target protein CviR. CviR is a protein to which autoinducers bind to initiate the quorum sensing process. In silico results also revealed that the compounds generated favourable structural dynamics implying that the compounds would be able to effectively bind to CviR and inhibit quorum sensing. Susceptibility results revealed that IMA-1 is the most active of all the derivatives against both planktonic cells and biofilms. Qualitative and quantitative evaluation of anti-quorum sensing activity at sub-inhibitory concentrations of these compounds also revealed high activity for IMA-1. Down-regulation of most of the quorum sensing genes when cells were treated with the test compounds affirmed the high anti-quorum sensing activities of these compounds. The results from this study are promising and urges on the use of anti-quorum sensing and biofilm disrupting molecules to combat multi-drug resistance problem.
Collapse
Affiliation(s)
- Madison Arendse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Shama Khan
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Kingdom of Saudi Arabia.
| | - Faisal Mohammed Aqlan
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa.
| |
Collapse
|
30
|
Yoo YJ, Chung IY, Jalde SS, Choi HK, Cho YH. An iron-chelating sulfonamide identified from Drosophila-based screening for antipathogenic discovery. Virulence 2022; 13:833-843. [PMID: 35521696 PMCID: PMC9090290 DOI: 10.1080/21505594.2022.2069325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We exploited bacterial infection assays using the fruit fly Drosophila melanogaster to identify anti-infective compounds that abrogate the pathological consequences in the infected hosts. Here, we demonstrated that a pyridine-3-N-sulfonylpiperidine derivative (4a) protects Drosophila from the acute infections caused by bacterial pathogens including Pseudomonas aeruginosa. 4a did not inhibit the growth of P. aeruginosa in vitro, but inhibited the production of secreted toxins such as pyocyanin and hydrogen cyanide, while enhancing the production of pyoverdine and pyochelin, indicative of iron deprivation. Based on its catechol moiety, 4a displayed iron-chelating activity in vitro toward both iron (II) and iron (III), more efficiently than the approved iron-chelating drugs such as deferoxamine and deferiprone, concomitant with more potent antibacterial efficacy in Drosophila infections and unique transcriptome profile. Taken together, these results delineate a Drosophila-based strategy to screen for antipathogenic compounds, which interfere with iron uptake crucial for bacterial virulence and survival in host tissues.
Collapse
Affiliation(s)
- Yeon-Ji Yoo
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | | | | | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| |
Collapse
|
31
|
Ghaffarlou M, İlk S, Hammamchi H, Kıraç F, Okan M, Güven O, Barsbay M. Green and Facile Synthesis of Pullulan-Stabilized Silver and Gold Nanoparticles for the Inhibition of Quorum Sensing. ACS APPLIED BIO MATERIALS 2022; 5:517-527. [PMID: 35113519 PMCID: PMC8895461 DOI: 10.1021/acsabm.1c00964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Pullulan (Pull) decorated with monodisperse
Ag and Au nanoparticles
(NPs) was synthesized by a simple and green method. Samples were characterized
by FTIR, UV–vis, NMR, XRD, TGA, SEM, XPS, DLS, and TEM. SEM
images showed highly oriented microforms reported for the first time
for Pull, because of the supramolecular self-assembling behavior of
Pull chains. Antimicrobial and quorum sensing (QS) inhibition activities
were tested against six pathogen bacteria and reporter and biomonitor
strain. Pull decorated with NPs, in particular, Ag-modified ones,
outperformed pristine Pull. The cell proliferation was tested with
an MTT assay. NPs-decorated Pull was studied for the first time as
an inhibitory agent against bacterial signal molecules and found to
be a good candidate. The promising performance of AgNPs@Pull compared
to the commercial antibiotic gentamicin showed that it has great potential
as a therapeutic approach to overcome the bacterial resistance that
has developed against conventional antibiotics.
Collapse
Affiliation(s)
| | - Sedef İlk
- Faculty of Medicine, Department of Immunology, Niǧde Ömer Halisdemir University, Niǧde 51240, Turkey.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Hamideh Hammamchi
- Department of Biology, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Feyza Kıraç
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Meltem Okan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Olgun Güven
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
32
|
Quorum-Sensing Inhibition by Gram-Positive Bacteria. Microorganisms 2022; 10:microorganisms10020350. [PMID: 35208805 PMCID: PMC8875677 DOI: 10.3390/microorganisms10020350] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
The modern paradigm assumes that interspecies communication of microorganisms occurs through precise regulatory mechanisms. In particular, antagonism between bacteria or bacteria and fungi can be achieved by direct destruction of the targeted cells through the regulated production of antimicrobial metabolites or by controlling their adaptive mechanisms, such as the formation of biofilms. The quorum-quenching phenomenon provides such a countermeasure strategy. This review discusses quorum-sensing suppression by Gram-positive microorganisms, the underlying mechanisms of this process, and its molecular intermediates. The main focus will be on Gram-positive bacteria that have practical applications, such as starter cultures for food fermentation, probiotics, and other microorganisms of biotechnological importance. The possible evolutionary role of quorum-quenching mechanisms during the development of interspecies interactions of bacteria is also considered. In addition, the review provides possible practical applications for these mechanisms, such as the control of pathogens, improving the efficiency of probiotics, and plant protection.
Collapse
|
33
|
Aflakian F, Rad M, Hashemitabar G, Lagzian M, Ramezani M. Design and assessment of novel synthetic peptides to inhibit quorum sensing-dependent biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2022; 38:131-146. [PMID: 35067121 DOI: 10.1080/08927014.2022.2028280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Pseudomonas aeruginosa is one of the most common biofilm-producing bacteria, often leading to long-term and chronic infections. The LasR regulator protein acts as the central regulator of the quorum sensing (QS) system and coordinates the expression of some virulence and biofilm genes. In this study, novel peptides (WSF, FASK, YDVD) were designed for binding to the domain of the transcriptional activator of the LasR protein and interfere with LasR in the QS system of P. aeruginosa. The effects of these peptides on biofilm production, expression of biofilm-related genes (AlgC, PslA, PelA), and growth of planktonic P. aeruginosa were investigated. All three peptides inhibited the growth of P. aeruginosa planktonic cells at 1600 µg ml-1 and exhibited anti-biofilm effects at sub-inhibitory concentrations (800 µg ml-1). Measurements of the mRNA levels of biofilm-related genes at sub-inhibitory concentrations of the designed peptides showed a significant decrease.
Collapse
Affiliation(s)
- Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrnaz Rad
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemitabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Milad Lagzian
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Ahmed UKB, Ballard JD. Autoinducing peptide-based quorum signaling systems in Clostridioides difficile. Curr Opin Microbiol 2022; 65:81-86. [PMID: 34773906 PMCID: PMC8792308 DOI: 10.1016/j.mib.2021.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
The autoinducing peptide-based Agr system in Clostridioides difficile is involved in virulence factor expression, motility, and sporulation. This review highlights several of the recent discoveries regarding C. difficile Agr. Typical Agr systems rely on the combined activities of four proteins involved in peptide expression, peptide processing, peptide sensing, and transcriptional regulation. As emphasized in this review, at least two C. difficile Agr systems (Agr1 and Agr3) lack the set of proteins associated with this regulatory network. In line with this, recent finding indicate Agr1 can function in ways that may not depend on accumulation of extracellular peptide. Also, described are the similarities and differences in Agr systems within the pathogenic Clostridia.
Collapse
|
35
|
Chadha J, Harjai K, Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol 2021; 15:1695-1718. [PMID: 34843159 PMCID: PMC9151347 DOI: 10.1111/1751-7915.13981] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Unregulated consumption and overexploitation of antibiotics have paved the way for emergence of antibiotic‐resistant strains and ‘superbugs’. Pseudomonas aeruginosa is among the opportunistic nosocomial pathogens causing devastating infections in clinical set‐ups globally. Its artillery equipped with diversified virulence elements, extensive antibiotic resistance and biofilms has made it a ‘hard‐to‐treat’ pathogen. The pathogenicity of P. aeruginosa is modulated by an intricate cell density‐dependent mechanism called quorum sensing (QS). The virulence artillery of P. aeruginosa is firmly controlled by QS genes, and their expression drives the aggressiveness of the infection. Attempts to identify and develop novel antimicrobials have seen a sharp rise in the past decade. Among different proposed mechanisms, a novel anti‐virulence approach to target pseudomonal infections by virtue of anti‐QS and anti‐biofilm drugs appears to occupy the centre stage. In this respect, bioactive phytochemicals have gained prominence among the scientific community owing to their significant quorum quenching (QQ) properties. Recent studies have shed light on the QQ activities of various phytochemicals and other drugs in perturbing the QS‐dependent virulence in P. aeruginosa. This review highlights the recent evidences that reinforce the application of plant bioactives for combating pseudomonal infections, their advantages and shortcomings in anti‐virulence therapy.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
36
|
EDTA and Taurolidine Affect Pseudomonas aeruginosa Virulence In Vitro-Impairment of Secretory Profile and Biofilm Production onto Peritoneal Dialysis Catheters. Microbiol Spectr 2021; 9:e0104721. [PMID: 34787464 PMCID: PMC8597648 DOI: 10.1128/spectrum.01047-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peritoneal catheter-associated biofilm infection is reported to be the main cause of refractory peritonitis in peritoneal dialysis patients. The application of antimicrobial lock therapy, based on results on central venous catheters, may be a promising option for treatment of biofilm-harboring peritoneal catheters. This study investigated the effects of two lock solutions, EDTA and taurolidine, on an in vitro model of Pseudomonas aeruginosa biofilm-related peritoneal catheter infection. Silicone peritoneal catheters were incubated for 24 h with a bioluminescent strain of P. aeruginosa. Then, serial dilutions of taurolidine and/or EDTA were applied (for 24 h) once or twice onto the contaminated catheters, and P. aeruginosa viability/persistence were evaluated in real time up to 120 h using a Fluoroskan reader. On selected supernatants, high-performance liquid chromatography mass spectrometry (HPLC-MS) analysis was performed to measure the production of autoinducers (AI), phenazines, and pyocyianines. Taurolidine alone or in combination with EDTA caused a significant decrease of bacterial load and biofilm persistence on the contaminated catheters. The treatment did not lead to the sterilization of the devices, yet it resulted in a substantial destructuration of the catheter-associated P. aeruginosa biofilm. HPLC-MS analysis showed that the treatment of biofilm-harboring catheters with taurolidine and EDTA also affected the secretory activity of the pathogen. EDTA and taurolidine affect P. aeruginosa biofilm produced on peritoneal catheters and profoundly compromise the microbial secretory profile. Future studies are needed to establish whether such lock solutions can be used to render peritoneal catheter-related infections more susceptible to antibiotic treatment. IMPORTANCE An in vitro model allows studies on the mechanisms by which the lock solutions exert their antimicrobial effects on catheter-associated biofilm, thus providing a better understanding of the management of devise-associated infections.
Collapse
|
37
|
Kamli MR, Malik MA, Srivastava V, Sabir JSM, Mattar EH, Ahmad A. Biogenic ZnO Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium violaceum. Pharmaceutics 2021; 13:1743. [PMID: 34834158 PMCID: PMC8625425 DOI: 10.3390/pharmaceutics13111743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/23/2022] Open
Abstract
This study presents an inexpensive, eco-friendly, and simple green synthesis of ZnO nanoparticles using Origanum vulgare extract. These nanoparticles are non-hazardous, environmentally friendly, and cheaper than other methods of biosynthesis. Ongoing research determines the role of phytochemicals in the fabrication and biosynthesis of ZnO NPs and their role in antibacterial activity and biomedical applications. Characterizations by fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) determine the successful biosynthesis of ZnO NPs. Meanwhile, TEM and X-ray diffraction studies approximated the spherical morphology and crystalline nature of biosynthesized ZnO NPs of nano size in the range of 20-30 nm. The global increase in drug resistance necessitates the search for new drugs with different mechanisms of action. Quorum sensing (QS), a cell-to-cell communication, has gained attention as an emerging drug target. It controls numerous biochemical processes in bacteria, which are essential for their survival and pathogenicity. The potential of nanomedicines has also been tested to synthesize new antibiotics to tackle drug resistance. ZnO NPs were explored for their antibacterial, antiquorum sensing, and antibiofilm activities with a bioreporter strain of Chromobacterium violaceum. Susceptibility testing results indicated the potential antibacterial activity of ZnO NPs with a minimum inhibitory concentration (MIC) of 4 µg/mL and minimum bactericidal concentration (MBC) of 16 µg/mL. Antiquorum-sensing assays revealed that these nanoparticles inhibit quorum sensing with minimum antiquorum sensing activity (MQSIC) of 1 µg/mL, without causing any bacterial growth inhibition. In addition, ZnO NPs inhibit biofilm formation at inhibitory and higher concentrations. RT-qPCR results supported the downregulation of the quorum sensing genes when C. violaceum was treated with ZnO NPs. The outcomes of this study are promising with regard to the biofilm and quorum sensing, emphasizing the potential applications of ZnO NPs against bacterial communication and biofilm formation.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
38
|
RAHAL ANU, KUMAR AMIT. Strategies to combat antimicrobial resistance in Indian scenario. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antimicrobial resistance (AMR) is one of the major public health crisis recognised globally. Microbial infections cause significant productivity losses in animals and humans. In livestock, these microbial infections reduce the growth rates and fertility, diminish production of meat and milk, and occasionally lead to mortality, and are therefore, a major concern for animal welfare. In the dearth of alternative prophylactic measures, antibiotics remain the principal tool for their management. Once an antibiotic is used rampantly, resistance against it is inevidently seen in the microbe population and the hunt for a new drug grows. Discovery and development of a new antimicrobial drug is a time taking and expensive procedure with limited assurance of success. As a result, the past few decades have witnessed only a very few new classes of antibiotics. If the AMR can be restricted or reverted, the success rate of antimicrobial therapy can be boosted and many public health issues be avoided. All these ask for a comprehensive plan to prevent or reduce the antimicrobial resistance and economic losses to the animal husbandry sector. The present review provides an overview of AMR in India, mechanism of its occurrence and the possible roadmap to combat the emerging threat of AMR in Indian scenario.
Collapse
|
39
|
Lahiri D, Nag M, Garai S, Ray RR. The Chemistry of Antibiofilm Phytocompounds. Mini Rev Med Chem 2021; 21:1034-1047. [PMID: 32767942 DOI: 10.2174/1389557520666200807135243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Phytocompounds are long known for their therapeutic uses due to their competence as antimicrobial agents. The antimicrobial activity of these bioactive compounds manifests their ability as an antibiofilm agent and is thereby proved to be competent to treat the widespread biofilm-associated chronic infections. The rapid development of antibiotic resistance in bacteria has made the treatment of these infections almost impossible by conventional antibiotic therapy, which forced a switch-over to the use of phytocompounds. The present overview deals with the classification of a huge array of phytocompounds according to their chemical nature, detection of their target pathogen, and elucidation of their mode of action.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| |
Collapse
|
40
|
Cheng W, Wang Z, Xiong Y, Wu Z, Tan X, Yang Y, Zhang H, Zhu X, Wei H, Tao S. N-(3-oxododecanoyl)-homoserine lactone disrupts intestinal barrier and induces systemic inflammation through perturbing gut microbiome in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146347. [PMID: 34030388 DOI: 10.1016/j.scitotenv.2021.146347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a quorum sensing signal molecule, N-(3-oxododecanoyl)-homoserine lactone (3OC12) regulate the population behavior of microorganisms. Many studies have proved that 3OC12 harm the physiological function of host intestinal epithelial cells. However, the detrimental effects of 3OC12 on intestinal health need verification in animals. Besides, the role of gut microbiome in 3OC12-induced intestinal damage also needs further understanding. In our study, 3OC12 was first administered to specific pathogen-free (SPF) mice, then the fecal microbiome of SPF mice was transplanted into germ-free (GF) mice to reveal the effects of 3OC12 on intestinal health and regulatory mechanisms of the intestinal microbiome. 3OC12 treatment significantly decreased body weight, shortened colonic length, disrupted the morphology of the colonic epithelium and increased the histopathological score of the colon in SPF mice. The levels of diamine peroxidase, d-lactate, TNF-α, IL-1β, and IL-8 were found to be significantly elevated in the serum of 3OC12 mice, while the levels of IL-10 were significantly reduced. Besides, the fecal microbial community of mice was also altered in the 3OC12-treated SPF mice. The results of fecal microbial transplantation (FMT) experiment showed that the phenotypes in SPF mice were almost reproduced in GF mice, manifested by body weight loss, colon damage and changed in serum chemical markers. More importantly, a joint analysis of fecal microbes in SPF and GF mice revealed Feature14_Elizabethkingia spp. was common differential bacteria in the feces of two kinds of mice treated with and without FMT. Our results demonstrated that 3OC12 challenge led to systemic inflammation and body weight loss in mice by disrupting intestinal barrier function, in which gut microbiome played a key role. These findings increased our understanding of the mechanism of intestinal injury caused by 3CO12, providing new ideas for the prevention and therapy of diseases caused by bacterial infection from the perspective of intestinal microbiome.
Collapse
Affiliation(s)
- Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yapeng Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Zhu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
Tao S, Xiong Y, Wang Z, Wu Y, Li N, Pi Y, Han D, Zhao J, Wang J. N-Acyl-Homoserine Lactones May Affect the Gut Health of Low-Birth-Weight Piglets by Altering Intestinal Epithelial Cell Barrier Function and Amino Acid Metabolism. J Nutr 2021; 151:1736-1746. [PMID: 33982101 DOI: 10.1093/jn/nxab104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In piglets, low birth weight (LBW) is associated with intestinal dysfunction, which affects their growth performance and causes economic losses. OBJECTIVES This study was designed to test whether microbial quorum sensing (QS) affects LBW-induced intestinal developmental defects in piglets. METHODS Seven normal-birth-weight (NBW; 1.36 ± 0.01 kg) and 7 LBW (0.89 ± 0.01 kg) piglets were selected. Feces were collected from piglets on 2, 21, and 50 days of age for detection of the QS signaling molecules, N-acyl-homoserine lactones (AHLs), and microbiota analysis. The associations between 2 long-chain AHLs [N-3-oxo-dodecanoyl-l-homoserine lactone (3OC12-HSL) and N-3-oxo-tetradecanoyl-l-homoserine lactone (3OC14-HSL)] and the microbes were tested using Spearman correlation coefficients. The effect of 3OC12-HSL and 3OC14-HSL on intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell viability was investigated by cholecystokinin octapeptide assay. Transcriptomic analysis was performed by RNA sequencing on cells treated with 3OC12-HSL. RESULTS The concentrations of 3OC12-HSL and 3OC14-HSL in the feces of LBW piglets were higher than those in NBW piglets at age 50 d by 2.5- and 2.24-fold, respectively (P < 0.05). The microbial α diversity (observed species, abundance-based coverage estimator, and Shannon index) of LBW piglets was 81-91% lower than that of NBW piglets (P < 0.05). The relative abundance of Ruminococcaceae UCG-002/UCG-013 was 43.0% and 30.0% lower, respectively, in feces from LBW compared with NBW piglets (P < 0.05). 3OC12-HSL and Ruminococcaceae UCG-002/UCG-005/UCG-010 abundance were negatively correlated (ρ ≤ -0.58). Treatment with 400 μM 3OC12-HSL markedly reduced IPEC-J2 cell viability by 47.5%. Transcriptomic data showed that 3OC12-HSL mainly changed the "import across plasma membrane" and "arginine and proline metabolism" of IPEC-J2 cells. CONCLUSIONS 3OC12-HSL is a QS signaling molecule with an ability to impair gut health of LBW piglets. This finding adds to our understanding of the mechanisms responsible for gut injury in LBW piglets.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Adaro M, Bersi G, Talia JM, Bernal C, Guzmán F, Vallés D, Barberis S. Biosynthesis of a Novel Antibacterial Dipeptide, Using Proteases From South American Native Fruits, Useful as a Food Preservative. Front Nutr 2021; 8:685330. [PMID: 34262924 PMCID: PMC8273232 DOI: 10.3389/fnut.2021.685330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
Abstract
Antiacanthain and granulosain are the partially purified proteolytic extracts from the South American native fruits of Bromelia antiacantha (Bertol. ) and Solanum granuloso leprosum, respectively. The aim of this work was to compare the ability of both soluble and immobilized antiacanthain and granulosain f or the synthesis of Z-Tyr-Val-OH, a novel antibacterial dipeptide, in different reaction systems formed by almost anhydrous organic solvents (Xw: 1 × 10−5) and several percentages of immiscible organic solvents in 100 mM Tris(hydroxymethyl)aminomethane hydrochloride buffer pH 8.0. Soluble antiacanthain in half of the 24 different organic biphasic media showed higher catalytic potential than in 100 mM Tris(hydroxymethyl)aminomethane hydrolchloride buffer pH 8.0. Soluble granulosain showed lower catalytic potential in all liquid-liquid biphasic media than in the same buffer. However, 50% (v/v) ethyl ethanoate in 100 mM Tris(hydroxymethyl)aminomethane hydrolchloride buffer pH 8.0 allowed to express the highest catalytic potential of both soluble enzymes. In 50% v/v ethyl ethanoate, soluble antiacanthain and granulosain catalyzed the synthesis of Z-Tyr-Val-OH with 72 ± 0.15 and 60 ± 0.10% maximal peptide yields, respectively. Multi-point immobilization in glyoxyl-silica did not lead to better peptide yields than soluble enzymes, in that liquid-liquid biphasic medium under the same reaction conditions. Soluble and glyoxyl-silica immobilized antiacanthain in almost anhydrous ethyl ethanoate (Xw: 1 × 10−5) were able to retain 17.3 and 45% of the initial proteolytic activity of antiacanthain in 100 mM Tris hydrolchloride buffer pH 8.0, respectively, at 40°C under agitation (200 rpm). Soluble and glyoxyl-silica immobilized granulosain were inactivated under the same reaction conditions. Glyoxyl-silica immobilized antiacanthain showed to be a robust biocatalyst in almost anhydrous ethyl ethanoate (Xw: 1 × 10−5), eliciting the best peptide yield (75 ± 0.13%). The synthesis reaction of Z-Tyr-Val-OH could not proceed when soluble antiacanthain was used under the same conditions. Both peptidases only catalyzed the synthesis reaction under kinetic control, using activated acyl donor substrates. Finally, this work reports a novel broad-spectrum antibacterial peptide that significantly decreased (p ≤ 0.05) the specific growth rates of Gram positive and Gram negative microorganisms at very low concentrations (≥15 and 35 μg/ml, respectively); contributing with a new safe food preservative of applying for different food systems.
Collapse
Affiliation(s)
- Mauricio Adaro
- Laboratorio Control de Calidad y Desarrollo de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.,Instituto de Física Aplicada (INFAP) - Centro Científico Tecnológico (CCT San Luis) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - Grisel Bersi
- Laboratorio Control de Calidad y Desarrollo de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.,Instituto de Física Aplicada (INFAP) - Centro Científico Tecnológico (CCT San Luis) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - Juan Manuel Talia
- Laboratorio de Físico-Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Claudia Bernal
- Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería de Alimentos, Universidad de La Serena, La Serena, Chile
| | - Fanny Guzmán
- Laboratorio de Diseño y Síntesis de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Diego Vallés
- Laboratorio de Enzimas Hidrolíticas, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Sonia Barberis
- Laboratorio Control de Calidad y Desarrollo de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.,Instituto de Física Aplicada (INFAP) - Centro Científico Tecnológico (CCT San Luis) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| |
Collapse
|
43
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
44
|
Abstract
The complexity of animal microbiomes presents challenges to defining signaling molecules within the microbial consortium and between the microbes and the host. By focusing on the binary symbiosis between Vibrio fischeri and Euprymna scolopes, we have combined genetic analysis with direct imaging to define and study small molecules in the intact symbiosis. The lifelong relationship between the Hawaiian bobtail squid Euprymna scolopes and its microbial symbiont Vibrio fischeri represents a simplified model system for studying microbiome establishment and maintenance. The bacteria colonize a dedicated symbiotic light organ in the squid, from which bacterial luminescence camouflages the host in a process termed counterillumination. The squid host hatches without its symbionts, which must be acquired from the ocean amidst a diversity of nonbeneficial bacteria, such that precise molecular communication is required for initiation of the specific relationship. Therefore it is likely there are specialized metabolites used in the light organ microenvironment to modulate these processes. To identify small molecules that may influence the establishment of this symbiosis, we used imaging mass spectrometry to analyze metabolite production in V. fischeri with altered biofilm production, which correlates directly to colonization capability in its host. “Biofilm-up” and “biofilm-down” mutants were compared to a wild-type strain, and ions that were more abundantly produced by the biofilm-up mutant were detected. Using a combination of structural elucidation and synthetic chemistry, one such signal was determined to be a diketopiperazine, cyclo(d-histidyl-l-proline). This diketopiperazine modulated luminescence in V. fischeri and, using imaging mass spectrometry, was directly detected in the light organ of the colonized host. This work highlights the continued need for untargeted discovery efforts in host-microbe interactions and showcases the benefits of the squid-Vibrio system for identification and characterization of small molecules that modulate microbiome behaviors.
Collapse
|
45
|
Thankappan B, Sivakumar J, Asokan S, Ramasamy M, Pillai MM, Selvakumar R, Angayarkanni J. Dual antimicrobial and anticancer activity of a novel synthetic α-helical antimicrobial peptide. Eur J Pharm Sci 2021; 161:105784. [PMID: 33677023 DOI: 10.1016/j.ejps.2021.105784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022]
Abstract
Antimicrobial peptides (AMPs) are increasingly sought-after and researched antimicrobial agents due to its desired pharmacological properties and the continuous diminishing efficacy of antibiotics. In addition to this line of research, the aim of the present study is to determine the antimicrobial and anticancer activity of a de novo designed α-helical peptide. Circular dichroism showed 100% helical nature of the peptide in 10 mM SDS. Notably, the peptide exerted significant antimicrobial activity against the reference and antibiotic-resistant clinical isolates belonging to Pseudomonas sp. at a MIC and MBC of 2 and 8 μM, respectively. The progressive disruption and disturbance of cell membrane in the overall topography was observed in the scanning electron microscopy (SEM) micrographs of Pseudomonas aeruginosa ATCC 27853 treated with the peptide as compared to untreated control. The results of time-kill kinetics showed complete lysis at 3x MIC after 50 min of incubation of the microbe with the peptide. Moreover, the peptide did not lyse human RBCs even at the highest concentration of the peptide (10 mM) and retained its activity upon treatment at 0.5 mg/ml trypsin. Cancer cell lines, viz. A549 and MCF-7 were also found to be sensitive to peptide activity showing 50% reduction in survivability at 4 and 2 μM, respectively; however, L929 cells were unaffected. Drastic membrane permeability and necrotic mode of lysis of peptide-treated-A549 cells were affirmed by propidium iodide and live/dead cell staining. The results showed that the designed peptide could be an efficient drug molecule for clinical studies subjected to successful experiments on animal models.
Collapse
Affiliation(s)
- Bency Thankappan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Jeyarajan Sivakumar
- Department of Pathology, University of Michigan, Annabor, 48108, United States
| | - Sridhar Asokan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mahendran Ramasamy
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu, India
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
46
|
Molecular simulations of lipid membrane partitioning and translocation by bacterial quorum sensing modulators. PLoS One 2021; 16:e0246187. [PMID: 33561158 PMCID: PMC7872223 DOI: 10.1371/journal.pone.0246187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Quorum sensing (QS) is a bacterial communication process mediated by both native and non-native small-molecule quorum sensing modulators (QSMs), many of which have been synthesized to disrupt QS pathways. While structure-activity relationships have been developed to relate QSM structure to the activation or inhibition of QS receptors, less is known about the transport mechanisms that enable QSMs to cross the lipid membrane and access intracellular receptors. In this study, we used atomistic MD simulations and an implicit solvent model, called COSMOmic, to analyze the partitioning and translocation of QSMs across lipid bilayers. We performed umbrella sampling at atomistic resolution to calculate partitioning and translocation free energies for a set of naturally occurring QSMs, then used COSMOmic to screen the water-membrane partition and translocation free energies for 50 native and non-native QSMs that target LasR, one of the LuxR family of quorum-sensing receptors. This screening procedure revealed the influence of systematic changes to head and tail group structures on membrane partitioning and translocation free energies at a significantly reduced computational cost compared to atomistic MD simulations. Comparisons with previously determined QSM activities suggest that QSMs that are least likely to partition into the bilayer are also less active. This work thus demonstrates the ability of the computational protocol to interrogate QSM-bilayer interactions which may help guide the design of new QSMs with engineered membrane interactions.
Collapse
|
47
|
Zrelovs N, Kurbatska V, Rudevica Z, Leonchiks A, Fridmanis D. Sorting out the Superbugs: Potential of Sortase A Inhibitors among Other Antimicrobial Strategies to Tackle the Problem of Antibiotic Resistance. Antibiotics (Basel) 2021; 10:164. [PMID: 33562778 PMCID: PMC7916047 DOI: 10.3390/antibiotics10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the "post-antibiotic" era. The emergence of so-called "superbugs"-pathogen strains that develop resistance to multiple conventional antibiotics-is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(-) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds.
Collapse
Affiliation(s)
| | | | | | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, LV-1067 Riga, Latvia; (N.Z.); (V.K.); (Z.R.); (A.L.)
| |
Collapse
|
48
|
Tao S, Xiong Y, Han D, Pi Y, Zhang H, Wang J. N-(3-oxododecanoyl)-l-homoserine lactone disrupts intestinal epithelial barrier through triggering apoptosis and collapsing extracellular matrix and tight junction. J Cell Physiol 2021; 236:5771-5784. [PMID: 33400297 DOI: 10.1002/jcp.30261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Microbes employ autoinducers of quorum sensing (QS) for population communication. Although the autoinducer of Pseudomonas aeruginosa LasI-LasR system, N-(3-oxododecanoyl)- l-homoserine lactone (3OC12), has been reported with deleterious effects on host cells, its biological effects on integrity of the intestinal epithelium and epithelial barrier are still unclear and need further investigation. In the present study, flow cytometry, transcriptome analysis and western blot technology have been adopted to investigate the potential molecular mechanisms of 3OC12 and its structurally similar analogs damage to intestinal epithelial cells. Our results indicated that 3OC12 and 3OC14 trigger apoptosis rather than necrosis and ferroptosis in intestinal epithelial cells. RNA-sequencing combined with bioinformatics analysis showed that 3OC12 and 3OC14 reduced the expression of genes from extracellular matrix (ECM)-receptor interaction pathway. Consistently, protein expressions from ECM and tight junction-associated pathway were significantly reduced after 3OC12 and 3OC14 challenge. In addition, 3OC12 and 3OC14 led to blocked cell cycle, decreased mitochondrial membrane potential, increased reactive oxygen species level and elevated Ca2+ concentration. Reversely, the antioxidant NAC could effectively mitigate the reduced expression of ECM and tight junction proteins caused by 3OC12 and 3OC14 challenge. Collectively, this study demonstrated that QS autoinducer exposure to intestinal epithelial cells ablates the ECM and tight junctions by triggering oxidative stress and apoptosis, and finally disrupts the intestinal epithelial barrier. These findings provide a rationale for defensing QS-dependent bacterial infections and potential role of NAC for alleviating the syndrome.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Hanlu Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Aquino B, Bradley JM, Lumba S. On the outside looking in: roles of endogenous and exogenous strigolactones. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:322-334. [PMID: 33215770 DOI: 10.1111/tpj.15087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 05/15/2023]
Abstract
A collection of small molecules called strigolactones (SLs) act as both endogenous hormones to control plant development and as ecological communication cues between organisms. SL signalling overlaps with that of a class of smoke-derived compounds, karrikins (KARs), which have distinct yet overlapping developmental effects on plants. Although the roles of SLs in shoot and root development, in the promotion of arbuscular mycorrhizal (AM) fungal branching and in parasitic plant germination have been well characterized, recent data have illustrated broader roles for these compounds in the rhizosphere. Here, we review the known roles of SLs in development, growth of AM fungi and germination of parasitic plants to develop a framework for understanding the use of SLs as molecules of communication in the rhizosphere. It appears, for example, that there are many connections between SLs and phosphate utilization. Low phosphate levels regulate SL metabolism and, in turn, SLs sculpt root and shoot architecture to coordinate growth and optimize phosphate uptake from the environment. Plant-exuded SLs attract fungal symbionts to deliver inorganic phosphate (Pi) to the host. These and other examples suggest the boundary between exogenous and endogenous SL functions can be easily blurred and a more holistic view of these small molecules is likely to be required to fully understand SL biology. Related to this, we summarize and discuss evidence for a primitive role of SLs in moss as a quorum sensing-like molecule, providing a unifying concept of SLs as endogenous and exogenous signalling molecules.
Collapse
Affiliation(s)
- Bruno Aquino
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - James M Bradley
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
50
|
Esquivel JF, Medrano EG. Retention of Pantoea agglomerans Sc1R across stadia of the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). PLoS One 2020; 15:e0242988. [PMID: 33270731 PMCID: PMC7714169 DOI: 10.1371/journal.pone.0242988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Southern green stink bug [Nezara viridula (L.)] adults and other pentatomid pests can transmit pathogens (e.g., the bacterium Pantoea agglomerans) that cause disease in cotton (Gossypium hirsutum L.) and other high-value cash crops worldwide. First instars of N. viridula were recently shown to ingest P. agglomerans strain Sc1R with rifampicin-resistance, and to retain the pathogen to the 2nd instar. The objective of this study was to determine the acquisition of P. agglomerans Sc1R by early instars of N. viridula and determine persistence of P. agglomerans Sc1R across subsequent stadia. In three trials, early instars (1st and 2nd) were exposed to P. agglomerans Sc1R and subsequently maintained to adulthood; cohorts were sampled at 3rd and 5th instars, as well as adults. In every trial, P. agglomerans Sc1R was detected in all stadia, including adults, but significantly higher frequencies of infection than expected were observed at the initial stage of infection (either 1st or 2nd instar). Higher densities of P. agglomerans Sc1R were detected in 1st and 2nd instars, and lower densities were observed in subsequent stadia. Densities of innate microbiota were generally lower when the initial stage of exposure was at 1st instar than when the initial stage of exposure was at the 2nd instar. Overall, half of the adults possessed P. agglomerans Sc1R. These findings demonstrated that N. viridula nymphs can acquire P. agglomerans Sc1R and retain the pathogen to adulthood. Potential avenues of research to further elucidate the implications of nymphs harboring pathogens to adulthood are discussed.
Collapse
Affiliation(s)
- Jesus F. Esquivel
- Insect Control & Cotton Disease Research Unit, Plains Area, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, United States of America
- * E-mail:
| | - Enrique G. Medrano
- Insect Control & Cotton Disease Research Unit, Plains Area, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, United States of America
| |
Collapse
|