1
|
Dezaki FS, Narimani T, Ghanadian M, Bidram E, Poursina F. Antimicrobial and antibiofilm effects of cyclic dipeptide-rich fraction from Lactobacillus plantarum loaded on graphene oxide nanosheets. Front Microbiol 2024; 15:1391039. [PMID: 39286346 PMCID: PMC11402667 DOI: 10.3389/fmicb.2024.1391039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction One effective method to combat bacterial infections is by using bacteria itself as a weapon. Lactobacillus is a type of fermenting bacterium that has probiotic properties and has demonstrated antimicrobial benefits against other bacteria. Cyclodipeptides (CDPs), present in the supernatant of Lactobacillus, possess several antimicrobial properties. Methods In this study, the CDP fraction was isolated from the supernatant of Lactobacillus plantarum (L. plantarum). This fraction was then loaded onto graphene oxide nanosheets (GO NSs). The study assessed the substance's ability to inhibit bacterial growth by using the minimum inhibitory concentration (MIC) method on A. baumannii and S. aureus strains that were obtained from clinical samples. To determine the substance's impact on biofilm formation, the microtiter plate method was used. Moreover, the checkerboard technique was employed to explore the potential synergistic effects of these two substances. Results and discussion According to the study, the minimum inhibitory concentration (MIC) of the desired compound was found to be 1.25 mg/mL against S. aureus and 2.5 mg/mL against A. baumannii. Furthermore, at a concentration of 10 mg/mL, the compound prevented 81.6% (p < 0.01) of biofilm production in A. baumannii, while at a concentration of 1.25 mg/mL, it prevented 47.5% (p < 0.05) of biofilm production in S. aureus. The study also explored the synergistic properties of two compounds using the checkerboard method. Conclusion In general, we found that GO NSs possess antimicrobial properties and enhance cyclodipeptides' activity against S. aureus and A. baumannii.
Collapse
Affiliation(s)
- Farid Shirmardi Dezaki
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center (BRC), Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Monteiro ADSS, Cordeiro SM, Reis JN. Virulence Factors in Klebsiella pneumoniae: A Literature Review. Indian J Microbiol 2024; 64:389-401. [PMID: 39011017 PMCID: PMC11246375 DOI: 10.1007/s12088-024-01247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae, a member of the autochthonous human gut microbiota, utilizes a variety of virulence factors for survival and pathogenesis. Consequently, it is responsible for several human infections, including urinary tract infections, respiratory tract infections, liver abscess, meningitis, bloodstream infections, and medical device-associated infections. The main studied virulence factors in K. pneumoniae are capsule-associated, fimbriae, siderophores, Klebsiella ferric iron uptake, and the ability to metabolize allantoin. They are crucial for virulence and were associated with specific infections in the mice infection model. Notably, these factors are also prevalent in strains from the same infections in humans. However, the type and quantity of virulence factors may vary between strains, which defines the degree of pathogenicity. In this review, we summarize the main virulence factors investigated in K. pneumoniae from different human infections. We also cover the specific identification genes and their prevalence in K. pneumoniae, especially in hypervirulent strains.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
| | | | - Joice Neves Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia Brazil
| |
Collapse
|
3
|
Mishra SK, Baidya S, Bhattarai A, Shrestha S, Homagain S, Rayamajhee B, Hui A, Willcox M. Bacteriology of endotracheal tube biofilms and antibiotic resistance: a systematic review. J Hosp Infect 2024; 147:146-157. [PMID: 38522561 DOI: 10.1016/j.jhin.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Bacteria commonly adhere to surfaces and produce polymeric material to encase the attached cells to form communities called biofilms. Within these biofilms, bacteria can appear to be many times more resistant to antibiotics or disinfectants. This systematic review explores the prevalence and microbial profile associated with biofilm production of bacteria isolated from endotracheal tubes and its associations with antimicrobial resistance. A comprehensive search was performed on databases PubMed, Embase, and Google Scholar for relevant articles published between 1st January 2000 and 31st December 2022. The relevant articles were exported to Mendeley Desktop 1.19.8 and screened by title and abstract, followed by full text screening based on the eligibility criteria of the study. Quality assessment of the studies was performed using the Newcastle-Ottawa Scale (NOS) customized for cross-sectional studies. Furthermore, the prevalence of antimicrobial resistance in biofilm-producers isolated from endotracheal tube specimens was investigated. Twenty studies encompassing 981 endotracheal tubes met the eligibility criteria. Pseudomonas spp. and Acinetobacter spp. were predominant isolates among the biofilm producers. These biofilms provided strong resistance against commonly used antibiotics. The highest resistance rate observed in Pseudomonas spp. was against fluoroquinolones whereas the least resistance was seen against piperacillin-tazobactam. A similar trend of susceptibility was observed in Acinetobacter spp. with a very high resistance rate against fluoroquinolones, third-generation cephalosporins and carbapenems. In conclusion, endotracheal tubes were associated with colonization by biofilm forming bacteria with varying levels of antimicrobial resistance. Biofilms may promote the occurrence of recalcitrant infections in endotracheal tubes which need to be managed with appropriate protocols and antimicrobial stewardship. Research focus should shift towards meticulous exploration of biofilm-associated infections to improve detection and management.
Collapse
Affiliation(s)
- S K Mishra
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia; Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal.
| | - S Baidya
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - A Bhattarai
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - S Shrestha
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - S Homagain
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - B Rayamajhee
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia
| | - A Hui
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia; Center for Ocular Research and Education, School of Optometry &Vision Science, University of Waterloo, Ontario, Canada
| | - M Willcox
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Datta S, Nag S, Roy DN. Biofilm-producing antibiotic-resistant bacteria in Indian patients: a comprehensive review. Curr Med Res Opin 2024; 40:403-422. [PMID: 38214582 DOI: 10.1080/03007995.2024.2305241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
For the past few years, microbial biofilms have been emerging as a significant threat to the modern healthcare system, and their prevalence and antibiotic resistance threat gradually increase daily among the human population. The biofilm has a remarkable impact in the field of infectious diseases, in particular healthcare-associated infections related to indwelling devices such as catheters, implants, artificial heart valves, and prosthetic joints. Bacterial biofilm potentially adheres to any biotic or abiotic surfaces that give specific shelter to the microbial community, making them less susceptible to many antimicrobial agents and even resistant to the immune cells of animal hosts. Around thirty clinical research reports available in PUBMED have been considered to establish the occurrence of biofilm-forming bacteria showing resistance against several regular antibiotics prescribed against infection by clinicians among Indian patients. After the extensive literature review, our observation exhibits a high predominance of biofilm formation among bacteria such as Escherichia sp., Streptococcus sp., Staphylococcus sp., and Pseudomonas sp., those are the most common biofilm-producing antibiotic-resistant bacteria among Indian patients with urinary tract infections and/or catheter-related infections, respiratory tract infections, dental infections, skin infections, and implant-associated infections. This review demonstrates that biofilm-associated bacterial infections constantly elevate in several pathological conditions along with the enhancement of the multi-drug resistance phenomenon.
Collapse
Affiliation(s)
- Susmita Datta
- Department of Chemical Engineering, National Institute of Technology, Agartala, Tripura, India
| | - Soma Nag
- Department of Chemical Engineering, National Institute of Technology, Agartala, Tripura, India
| | - Dijendra Nath Roy
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
5
|
Ul Haq I, Khan TA, Krukiewicz K. Etiology, pathology, and host-impaired immunity in medical implant-associated infections. J Infect Public Health 2024; 17:189-203. [PMID: 38113816 DOI: 10.1016/j.jiph.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Host impaired immunity and pathogens adhesion factors are the key elements in analyzing medical implant-associated infections (MIAI). The infection chances are further influenced by surface properties of implants. This review addresses the medical implant-associated pathogens and summarizes the etiology, pathology, and host-impaired immunity in MIAI. Several bacterial and fungal pathogens have been isolated from MIAI; together, they form cross-kingdom species biofilms and support each other in different ways. The adhesion factors initiate the pathogen's adherence on the implant's surface; however, implant-induced impaired immunity promotes the pathogen's colonization and biofilm formation. Depending on the implant's surface properties, immune cell functions get slow or get exaggerated and cause immunity-induced secondary complications resulting in resistant depression and immuno-incompetent fibro-inflammatory zone that compromise implant's performance. Such consequences lead to the unavoidable and straightforward conclusion for the downstream transformation of new ideas, such as the development of multifunctional implant coatings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Taj Ali Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States; Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland.
| |
Collapse
|
6
|
Salem M, Younis G, Sadat A, Nouh NAT, Binjawhar DN, Abdel-Daim MM, Elbadawy M, Awad A. Dissemination of mcr-1 and β-lactamase genes among Pseudomonas aeruginosa: molecular characterization of MDR strains in broiler chicks and dead-in-shell chicks infections. Ann Clin Microbiol Antimicrob 2024; 23:9. [PMID: 38281970 PMCID: PMC10823725 DOI: 10.1186/s12941-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) is one of the most serious pathogens implicated in antimicrobial resistance, and it has been identified as an ESKAPE along with other extremely significant multidrug resistance pathogens. The present study was carried out to explore prevalence, antibiotic susceptibility phenotypes, virulence-associated genes, integron (int1), colistin (mcr-1), and β-lactamase resistance' genes (ESBls), as well as biofilm profiling of P. aeruginosa isolated from broiler chicks and dead in-shell chicks. DESIGN A total of 300 samples from broiler chicks (n = 200) and dead in-shell chicks (n = 100) collected from different farms and hatcheries located at Mansoura, Dakahlia Governorate, Egypt were included in this study. Bacteriological examination was performed by cultivation of the samples on the surface of both Cetrimide and MacConkey's agar. Presumptive colonies were then subjected to biochemical tests and Polymerase Chain Reaction (PCR) targeting 16S rRNA. The recovered isolates were tested for the presence of three selected virulence-associated genes (lasB, toxA, and exoS). Furthermore, the retrieved isolates were subjected to phenotypic antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method as well as phenotypic detection of ESBLs by both Double Disc Synergy Test (DDST) and the Phenotypic Confirmatory Disc Diffusion Test (PCDDT). P. aeruginosa isolates were then tested for the presence of antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, OXA-2, VEB-1, SHV, TEM, and CTX-M). Additionally, biofilm production was examined by the Tube Adherent method (TA) and Microtiter Plate assay (MTP). RESULTS Fifty -five isolates were confirmed to be P. aeruginosa, including 35 isolates from broiler chicks and 20 isolates from dead in-shell chicks. The three tested virulence genes (lasB, toxA, and exoS) were detected in all isolates. Antibiogram results showed complete resistance against penicillin, amoxicillin, ceftriaxone, ceftazidime, streptomycin, erythromycin, spectinomycin, and doxycycline, while a higher sensitivity was observed against meropenem, imipenem, colistin sulfate, ciprofloxacin, and gentamicin. ESBL production was confirmed in 12 (21.8%) and 15 (27.3%) isolates by DDST and PCDDT, respectively. Antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, SHV, TEM, and CTX-M), were detected in 87.3%, 18.2%, 16.4%, 69.1%, 72.7%, and 54.5% of the examined isolates respectively, whereas no isolate harbored the OXA-2 or VEB-1 genes. Based on the results of both methods used for detection of biofilm formation, Kappa statistics [kappa 0.324] revealed a poor agreement between both methods. CONCLUSIONS the emergence of mcr-1 and its coexistence with other resistance genes such as β-lactamase genes, particularly blaOXA-10, for the first time in P. aeruginosa from young broiler chicks and dead in-shell chicks in Egypt pose a risk not only to the poultry industry but also to public health.
Collapse
Affiliation(s)
- Mona Salem
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gamal Younis
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Sadat
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nehal Ahmed Talaat Nouh
- Program Medicine, Department of Microbiology, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Elqaliobiya, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Amal Awad
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Yamamoto K, Tsujimura Y, Ato M. Catheter-associated Mycobacterium intracellulare biofilm infection in C3HeB/FeJ mice. Sci Rep 2023; 13:17148. [PMID: 37816786 PMCID: PMC10564925 DOI: 10.1038/s41598-023-44403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023] Open
Abstract
Non-tuberculosis mycobacterial (NTM) diseases are steadily increasing in prevalence and mortality worldwide. Mycobacterium avium and M. intracellulare, the two major pathogens of NTM diseases, are resistant to antibiotics, and chlorine, necessitating their capacity to survive in natural environments (e.g. soil and rivers) and disinfected municipal water. They can also form biofilms on artificial surfaces to provide a protective barrier and habitat for bacilli, which can cause refractory systemic disseminated NTM disease. Therefore, preventing biofilm formation by these pathogens is crucial; however, not many in vivo experimental systems and studies on NTM biofilm infection are available. This study develops a mouse model of catheter-associated systemic disseminated disease caused by M. intracellulare that reproduces the pathophysiology of catheter-associated infections observed in patients undergoing peritoneal dialysis. In addition, the bioluminescence system enabled noninvasive visualization of the amount and distribution of bacilli in vivo and conveniently examine the efficacy of antimicrobials. Furthermore, the cellulose-based biofilms, which were extensively formed in the tissue surrounding the catheter insertion site, reduced drug therapy effectiveness. Overall, this study provides insights into the cause of the drug resistance of NTM and may guide the development of new therapies for NTM diseases.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
8
|
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy 2023; 43:816-832. [PMID: 37133439 DOI: 10.1002/phar.2806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/04/2023]
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and contributes to significant increase in morbidity and mortality especially when associated with medical devices and in biofilm form. Biofilm structure provides a pathway for the enrichment of resistant and persistent phenotypes of S. aureus leading to relapse and recurrence of infection. Minimal diffusion of antibiotics inside biofilm structure leads to heterogeneity and distinct physiological activity. Additionally, horizontal gene transfer between cells in proximity adds to the challenges associated with eradication of biofilms. This narrative review focuses on biofilm-associated infections caused by S. aureus, the impact of environmental conditions on biofilm formation, interactions inside biofilm communities, and the clinical challenges that they present. Conclusively, potential solutions, novel treatment strategies, combination therapies, and reported alternatives are discussed.
Collapse
Affiliation(s)
- Nikki N Tran
- Department of Pharmacy, The Ohio State University Wexner Medical Center - The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - José M Orench-Benvenutti
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Razieh Kebriaei
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Iseppi R, Mariani M, Benvenuti S, Truzzi E, Messi P. Effects of Melaleuca alternifolia Chell (Tea Tree) and Eucalyptus globulus Labill. Essential Oils on Antibiotic-Resistant Bacterial Biofilms. Molecules 2023; 28:molecules28041671. [PMID: 36838657 PMCID: PMC9961662 DOI: 10.3390/molecules28041671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
In the present investigation, the anti-biofilm potential of two essential oils (EOs), Melaleuca alternifolia Chell (Tea-Tree) (TTO) and Eucalyptus globulus Labill. (EEO) was characterized and tested "in vitro" against both mature biofilms and biofilms in the process of formation, produced by strains belonging to three main categories of antibiotic resistant bacteria (ARB): Vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and broad-spectrum β-lactamase-producing Escherichia coli (ESBL). The study was carried out in 96-well microtiter-plates using EOs alone, in association with each other and in combination with antibiotics against both single and multi-species biofilm. The study demonstrated the ability of TTO and EEO to counteract the ARB strains in sessile form, with promising results in particular against the biofilm in formation. Mature biofilm by ESBL E. coli was the most sensitive in the results from the quantification study of viable cells performed in multi-species biofilms. Lastly, in all tests, carried out using TTO/EEO associations and EOs/antibiotic combinations, the synergistic effect which emerged from the FIC-index has been confirmed, and both the reduction of biofilm in formation, and the removal of mature structure was obtained at very low concentrations, with values from 4 to >512-fold lower than the minimum inhibitory concentration (MIC) of the single compounds.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Martina Mariani
- Burn Intensive Care Unit, Hospital A. Cardarelli, Via A. Cardarelli 9, 80131 Naples, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence:
| |
Collapse
|
10
|
Mulani MS, Kumkar SN, Pardesi KR. Characterization of Novel Klebsiella Phage PG14 and Its Antibiofilm Efficacy. Microbiol Spectr 2022; 10:e0199422. [PMID: 36374021 PMCID: PMC9769620 DOI: 10.1128/spectrum.01994-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing frequency of infections caused by multidrug-resistant Klebsiella pneumoniae demands the development of unconventional therapies. Here, we isolated, characterized, and sequenced a Klebsiella phage PG14 that infects and lyses carbapenem-resistant K. pneumoniae G14. Phage PG14 showed morphology similar to the phages belonging to the family Siphoviridae. The adsorption curve of phage PG14 showed more than 90% adsorption of phages on a host within 12 min. A latent period of 20 min and a burst size of 47 was observed in the one step growth curve. Phage PG14 is stable at a temperature below 30°C and in the pH range of 6 to 8. The PG14 genome showed no putative genes associated with virulence and antibiotic resistance. Additionally, it has shown lysis against 6 out of 13 isolates tested, suggesting the suitability of this phage for therapeutic applications. Phage PG14 showed more than a 7-log cycle reduction in K. pneumoniae planktonic cells after 24 h of treatment at a multiplicity of infection (MOI) of 10. The phage PG14 showed a significant inhibition and disruption of biofilm produced by K. pneumoniae G14. The promising results of this study nominate phage PG14 as a potential candidate for phage therapy. IMPORTANCE Klebsiella pneumoniae is one of the members of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) group of pathogens and is responsible for nosocomial infections. The global increase of carbapenem-resistant K. pneumoniae has developed a substantial clinical threat because of the dearth of therapeutic choices available. K. pneumoniae is one of the commonly found bacteria responsible for biofilm-related infections. Due to the inherent tolerance of biofilms to antibiotics, there is a growing need to develop alternative strategies to control biofilm-associated infections. This study characterized a novel bacteriophage PG14, which can inhibit and disrupt the K. pneumoniae biofilm. The genome of phage PG14 does not show any putative genes related to antimicrobial resistance or virulence, making it a potential candidate for phage therapy. This study displays the possibility of treating infections caused by multidrug-resistant (MDR) isolates of K. pneumoniae using phage PG14 alone or combined with other therapeutic agents.
Collapse
Affiliation(s)
- Mansura S. Mulani
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
- Abeda Inamdar Senior College, Pune, Maharashtra, India
| | - Shital N. Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Karishma R. Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
11
|
Wang L, Zhang Y, Liu Y, Xu M, Yao Z, Zhang X, Sun Y, Zhou T, Shen M. Effects of chlorogenic acid on antimicrobial, antivirulence, and anti-quorum sensing of carbapenem-resistant Klebsiella pneumoniae. Front Microbiol 2022; 13:997310. [PMID: 36583040 PMCID: PMC9793747 DOI: 10.3389/fmicb.2022.997310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The rise in infections caused by the hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is an emergent threat to public health. We assessed the effects of chlorogenic acid (CA), a natural phenolic compound, on antibacterial, antivirulence, and anti-quorum sensing (QS) of hv-CRKP. Five hv-CRKP were selected for antimicrobial susceptibility test and confirmed to carry virulence genes and carbapenem-resistant genes by polymerase chain reaction (PCR). Subsequently, a series of time-kill assay, determinations of protease activity and capsule content, biofilm-related experiment, scanning electron microscopy (SEM) and transmission electron microscope (TEM) observation, G. mellonella infection model, quantitative real-time PCR (qRT-PCR) of QS-related genes and biofilm formation genes, as well as AI-2 binding test were conduct to verify the effect of CA on hv-CRKP. Five CRKP strains showed varying degrees of resistance to antibacterial agents. All strains carried the bla KPC-2 gene, primarily carrying rmpA2, iucA, and peg-344. CA showed no effect on CRKP growth at the 1/2 minimum inhibitory concentration (MIC), 1/4 MIC, and 1/8 MIC, CA could reduce the production of extracellular protease and capsular polysaccharides, and improve the survival rate of larvae in Galleria mellonella (G. mellonella) infection model. By means of crystal violet staining and scanning electron microscopy experiments, we observed that CA can inhibit the formation of CRKP biofilm. On the quantitative real-time PCR analysis, the expression of the luxS, mrkA and wbbm genes in most CRKP strains appeared downregulated because of the CA treatment. Besides, CA significantly inhibited the effect of AI-2 activity of BB170. Our study suggests that CA can be an effective antimicrobial, antivirulent compound that can target QS in hv-CRKP infections, thus providing a new therapeutic direction for treating bacterial infections.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China,Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yi Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China,*Correspondence: Tieli Zhou,
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China,Mo Shen,
| |
Collapse
|
12
|
Jara J, Jurado R, Almendro-Vedia VG, López-Montero I, Fernández L, Rodríguez JM, Orgaz B. Interspecies relationships between nosocomial pathogens associated to preterm infants and lactic acid bacteria in dual-species biofilms. Front Cell Infect Microbiol 2022; 12:1038253. [PMID: 36325465 PMCID: PMC9618709 DOI: 10.3389/fcimb.2022.1038253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 12/08/2023] Open
Abstract
The nasogastric enteral feeding tubes (NEFTs) used to feed preterm infants are commonly colonized by bacteria with the ability to form complex biofilms in their inner surfaces. Among them, staphylococci (mainly Staphylococcus epidermidis and Staphylococcus aureus) and some species belonging to the Family Enterobacteriaceae are of special concern since they can cause nosocomial infections in this population. NETF-associated biofilms can also include lactic acid bacteria (LAB), with the ability to compete with pathogenic species for nutrients and space. Ecological interactions among the main colonizers of these devices have not been explored yet; however, such approach could guide future strategies involving the pre-coating of the inner surfaces of NEFTs with well adapted LAB strains in order to reduce the rates of nosocomial infections in neonatal intensive care units (NICUs). In this context, this work implied the formation of dual-species biofilms involving one LAB strain (either Ligilactobacillus salivarius 20SNG2 or Limosilactobacillus reuteri 7SNG3) and one nosocomial strain (either Klebsiella pneumoniae 9SNG3, Serratia marcescens 10SNG3, Staphylococcus aureus 45SNG3 or Staphylococcus epidermidis 46SNG3). The six strains used in this study had been isolated from the inner surface of NEFTs. Changes in adhesion ability of the pathogens were characterized using a culturomic approach. Species interactions and structural changes of the resulting biofilms were analyzed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). No aggregation was observed in dual-species biofilms between any of the two LAB strains and either K. pneumoniae 9SNG3 or S. marcescens 10SNG3. In addition, biofilm thickness and volume were reduced, suggesting that both LAB strains can control the capacity to form biofilms of these enterobacteria. In contrast, a positive ecological relationship was observed in the combination L. reuteri 7SNG3-S. aureus 45SNG3. This relationship was accompanied by a stimulation of S. aureus matrix production when compared with its respective monospecies biofilm. The knowledge provided by this study may guide the selection of potentially probiotic strains that share the same niche with nosocomial pathogens, enabling the establishment of a healthier microbial community inside NEFTs.
Collapse
Affiliation(s)
- Josué Jara
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Jurado
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor G. Almendro-Vedia
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Iván López-Montero
- Departamento de Química Física, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Leonides Fernández
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Miguel Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Orgaz
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Makhrmash JH, Al-Aidy SR, Qaddoori BH. Investigation of Biofilm Virulence Genes Prevalence in Klebsiella pneumoniae Isolated from the Urinary Tract Infections. ARCHIVES OF RAZI INSTITUTE 2022; 77:1421-1427. [PMID: 36883149 PMCID: PMC9985780 DOI: 10.22092/ari.2022.357626.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/16/2022] [Indexed: 03/09/2023]
Abstract
Klebsiella pneumonia is a pathogen and an agent that causes hospital-acquired infections. Klebsiella pneumonia is the first and most common causative agent in community-acquired infections and urinary tract diseases. This study aimed to detect common genes, (i.e., fimA, mrkA, and mrkD) in the isolates of K. pneumoniae, isolated from urine specimens using the polymerase chain reaction (PCR) method. The isolates of K. pneumoniae were collected from urine specimens in health centers in Wasit Governorate, Iraq, and diagnosed using Analytical Profile Index 20Eand 16S rRNA techniques. The microtiter plate (MTP) method was used to detect biofilm formation. A total of 56 isolates were identified as K. pneumonia cases. The results led to the detection of biofilms; accordingly, all K. pneumoniae isolates showed biofilm production by MTP, however, at different levels. The PCR method was employed to detect biofilm genes and showed that 49 (87.5%), 26 (46.4%), and 30 (53.6%) of isolates carried fimH, mrkA, and mrkD, respectively. Furthermore, susceptibility tests for different antibiotics revealed that K. pneumoniae isolates were resistant to amoxicillin-clavulanic acid (n=11, 19.5%), ceftazidime (n=13, 22.4%), ofloxacin (n=16, 28.1%), and tobramycin (n=27, 48.4%). It was also found all K. pneumonia isolates were sensitive to polymyxin B (92.6%), imipenem (88.3%), meropenem (79.4%), and amikacin (60.5%).
Collapse
Affiliation(s)
- J H Makhrmash
- Department of Medical Microbiology, Faculty of Medicine, Wasit University, Wasit, Iraq
| | - S R Al-Aidy
- Department of Medical Microbiology, Faculty of Medicine, Wasit University, Wasit, Iraq
| | - B H Qaddoori
- Department of Medical Microbiology, Faculty of Medicine, Wasit University, Wasit, Iraq
| |
Collapse
|
14
|
Kwon H, Park SY, Kim MS, Kim SG, Park SC, Kim JH. Characterization of a Lytic Bacteriophage vB_SurP-PSU3 Infecting Staphylococcus ureilyticus and Its Efficacy Against Biofilm. Front Microbiol 2022; 13:925866. [PMID: 35923398 PMCID: PMC9340203 DOI: 10.3389/fmicb.2022.925866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
In response to the increasing nosocomial infections caused by antimicrobial-resistant coagulase-negative staphylococci (CoNS), bacteriophages (phages) have emerged as an alternative to antibiotics. Staphylococcus ureilyticus, one of the representative species of the CoNS, is now considered a notable pathogen that causes nosocomial bloodstream infections, and its biofilm-forming ability increases pathogenicity and resistance to antimicrobial agents. In this study, a lytic phage infecting S. ureilyticus was newly isolated from wastewater collected from a sewage treatment plant and its biological and antimicrobial characteristics are described. The isolated phage, named vB_SurP-PSU3, was morphologically similar to Podoviridae and could simultaneously lyse some S. warneri strains used in this study. The sequenced genome of the phage consisted of linear dsDNA with 18,146 bp and genome-based phylogeny revealed that vB_SurP-PSU3 belonged to the genus Andhravirus. Although its overall genomic arrangement and contents were similar to those of other members of the Andhravirus, the predicted endolysin of vB_SurP-PSU3 distinctly differed from the other members of the genus. The bacteriolytic activity of vB_SurP-PSU3 was evaluated using S. ureilyticus ATCC 49330, and the phage could efficiently inhibit the planktonic growth of the bacteria. Moreover, the anti-biofilm analysis showed that vB_SurP-PSU3 could prevent the formation of bacterial biofilm and degrade the mature biofilm in vitro. In an additional cytotoxicity assay of vB_SurP-PSU3, no significant adverse effects were observed on the tested cell. Based on these findings, the newly isolated phage vB_SurP-PSU3 could be classified as a new member of Andhravirus and could be considered an alternative potential biocontrol agent against S. ureilyticus infections and its biofilm.
Collapse
Affiliation(s)
- Hyemin Kwon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seon Young Park
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
15
|
Exploring the Biofilm Formation Capacity in S. pseudintermedius and Coagulase-Negative Staphylococci Species. Pathogens 2022; 11:pathogens11060689. [PMID: 35745543 PMCID: PMC9229561 DOI: 10.3390/pathogens11060689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/09/2023] Open
Abstract
The ability of biofilm formation seems to play an important role in the virulence of staphylococci. However, studies reporting biofilm formation of coagulase-negative staphylococci isolated from animals are still very scarce. Thus, we aimed to evaluate the biofilm-forming capacity of CoNS and S. pseudintermedius isolated from several animal species and to investigate the effect of conventional antimicrobials on biofilm reduction. A total of 35 S. pseudintermedius and 192 CoNS were included. Biofilm formation was accessed by the microtiter plate assay and the biofilms were stained by crystal violet. Association between biofilm formation and staphylococci species and antimicrobial resistance was also performed. Biofilm susceptibility testing was performed with tetracycline and amikacin at the minimum inhibitory concentration (MIC) and 10 × MIC. The metabolic activity of the biofilm cells after antimicrobial treatment was accessed by the XTT assay. All isolates formed biofilm, with S. urealyticus producing the most biofilm biomass and S. pseudintermedius producing the least biomass. There was a positive association between biofilm formation and multidrug resistance as well as resistance to individual antimicrobials. Neither tetracycline nor amikacin were able to eradicate the biofilm, not even at the highest concentration used. This study provides new insights into biofilm formation and the effects of antimicrobials on CoNS species.
Collapse
|
16
|
Qian W, Li X, Yang M, Liu C, Kong Y, Li Y, Wang T, Zhang Q. Relationship Between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Escherichia coli Isolates from Ningbo, China. Infect Drug Resist 2022; 15:2865-2878. [PMID: 35686192 PMCID: PMC9172925 DOI: 10.2147/idr.s363652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, People’s Republic of China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, People’s Republic of China
| | - Min Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, People’s Republic of China
| | - Chanchan Liu
- Xi’an Medical College, Xi’an, 710309, People’s Republic of China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, the General Hospital of the People’s Liberation Army, Beijing, 100048, People’s Republic of China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, People’s Republic of China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, People’s Republic of China
- Correspondence: Ting Wang; Qian Zhang, Tel +10 29-86168583, Email ;
| | - Qian Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518004, People’s Republic of China
| |
Collapse
|
17
|
Chen X, Tang Q, Li X, Zheng X, Li P, Li M, Wu F, Xu Z, Lu R, Zhang W. Isolation, characterization, and genome analysis of bacteriophage P929 that could specifically lyase the KL19 capsular type of Klebsiella pneumoniae. Virus Res 2022; 314:198750. [DOI: 10.1016/j.virusres.2022.198750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023]
|
18
|
Zaborskytė G, Wistrand-Yuen E, Hjort K, Andersson DI, Sandegren L. Modular 3D-Printed Peg Biofilm Device for Flexible Setup of Surface-Related Biofilm Studies. Front Cell Infect Microbiol 2022; 11:802303. [PMID: 35186780 PMCID: PMC8851424 DOI: 10.3389/fcimb.2021.802303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Medical device-related biofilms are a major cause of hospital-acquired infections, especially chronic infections. Numerous diverse models to study surface-associated biofilms have been developed; however, their usability varies. Often, a simple method is desired without sacrificing throughput and biological relevance. Here, we present an in-house developed 3D-printed device (FlexiPeg) for biofilm growth, conceptually similar to the Calgary Biofilm device but aimed at increasing ease of use and versatility. Our device is modular with the lid and pegs as separate units, enabling flexible assembly with up- or down-scaling depending on the aims of the study. It also allows easy handling of individual pegs, especially when disruption of biofilm populations is needed for downstream analysis. The pegs can be printed in, or coated with, different materials to create surfaces relevant to the study of interest. We experimentally validated the use of the device by exploring the biofilms formed by clinical strains of Escherichia coli and Klebsiella pneumoniae, commonly associated with device-related infections. The biofilms were characterized by viable cell counts, biomass staining, and scanning electron microscopy (SEM) imaging. We evaluated the effects of different additive manufacturing technologies, 3D printing resins, and coatings with, for example, silicone, to mimic a medical device surface. The biofilms formed on our custom-made pegs could be clearly distinguished based on species or strain across all performed assays, and they corresponded well with observations made in other models and clinical settings, for example, on urinary catheters. Overall, our biofilm device is a robust, easy-to-use, and relevant assay, suitable for a wide range of applications in surface-associated biofilm studies, including materials testing, screening for biofilm formation capacity, and antibiotic susceptibility testing.
Collapse
|
19
|
Comparison of phenotypic and genotypic assays of biofilm formation in A. baumannii isolates based on gold standard method and related antibiotic resistance. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Mollah MZI, Zahid HM, Mahal Z, Faruque MRI, Khandaker MU. The Usages and Potential Uses of Alginate for Healthcare Applications. Front Mol Biosci 2021; 8:719972. [PMID: 34692769 PMCID: PMC8530156 DOI: 10.3389/fmolb.2021.719972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023] Open
Abstract
Due to their unique properties, alginate-based biomaterials have been extensively used to treat different diseases, and in the regeneration of diverse organs. A lot of research has been done by the different scientific community to develop biofilms for fulfilling the need for sustainable human health. The aim of this review is to hit upon a hydrogel enhancing the scope of utilization in biomedical applications. The presence of active sites in alginate hydrogels can be manipulated for managing various non-communicable diseases by encapsulating, with the bioactive component as a potential site for chemicals in developing drugs, or for delivering macromolecule nutrients. Gels are accepted for cell implantation in tissue regeneration, as they can transfer cells to the intended site. Thus, this review will accelerate advanced research avenues in tissue engineering and the potential of alginate biofilms in the healthcare sector.
Collapse
Affiliation(s)
- M. Z. I. Mollah
- Space Science Centre (ANGKASA), Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - H. M. Zahid
- Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Z. Mahal
- Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | | | - M. U. Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Selangor, Malaysia
| |
Collapse
|
21
|
Abstract
Biofilms are aggregates formed as a protective survival state by microorganisms to adapt to the environment and can be resistant to antimicrobial agents and host immune responses due to chemical or physical diffusion barriers, modified nutrient environments, suppression of the growth rate within biofilms, and the genetic adaptation of cells within biofilms. With the widespread use of medical devices, medical device-associated biofilms continue to pose a serious threat to human health, and these biofilms have become the most important source of nosocomial infections. However, traditional antimicrobial agents cannot completely eliminate medical device-associated biofilms. New strategies for the treatment of these biofilms and targeting biofilm infections are urgently required. Several novel approaches have been developed and identified as effective and promising treatments. In this review, we briefly summarize the challenges associated with the treatment of medical device-associated biofilm infections and highlight the latest promising approaches aimed at preventing or eradicating these biofilms.
Collapse
|
22
|
Jeyanathan A, Ramalhete R, Blunn G, Gibbs H, Pumilia CA, Meckmongkol T, Lovejoy J, Coathup MJ. Lactobacillus cell-free supernatant as a novel bioagent and biosurfactant against Pseudomonas aeruginosa in the prevention and treatment of orthopedic implant infection. J Biomed Mater Res B Appl Biomater 2021; 109:1634-1643. [PMID: 33634961 DOI: 10.1002/jbm.b.34821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/13/2021] [Accepted: 02/14/2021] [Indexed: 01/09/2023]
Abstract
The hypothesis was that probiotic Lactobacillus species (spp.) or their cell-free supernatant (CFS) are effective in inhibiting (a) planktonic growth of Pseudomonas aeruginosa (PA), (b) its adhesion to a Ti6Al4V-alloy surface, and (c) in dispersing biofilm once formed. (a) A planktonic co-culture containing PA(104 colony-forming unit [CFU]/ml) was combined with either Lactobacillus acidophilus, Lactobacillus plantarum (LP), or Lactobacillus fermentum (LF) at a suspension of 104 (1:1) or 108 CFU/ml (1:2). Lactobacillus and PA CFUs were then quantified. (b) Ti-6Al-4V discs were inoculated with PA followed by supplementation with CFS and adherent PA quantified. (c) Biofilm covered discs were supplemented with Lactobacillus CFS and remaining PA activity quantified. Results showed that whole-cell cultures were ineffective in preventing PA growth; however, the addition of CFS resulted in a 99.99 ± 0.003% reduction in adherent PA in all Lactobacillus groups (p < .05 in all groups) with no viable PA growth measured in the LF and LP groups. Following PA biofilm formation, CFS resulted in a significant reduction in PA activity in all Lactobacillus groups (p ≤ .05 in all groups) with a 29.75 ± 15.98% increase measured in control samples. Supplementation with CFS demonstrated antiadhesive, antibiofilm, and toxic properties to PA.
Collapse
Affiliation(s)
- Augustina Jeyanathan
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, UK
| | - Rita Ramalhete
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, UK
| | - Gordon Blunn
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, UK.,School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Hannah Gibbs
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Cyrus Anthony Pumilia
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Teerin Meckmongkol
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Department of General Surgery, Nemours Children's Hospital, Orlando, Florida, USA
| | - John Lovejoy
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Department of Orthopaedics, Sports Medicine and Physical Medicine and Rehabilitation, Nemours Children's Hospital, Orlando, Florida, USA
| | - Melanie J Coathup
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, UK.,Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
23
|
Graphene Oxide Coatings as Tools to Prevent Microbial Biofilm Formation on Medical Device. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1282:21-35. [PMID: 31468360 DOI: 10.1007/5584_2019_434] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical challenge on surface engineering of medical devices to prevent microorganisms adhesion and biofilm formation, has become an essential aspect for medical implants. Antibacterial properties of Graphene Oxide (GO) have been demonstrated across a broad spectrum of bacteria, and the different mechanisms of action with which this nanomaterial interacts with the microbial surface have been elucidated in detail. Innovative protective coatings based on graphene film and hydrogel could represent an innovative solution for the prevention of nosocomial pathogens colonization on implantable device. This brief review mainly focuses on the applications of graphene in nanomedicine with a particular deepening on the antibacterial properties of GO and GO-based nanomaterials. In order to evaluate the possible future applications of GO as an anti-biofilm coating material for medical devices, studies on the ability of graphene coated surface to prevent microbial adhesion are also discussed. A concise review on in vitro toxicity and in vivo safety is also presented.
Collapse
|
24
|
Duraisamy S, Balakrishnan S, Ranjith S, Husain F, Sathyan A, Peter AS, Prahalathan C, Kumarasamy A. Bacteriocin-a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44922-44936. [PMID: 33006097 DOI: 10.1007/s11356-020-10989-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Biofilm, a consortium of microbial cells, protected by extracellular polymeric matrix, is considered a global challenge due to the inherent antibiotic resistance conferred by its lifestyle. Besides, it poses environmental threats causing huge damage in food industries, fisheries, refineries, water systems, pharmaceutical industries, medical industries, etc. Living in a community of microbial populations is most critical in the clinical field, making it responsible for about 80% of severe and chronic microbial diseases. The necessity to find an alternative approach is the need of the hour to solve these crises. So far, many approaches have been attempted to disrupt the initial stage of biofilm formation, including adherence and maturation. Bacteriocins are a group of antimicrobial peptides, produced by bacteria having the potential to disrupt biofilm either by itself or in combination with other drugs than antibiotic counterparts. A clear understanding on mechanisms of bacterial biofilm formation, progression, and resistance will surely lead to the development of innovative, effective biofilm control strategies in pharmaceutical, health care industries and environmental locales.
Collapse
Affiliation(s)
- Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Senthilkumar Balakrishnan
- Department of Medical Microbiology, College of Health and Medical Sciences, Haramaya University, P.O. Box 235, Harar, Ethiopia
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Fazal Husain
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Ansu Susan Peter
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Chidambaram Prahalathan
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
25
|
Advantages and limitations of microtiter biofilm assays in the model of antibiofilm activity of Klebsiella phage KP34 and its depolymerase. Sci Rep 2020; 10:20338. [PMID: 33230270 PMCID: PMC7683578 DOI: 10.1038/s41598-020-77198-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
One of the potential antibiofilm strategies is to use lytic phages and phage-derived polysaccharide depolymerases. The idea is to uncover bacteria embedded in the biofilm matrix making them accessible and vulnerable to antibacterials and the immune system. Here we present the antibiofilm efficiency of lytic phage KP34 equipped with virion-associated capsule degrading enzyme (depolymerase) and its recombinant depolymerase KP34p57, depolymerase-non-bearing phage KP15, and ciprofloxacin, separately and in combination, using a multidrug-resistant K. pneumoniae biofilm model. The most effective antibiofilm agents were (1) phage KP34 alone or in combination with ciprofloxacin/phage KP15, and (2) depolymerase KP34p57 with phage KP15 and ciprofloxacin. Secondly, applying the commonly used biofilm microtiter assays: (1) colony count, (2) LIVE/DEAD BacLight Bacterial Viability Kit, and (3) crystal violet (CV) biofilm staining, we unravelled the main advantages and limitations of the above methods in antibiofilm testing. The diverse mode of action of selected antimicrobials strongly influenced obtained results, including a false positive enlargement of biofilm mass (CV staining) while applying polysaccharide degrading agents. We suggest that to get a proper picture of antimicrobials' effectiveness, multiple examination methods should be used and the results must be read considering the principle of each technique and the antibacterial mechanism.
Collapse
|
26
|
Hassan PA, Khider AK. Correlation of biofilm formation and antibiotic resistance among clinical and soil isolates of Acinetobacter baumannii in Iraq. Acta Microbiol Immunol Hung 2020; 67:161-170. [PMID: 31833386 DOI: 10.1556/030.66.2019.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that is reported as a major cause of nosocomial infections. The aim of this study was to investigate the biofilm formation by A. baumannii clinical and soil isolates, to display their susceptibility to 11 antibiotics and to study a possible relationship between formation of biofilm and multidrug resistance. During 8 months period, from June 2016 to January 2017, a total of 52 clinical and 22 soil isolates of A. baumannii were collected and identified through conventional phenotypic, chromo agar, biochemical tests, API 20E system, and confirmed genotypically by PCR for blaOXA-51-like gene. Antibiotic susceptibility of isolates was determined by standard disk diffusion method according to Clinical and Laboratory Standard Institute. The biofilm formation was studied using Congo red agar, test tube, and microtiter plate methods. The clinical isolates were 100% resistance to ciprofloxacin, ceftazidime, piperacillin, 96.15% to gentamicin, 96.15% to imipenem, 92.31% to meropenem, and 78.85% to amikacin. The soil A. baumannii isolates were 100% sensitive to imipenem, meropenem, and gentamicin, and 90.1% to ciprofloxacin. All A. baumannii isolates (clinical and soil) were susceptible to polymyxin B. The percentage of biofilm formation in Congo red agar, test tube, and microtiter plate assays was 10.81%, 63.51%, and 86.48%, respectively. More robust biofilm former population was mainly among non-MDR isolates. Isolates with a higher level of resistance tended to form weaker biofilms. The soil isolates exhibited less resistance to antibiotics than clinical isolates. However, the soil isolates produce stronger biofilms than clinical isolates.
Collapse
Affiliation(s)
- Pakhshan A. Hassan
- 1 Department of Biology, College of Science, Salahaddin University, Erbil, Iraq
| | - Adel K. Khider
- 2 Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| |
Collapse
|
27
|
Battling Biofilm Forming Nosocomial Pathogens Using Chitosan and Pluronic F127. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biofilm represents a potential strut in bacterial treatment failure. It has a dual action; it affords microbial resistance against antibiotics and facilitate transmission of pathogenic bacteria. Nosocomial bacteria pose a serious problem in healthcare units; it prolongs patient hospital stay and increases the mortality rates beside other awful economical effect. This study was planned for targeting nosocomial bacterial biofilm using natural and biologically safe compounds like Chitosan and/or Pluronic F127. Ninety-five isolates were recovered from 107 nosocomial clinical samples. Different bacterial and fungal species were detected, from which Klebsiella pneumonia (23%), Pseudomonas aeruginosa (19%), Acinetobacter baumannii (18%) and E.coli (17%) were the predominate organisms. Pseudomonas aeruginosa, Acinetobacter baumanni and Klebsiella pneumonia were the abundant antibiotic resistant strains with multi-resistance pattern of 72%, 65% and 59%, respectively. A significant percentage of these isolates were strong biofilm forming. Herein, we investigate the effect of Chitosan and Pluronic F127 alone and in combination with each other against biofilm production. Chitosan show variable degree of biofilm inhibition, while Pluronic F127 was able to retard biofilm formation by 80% to 90% in most strain. There is no significant difference (P< 0.05) between Pluronic F127 alone and its effect in combination with Chitosan.
Collapse
|
28
|
Banerjee A, Batabyal K, Singh AD, Joardar SN, Dey S, Isore DP, Sar TK, Dutta TK, Bandyopadhyay S, Samanta I. Multi-drug resistant, biofilm-producing high-risk clonal lineage of Klebsiella in companion and household animals. Lett Appl Microbiol 2020; 71:580-587. [PMID: 32881009 DOI: 10.1111/lam.13381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 01/09/2023]
Abstract
Antimicrobial resistance is a global emergency which needs one health approach to address. The present study was conducted to detect the prevalence of beta-lactamase and biofilm-producing Klebsiella strains in rectal swabs (n = 624) collected from healthy dogs, cats, sheep and goats reared as companion or household animals in India. The dogs and cats were frequently exposed to third- or fourth-generation cephalosporins for therapy. The sheep and goats were occasionally exposed to antibiotics and had environmental exposure. Phenotypical ESBL (n = 93) and ACBL (n = 88)-producing Klebsiella were isolated significantly more (P < 0·05) from companion animals than household animals. Majority of the Klebsiella possessed blaCTX-M-15 . The sequences blaCTX-M-15.2 , blaCTX-M-197 and blaCTX-M-225 are reported first time from the companion animals. All ACBL-producing isolates possessed blaAmpC . The present study detected 65·8% of Klebsiella strains as biofilm producers possessing the studied biofilm associated genes. The isolates showed phenotypical resistance against chloramphenicol, tetracycline, doxycycline, co-trimoxazole, ampicillin, cefotaxime/clavulanic acid. The present study showed that companion and household animals (dogs, cats, sheep, goats) may act as a carrier of ESBL/biofilm-producing, multi-drug resistant, high-risk clonal lineage of Klebsiella.
Collapse
Affiliation(s)
- A Banerjee
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - K Batabyal
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - A D Singh
- Department of Veterinary Public Health, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - S N Joardar
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S Dey
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - D P Isore
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - T K Sar
- Department of Veterinary Pharmacology and Toxicology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - T K Dutta
- Department of Veterinary Microbiology, Central Agricultural University, Aizawl, India
| | - S Bandyopadhyay
- ICAR-Indian Veterinary Research Institute-Eastern Regional Station, Kolkata, India
| | - I Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| |
Collapse
|
29
|
Farajzadeh Sheikh A, Savari M, Abbasi Montazeri E, Khoshnood S. Genotyping and molecular characterization of clinical Acinetobacter baumannii isolates from a single hospital in Southwestern Iran. Pathog Glob Health 2020; 114:251-261. [PMID: 32552452 PMCID: PMC7480470 DOI: 10.1080/20477724.2020.1765124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ACINETOBACTER BAUMANNII (A. baumannii) is a pathogen responsible for nosocomial infections among the hospitalized patients. The aim of this study was to investigate genotyping and molecular characterization and to examine the biofilm formation ability of A. baumannii isolates. In total, 70 A. baumannii isolates were collected from patients admitted to Imam Khomeini Hospital in Ahvaz, Southwestern Iran. Minimum inhibitory concentrations (MIC) test was performed using Vitek 2 system. The presence of genes encoding metallo-β-lactamases, oxacillinases, and integrase and the biofilm formation ability were then evaluated. Multiple locus variable-number tandem repeat (VNTR) analysis (MLVA) typing and multiplex PCR were performed to determine the genetic relationships. The blaOXA-23-like gene had the highest prevalence. The frequency of genes encoding blaSPM, blaIMP, and blaVIM among MDR A. baumannii isolates were 12 (17.1%), 18 (25.7%), and 22 (31.4%), respectively. Moreover, 46 isolates (75.4%) harbored class I integron and 10 isolates (16.39%) carried class II integron. The number of weak, moderate and strong biofilm-producing isolates were 3 (4.3%), 7 (10%), and 55 (78.5%), respectively. The results showed that 70 A. baumannii isolates were grouped into 12 distinct MLVA types with five clusters and four singleton genotypes. In addition, 25 (35.7%) isolates were assigned to international clone (IC) variants, 37 (52.8%) isolates belonged to group 1 (IC II), and 8 (11.4%) isolates belonged to group 2 (IC I). Our findings revealed that the population structure of the A. baumannii isolates was genetically diverse. More focus on genetic variation and antibiotic resistance of A. baumannii isolates are recommended.
Collapse
Affiliation(s)
- Ahmad Farajzadeh Sheikh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Khoshnood
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
30
|
Biosurfactant Production and its Role in Candida albicans Biofilm Inhibition. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
31
|
Chu L, Zhou X, Shen Y, Yu Y. Inhibitory effect of trisodium citrate on biofilms formed by Klebsiella pneumoniae. J Glob Antimicrob Resist 2020; 22:452-456. [PMID: 32387258 DOI: 10.1016/j.jgar.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is a significant nosocomial pathogen related to ventilator-associated pneumonia owing to biofilm formation. Trisodium citrate (TSC) has antibacterial activity, but there is little research on the effect of TSC on biofilm formed by K. pneumoniae. The aims of this study were to evaluate the inhibitory effect of 4% TSC on K. pneumoniae biofilm formation and to determine the best time of TSC addition for biofilm inhibition. METHODS A total of 45 K. pneumoniae strains isolated from tracheal tip and sputum specimens were included. Modified Congo red agar was used to screen for biofilm production. Biofilm-positive strains were cultured for 4 days. TSC (4%) was added either initially or 3 days later. Crystal violet staining was used to quantify biofilm mass by measuring the optical density at 570 nm (OD570). Scanning electron microscopy (SEM) was used to observe biofilm morphology. RESULTS The OD570 was significantly lower in the 4% TSC group than that in the no-TSC group during the 4-day experiment. Compared with addition of TSC after 3 days, initial TSC addition resulted in a significant absorbance decrease (Day 4, 0.63 ± 0.11 later-TSC group vs. 0.41 ± 0.16 initial-TSC group). As observed by SEM, bacteria were stacked most densely in the no-TSC group on Day 4. In contrast, few bacteria were observed when TSC was added initially, whilst bacteria were obviously dispersed when TSC was added after 3 days. CONCLUSION TSC can inhibit K. pneumoniae biofilm formation and has the best effect when added initially.
Collapse
Affiliation(s)
- Lijuan Chu
- Department of Clinical Laboratory Center, Chongqing Health Center for Women and Children, Chongqing 401147, China.
| | - Xingyan Zhou
- Department of Clinical Laboratory Center, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Yan Shen
- Department of Clinical Laboratory Center, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Yu Yu
- Department of Clinical Laboratory Center, Chongqing Health Center for Women and Children, Chongqing 401147, China
| |
Collapse
|
32
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Effects of Lysozyme, Proteinase K, and Cephalosporins on Biofilm Formation by Clinical Isolates of Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis 2020; 2020:6156720. [PMID: 32089678 PMCID: PMC7031717 DOI: 10.1155/2020/6156720] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/01/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can form biofilms, which confer resistance to immune clearance and antibacterial treatment. Therefore, effective strategies to prevent biofilm formation are warranted. Here, 103 P. aeruginosa clinical isolates were quantitatively screened for biofilm formation ability via the tissue culture plate method. The effects of lysozyme (hydrolytic enzyme) and proteinase K (protease) on biofilm formation were evaluated at different concentrations. Lysozyme (30 μg/mL), but not proteinase K, significantly inhibited biofilm formation (19% inhibition). Treatment of 24-hour-old biofilms of P. aeruginosa isolates with 50 times the minimum inhibitory concentrations (MICs) of ceftazidime and cefepime significantly decreased the biofilm mass by 32.8% and 44%, respectively. Moreover, the exposure of 24-hour-old biofilms of P. aeruginosa isolates to lysozyme (30 μg/mL) and 50 times MICs of ceftazidime or cefepime resulted in a significant reduction in biofilm mass as compared with the exposure to lysozyme or either antibacterial agent alone. The best antibiofilm effect (49.3%) was observed with the combination of lysozyme (30 μg/mL) and 50 times MIC of cefepime. The promising antibiofilm activity observed after treatment with 50 times MIC of ceftazidime or cefepime alone or in combination with lysozyme (30 μg/mL) is indicative of a novel strategy to eradicate pseudomonal biofilms in intravascular devices and contact lenses.
Collapse
|
34
|
Wu Y, Wang R, Xu M, Liu Y, Zhu X, Qiu J, Liu Q, He P, Li Q. A Novel Polysaccharide Depolymerase Encoded by the Phage SH-KP152226 Confers Specific Activity Against Multidrug-Resistant Klebsiella pneumoniae via Biofilm Degradation. Front Microbiol 2019; 10:2768. [PMID: 31849905 PMCID: PMC6901502 DOI: 10.3389/fmicb.2019.02768] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
The increasing prevalence of infections caused by multidrug-resistant Klebsiella pneumoniae necessitates the development of alternative therapies. Here, we isolated, characterized, and sequenced a K. pneumoniae bacteriophage (SH-KP152226) that specifically infects and lyses K. pneumoniae capsular type K47. The phage SH-KP152226 contains a genome of 41,420 bp that encodes 48 predicted proteins. Among these proteins, Dep42, the gene product of ORF42, is a putative tail fiber protein and hypothetically possesses depolymerase activity. We demonstrated that recombinant Dep42 showed specific enzymatic activities in the depolymerization of the K47 capsule of K. pneumoniae and was able to significantly inhibit biofilm formation and/or degrade formed biofilms. We also showed that Dep42 could enhance polymyxin activity against K. pneumoniae biofilms when used in combination with antibiotics. These results suggest that combination of the identified novel depolymerase Dep42, encoded by the phage SH-KP152226, with antibiotics may represent a promising strategy to combat infections caused by drug-resistant and biofilm-forming K. pneumoniae.
Collapse
Affiliation(s)
- Yunqiang Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Research, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengsha Xu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianchao Zhu
- Department of Gastrointestinal Surgery, Shanghai Ruizhou Biotech Co. Ltd., Shanghai, China
| | - Jiangfeng Qiu
- Department of Research, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping He
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Banerjee A, Bardhan R, Chowdhury M, Joardar SN, Isore DP, Batabyal K, Dey S, Sar TK, Bandyopadhyay S, Dutta TK, Samanta I. Characterization of beta-lactamase and biofilm producing Enterobacteriaceae isolated from organized and backyard farm ducks. Lett Appl Microbiol 2019; 69:110-115. [PMID: 31087370 DOI: 10.1111/lam.13170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
This study was undertaken to detect the occurrence of beta-lactamase and biofilm producing Enterobacteriaceae in healthy ducks. A total 202 cloacal swabs were collected from ducks kept in organized (n = 92) and backyard (n = 110) farms in West Bengal (India). The ducks had no history of antibiotic intake. Among the 87 phenotypically beta-lactamase producing Escherichia coli, 19 (17·43%), 6 (5·05%) and 15 (13·76%) isolates possessed blaTEM , blaSHV and blaCTX-M respectively. Whereas, 5 (38·46%) Salmonella isolates were found to harbour blaCTX-M . In K. pneumoniae 10 (33·33%), 3 (13·33%), 4 (13·33%) isolates possessed blaTEM , blaSHV and blaCTX-M respectively. The sequences of selected PCR products were found 98% cognate with blaCTX-M-9, blaSHV-12 and blaTEM-1 . Beta-lactamase producing E. coli isolates belonged to 14 different serogroups such as O1, O2, O3, O5, O7, O8, O35, O83, O84, O88, O119, O128, O145 and O157. Moreover, 87 E. coli (79·82%), six Samonella (46·15%) and 13 K. pneumoniae (43·33%) isolates were detected as AmpC producers possessing blaAmpC . Majority of E. coli (46·79%), Salmonella (46·15%) and K. pneumoniae (70%) isolates were detected as biofilm producers and possessed the associated genes (csgA, sdiA, rcsA, rpoS). Significantly higher occurrence of beta-lactamase and biofilm producing Enterobacteriaceae isolates was detected in backyard ducks than organized farms. SIGNIFICANCE AND IMPACT OF THE STUDY: Consumption of antibiotic through feed or during therapy is considered as potential reason for generation of antimicrobial resistant bacteria in birds. This study provides valuable evidence that exposure to contaminated environment may be an additional source for generation of antimicrobial resistant bacteria in backyard ducks. The backyard ducks are reared by marginal farmers in India who cannot offer antibiotics to them either through feed or during therapy due to high cost. The study also reveals a significant correlation between biofilm formation and possession of antimicrobial resistance genes in the bacterial isolates from the ducks.
Collapse
Affiliation(s)
- A Banerjee
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal, India
| | - R Bardhan
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal, India
| | - M Chowdhury
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal, India
| | - S N Joardar
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal, India
| | - D P Isore
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal, India
| | - K Batabyal
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal, India
| | - S Dey
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal, India
| | - T K Sar
- Department of Veterinary Pharmacology and Toxicology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - S Bandyopadhyay
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, West Bengal, India
| | - T K Dutta
- Department of Veterinary Microbiology, Central Agricultural University, Aizawl, Mizoram, India
| | - I Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal, India
| |
Collapse
|
36
|
Hamam SS, El Kholy RM, Zaki MES. Study of Various Virulence Genes, Biofilm Formation and Extended-Spectrum β-lactamase Resistance in Klebsiella pneumoniae Isolated from Urinary Tract Infections. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective:
The aims of the current study were to evaluate the capacity of K. pneumoniae isolated from hospital-acquired urinary tract infection to form biofilm, the relation of this capacity to various virulence genes and the prevalence of Extended Spectrum β-lactamases (ESBL) among these isolates by phenotypic and genotypic methods.
Material and Methods:
The study included 100 non-duplicate strains of K. pneumoniae isolated from 100 different urine samples from patients with hospital-acquired urinary tract infection. The isolated strains were studied for biofilm formation, ESBL production by phenotypic methods. Molecular studies were applied for the detection of ESβLs genes blaTEM, blaSHV, blaCTX-M and for detection of virulence genes fimH, uge, rmpA, mag A, wzy, kfa and aerobactin genes.
Result:
The majority of the isolates had the capacity to form a biofilm (81%), with ESBL prevalence rate 41%. The most prevalent gene among ESBL producing K. pneumoniae was blaCTX-M (73.2%) followed by blaSHV (53.6%) and blaTEM (51.2%). Among the virulence genes studied in K. pneumoniae isolates, the most prevalent gene was fimH (76%), uge (70%). There was significant association between ESBL production, and resistance to amikacin, cefepime, ceftazidime, gentamicin, imipenem and meropenem and biofilm production in K. pneumoniae isolates. There was significant association between blaCTX-M, blaSHV, fimH, mag, kfa, wzy, rmpA and aerobactin and biofilm production in K. pneumoniae.
Conclusion:
The present study highlights the prevalence of virulence genes among biofilm-forming strains of K. pneumoniae isolated from hospital-acquired urinary tract infection. Moreover, there was association between biofilm formation and ESBL production. Further studies are required to elucidate the clinical impact of the association of these different mechanisms.
Collapse
|
37
|
Panjaitan NSD, Horng YT, Cheng SW, Chung WT, Soo PC. EtcABC, a Putative EII Complex, Regulates Type 3 Fimbriae via CRP-cAMP Signaling in Klebsiella pneumoniae. Front Microbiol 2019; 10:1558. [PMID: 31354661 PMCID: PMC6629953 DOI: 10.3389/fmicb.2019.01558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023] Open
Abstract
Biofilm formation by Klebsiella pneumoniae on indwelling medical devices increases the risk of infection. Both type 1 and type 3 fimbriae are important factors in biofilm formation by K. pneumoniae. We found that a putative enzyme II (EII) complex of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), etcA (EIIA)-etcB (EIIB)-etcC (EIIC), regulated biofilm and type 3 fimbriae formation by K. pneumoniae STU1. In this study, the regulatory mechanism of etcABC in K. pneumoniae type 3 fimbriae formation was investigated. We found via quantitative RT-PCR that overexpression of etcABC enhanced the transcription level of the mrk operon, which is involved in type 3 fimbriae synthesis, and reduced the transcription level of the fim operon, which is involved in type 1 fimbriae synthesis. To gain further insight into the role of etcABC in type 3 fimbriae synthesis, we analyzed the region upstream of the mrk operon and found the potential cyclic 3′5′-adenosine monophosphate (cAMP) receptor protein (CRP) binding site. After crp was deleted in K. pneumoniae STU1 and two clinical isolates, these three crp mutant strains could not express MrkA, the major subunit of the fimbrial shaft, indicating that CRP positively regulated type 3 fimbriae synthesis. Moreover, a crp mutant overexpressing etcABC could not express MrkA, indicating that the regulation of type 3 fimbriae by etcABC was dependent on CRP. In addition, deletion of cyaA, which encodes the adenylyl cyclase that synthesizes cAMP, and deletion of crr, which encodes the glucose-specific EIIA, led to a reduction in lac operon regulation and therefore bacterial lactose uptake in K. pneumoniae. Exogenous cAMP but not etcABC overexpression compensated for the role of cyaA in bacterial lactose uptake. However, either etcABC overexpression or exogenous cAMP compensated for the role of crr in bacterial lac operon regulation that would eventually restore lactose uptake. We also found via ELISA and the luxCDABE reporter system that overexpression of etcABC increased intracellular cAMP levels and the transcription level of crp, respectively, in K. pneumoniae. In conclusion, overexpression of etcABC positively regulated cAMP production and cAMP-CRP activity to activate the mrk operon, resulting in increased type 3 fimbriae synthesis in K. pneumoniae.
Collapse
Affiliation(s)
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Shih-Wen Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Wen-Ting Chung
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Po-Chi Soo
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien City, Taiwan.,Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| |
Collapse
|
38
|
Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018; 4:e01067. [PMID: 30619958 PMCID: PMC6312881 DOI: 10.1016/j.heliyon.2018.e01067] [Citation(s) in RCA: 581] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
In living organisms, biofilms are defined as complex communities of bacteria residing within an exopolysaccharide matrix that adheres to a surface. In the clinic, they are typically the cause of chronic, nosocomial, and medical device-related infections. Due to the antibiotic-resistant nature of biofilms, the use of antibiotics alone is ineffective for treating biofilm-related infections. In this review, we present a brief overview of concepts of bacterial biofilm formation, and current state-of-the-art therapeutic approaches for preventing and treating biofilms. Also, we have reviewed the prevalence of such infections on medical devices and discussed the future challenges that need to be overcome in order to successfully treat biofilms using the novel technologies being developed.
Collapse
Affiliation(s)
- Zohra Khatoon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Christopher D. McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1014] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
40
|
Cepas V, López Y, Muñoz E, Rolo D, Ardanuy C, Martí S, Xercavins M, Horcajada JP, Bosch J, Soto SM. Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microb Drug Resist 2018; 25:72-79. [PMID: 30142035 DOI: 10.1089/mdr.2018.0027] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings. The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed, gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazobactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition, compared with other reported data, the isolates in the present study showed higher rates of antimicrobial resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not show a trend to being greater biofilm producers than non-multiresistant isolates.
Collapse
Affiliation(s)
- Virginio Cepas
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Yuly López
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Estela Muñoz
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Dora Rolo
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Carmen Ardanuy
- 2 Department of Microbiology, Hospital Universitari de Bellvitge , IDIBELL, Universitat de Barcelona, Barcelona, Spain .,3 CIBERes (CIBER de Enfermedades Respiratorias) , ISCIII, Madrid, Spain
| | - Sara Martí
- 2 Department of Microbiology, Hospital Universitari de Bellvitge , IDIBELL, Universitat de Barcelona, Barcelona, Spain .,3 CIBERes (CIBER de Enfermedades Respiratorias) , ISCIII, Madrid, Spain
| | - Mariona Xercavins
- 4 Department of Microbiology, Hospital Mutua de Terrassa , Terrassa, Spain
| | | | - Jordi Bosch
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain .,6 Department of Microbiology, Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| | - Sara M Soto
- 1 ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona , Barcelona, Spain .,6 Department of Microbiology, Hospital Clínic-Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
41
|
The Relationship Between Antibiotic Resistance Phenotypes and Biofilm Formation Capacity in Clinical Isolates of Acinetobacter baumannii. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.74315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
42
|
Anes J, Martins M, Fanning S. Reversing Antimicrobial Resistance in Multidrug-Resistant Klebsiella pneumoniae of Clinical Origin Using 1-(1-Naphthylmethyl)-Piperazine. Microb Drug Resist 2018; 24:1497-1506. [PMID: 30004292 DOI: 10.1089/mdr.2017.0386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eleven clinical Klebsiella pneumoniae fluoroquinolone-resistant isolates were tested to access the potential of adjuvant therapies to reduce antimicrobial resistance using fixed concentrations of the chemosensitizers chlorpromazine (CPZ), thioridazine (TZ), phenylalanine-arginine-β-naphthylamide (PAβN), and 1-(1-naphthylmethyl)-piperazine-(NMP) with varying concentrations of antimicrobial agents nalidixic acid (NAL), ciprofloxacin (CIP), moxifloxacin (MXF), tetracycline (TET), and chloramphenicol (CHL). Ethidium bromide dye was used together with the chemosensitizers to investigate permeabilization effects. NMP was assessed for its capacity to reduce the mass of biofilm alone and in combination with CIP and MXF. Of the selected chemosensitizers, NMP exhibited the greatest capacity to reverse resistance and inhibit efflux, based on the concentrations tested. Susceptibility to antimicrobial agents including (fluoro)quinolones, TET, and CHL were found to be increased in the presence of NMP, in a concentration-dependent manner. PAβN also demonstrated similar effects when combined with the chemosensitizers tested. In the case of half of the isolates studied, NMP alone reduced preformed biofilm biomass. Combinations of latter along with CIP or MXF were also found to reduce the mass of preformed biofilm, in the case of only some of the bacterial isolates. The capacity of NMP to reduce antimicrobial resistance could be of relevance as a strategy to limit bacterial colonization on abiotic surfaces.
Collapse
Affiliation(s)
- João Anes
- 1 School of Public Health, Physiotherapy and Sports Science, UCD Centre for Food Safety, University College Dublin , Dublin, Ireland
| | - Marta Martins
- 1 School of Public Health, Physiotherapy and Sports Science, UCD Centre for Food Safety, University College Dublin , Dublin, Ireland
| | - Séamus Fanning
- 1 School of Public Health, Physiotherapy and Sports Science, UCD Centre for Food Safety, University College Dublin , Dublin, Ireland
- 2 Institute for Global Food Security, Queen's University Belfast , Belfast, United Kingdom
| |
Collapse
|
43
|
Sivaranjani M, Srinivasan R, Aravindraja C, Karutha Pandian S, Veera Ravi A. Inhibitory effect of α-mangostin on Acinetobacter baumannii biofilms - an in vitro study. BIOFOULING 2018; 34:579-593. [PMID: 29869541 DOI: 10.1080/08927014.2018.1473387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The present study was designed to investigate the anti-biofilm potential of alpha-mangostin (α-MG) against Acinetobacter baumannii (AB). The biofilm inhibitory concentration (BIC) of α-MG against AB was found to be 2 μg ml-1. α-MG (0.5, 1 and 2 μg ml-1) exhibited non-bactericidal concentration-dependent anti-biofilm activities against AB. However, α-MG failed to disintegrate the mature biofilms of AB even at a 10-fold increased concentration from its BIC. Results from qRT-PCR and in vitro bioassays further demonstrated that α-MG downregulated the expression of bfmR, pgaA, pgaC, csuA/B, ompA, bap, katE, and sodB genes, which correspondingly affects biofilm formation and its associated virulence traits. The present study suggests that α-MG exerts its anti-biofilm property by interrupting initial biofilm formation and the cell-to-cell signaling mechanism of AB. Additional studies are required to understand the mode of action responsible for the anti-biofilm property.
Collapse
|
44
|
Horng YT, Wang CJ, Chung WT, Chao HJ, Chen YY, Soo PC. Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 51:174-183. [DOI: 10.1016/j.jmii.2017.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/07/2017] [Accepted: 01/24/2017] [Indexed: 02/02/2023]
|
45
|
Vuotto C, Longo F, Pascolini C, Donelli G, Balice M, Libori M, Tiracchia V, Salvia A, Varaldo P. Biofilm formation and antibiotic resistance inKlebsiella pneumoniaeurinary strains. J Appl Microbiol 2017; 123:1003-1018. [DOI: 10.1111/jam.13533] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/15/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023]
Affiliation(s)
- C. Vuotto
- Microbial Biofilm Laboratory; Fondazione Santa Lucia; Rome Italy
| | - F. Longo
- Microbial Biofilm Laboratory; Fondazione Santa Lucia; Rome Italy
| | - C. Pascolini
- Microbial Biofilm Laboratory; Fondazione Santa Lucia; Rome Italy
| | - G. Donelli
- Microbial Biofilm Laboratory; Fondazione Santa Lucia; Rome Italy
| | - M.P. Balice
- Microbiological Laboratory; Fondazione Santa Lucia; Rome Italy
| | - M.F. Libori
- Microbiological Laboratory; Fondazione Santa Lucia; Rome Italy
| | - V. Tiracchia
- Microbiological Laboratory; Fondazione Santa Lucia; Rome Italy
| | - A. Salvia
- Medical Services; Fondazione Santa Lucia; Rome Italy
| | - P.E. Varaldo
- Department of Biomedical Sciences and Public Health; Section of Microbiology; Marche Polytechnic University Medical School; Torrette di Ancona Italy
| |
Collapse
|
46
|
Chiang SR, Jung F, Tang HJ, Chen CH, Chen CC, Chou HY, Chuang YC. Desiccation and ethanol resistances of multidrug resistant Acinetobacter baumannii embedded in biofilm: The favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:770-777. [PMID: 28732564 DOI: 10.1016/j.jmii.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/04/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND/PURPOSE Globally, multidrug-resistant Acinetobacter baumannii (MDRAB) has emerged as an important pathogen in nosocomial outbreaks. This study aimed to investigate the correlation between the biofilm formation and survival of MDRABs, and to investigate the antiseptic efficacy of hand sanitizers for the MDRABs, embedded with biofilm (MDRAB-Bs). METHODS The MDRABs were selected randomly after pulsed-field gel electrophoresis (PFGE), and their biofilm formation was analyzed. Desiccation and ethanol tolerances were assayed to test the bacterial survival. The antiseptic efficacy of combined chlorhexidine gluconate (CHG) and 70% ethanol agents against MDRAB-Bs were compared with the 70% ethanol cleanser. RESULTS Eleven MDRABs, which varied in biofilm formation (MRDAB-B) and planktonic type (MDRAB-P), were tested. In desiccation survival, the mean survival time for the MDRAB-Bs was 49.0 days which was significantly higher than that of their planktonic type (17.3 days) (P < 0.005). The MDRAB-Ps could be eliminated after a 10 min contact with a 30% ethanol agent, however, it took 10 min of 70% ethanol to eliminate the MDRAB-Bs. On the other hand, a 2% CHG in 70% ethanol solution completely eliminated all MDRAB-Bs after 1 min contacted time. The 2% CHG in 70% ethanol agent provided a significantly superior efficacy than the 70% ethanol solution at eliminating the MDRAB-Bs (P < 0.005). CONCLUSION MDRAB with biofilm-formation presented significantly higher desiccation and ethanol resistances than their planktonic type. Moreover, the 2% CHG in 70% ethanol agent provided a superior antiseptic efficacy for MDRAB-Bs than that of the 70% ethanol agent.
Collapse
Affiliation(s)
- Shyh-Ren Chiang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan City, Taiwan; Chia Nan University of Pharmacy & Science, Tainan City, Taiwan.
| | - Fang Jung
- Department of Respiratory Therapy, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan City, Taiwan; Chia Nan University of Pharmacy & Science, Tainan City, Taiwan.
| | - Chung-Hua Chen
- Department of Medicine, En Chu Kong Hospital, Taipei County, Taiwan.
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan; Institute of Biotechnology, National Cheng Kung University, Tainan City, Taiwan.
| | - Hsiu-Yin Chou
- Department of Pathology, Chi Mei Medical Center, Tainan City, Taiwan.
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan; Department of Medicine, Chi Mei Medical Center-Liou Ying, Tainan City, Taiwan.
| |
Collapse
|
47
|
Hashem AA, Abd El Fadeal NM, Shehata AS. In vitro activities of vancomycin and linezolid against biofilm-producing methicillin-resistant staphylococci species isolated from catheter-related bloodstream infections from an Egyptian tertiary hospital. J Med Microbiol 2017; 66:744-752. [DOI: 10.1099/jmm.0.000490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Asmaa A. Hashem
- Department of Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noha M. Abd El Fadeal
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Atef S. Shehata
- Department of Microbiology and Immunology, Faculty of Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
48
|
Uzodi AS, Lohse CM, Banerjee R. Risk Factors For and Outcomes of Multidrug-Resistant Escherichia coli Infections in Children. Infect Dis Ther 2017; 6:245-257. [PMID: 28374267 PMCID: PMC5446365 DOI: 10.1007/s40121-017-0152-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 01/09/2023] Open
Abstract
Introduction The recent increase in multidrug-resistant (MDR) Escherichia coli infections is not well described in children. We determined the risk factors and outcomes of extraintestinal E. coli infections in children in our region. Methods We conducted a retrospective cohort study of children ≤18 years in Olmsted County, MN, USA, between January 1, 2012 and December 31, 2012. MDR isolates were defined as resistant to ≥3 antibiotic classes. Results A total of 368 children each contributed 1 isolate. Isolates were predominantly community-associated (82%) and from urine (90%), and outpatients (86%); 46 (13%) isolates were MDR. In multivariable analysis, genitourinary (GU) tract anomaly (OR 2.42, 95% CI 1.03–5.68), invasive devices (OR 3.48, 95% CI 1.37–8.83) and antibiotic use at presentation (OR 2.62, 95% CI 1.06–6.47) were associated with MDR E. coli. Children with MDR infections were more likely to have a complex infection (35% vs. 17%, P = 0.026), less likely to receive effective empiric antibiotics (47% vs. 74%, P < 0.001), had longer time to receipt of effective antibiotics (median 19.2 vs. 0.6 h, P < 0.001), and longer hospitalization (median 10 vs. 4 days, P = 0.029) than children with non-MDR infections. Conclusion Pediatric MDR E. coli infection was associated with GU tract anomaly, invasive devices, antibiotic use, delays in effective therapy and longer hospitalization.
Collapse
Affiliation(s)
- Adaora S Uzodi
- Pediatric Infectious Diseases Section, Our Lady of the Lake Children's Hospital, Baton Rouge, LA, USA.
| | - Christine M Lohse
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Ritu Banerjee
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
49
|
Vafa Homann M, Johansson D, Wallen H, Sanchez J. Improved ex vivo blood compatibility of central venous catheter with noble metal alloy coating. J Biomed Mater Res B Appl Biomater 2016; 104:1359-65. [PMID: 26698606 PMCID: PMC5054833 DOI: 10.1002/jbm.b.33403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
Central line associated bloodstream infections (CLABSIs) are a serious cause of morbidity and mortality induced by the use of central venous catheters (CVCs). Nobel metal alloy (NMA) coating is an advanced surface modification that prevents microbial adhesion and growth on catheters and thereby reduces the risk of infection. In vitro microbiological analyses have shown up to 90% reduction in microbial adhesion on coated CVC compared to uncoated ones. This study aimed to assess the blood compatibility of NMA-coated CVC according to ISO 10993-4. Hemolysis, thrombin-antithrombin (TAT) complex, platelet counts, fibrin deposition, and C3a and SC5b-9 complement activation were analyzed in human blood exposed to the NMA-coated and control CVCs using a Chandler-loop model. NMA-coated CVC did not induce hemolysis and fell in the "nonhemolytic" category according to ASTM F756-00. Significantly lower amounts of TAT were generated and less fibrin was deposited on NMA-coated CVC than on uncoated ones. Slightly higher platelet counts and lower complement markers were observed for NMA-coated CVC compared to uncoated ones. These data suggest that the NMA-coated CVC has better ex vivo blood compatibility compared to uncoated CVC. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1359-1365, 2016.
Collapse
Affiliation(s)
| | - Dorota Johansson
- Research and Development Department, Bactiguard AB, Stockholm, Sweden
| | - Håkan Wallen
- Division of internal and Cardiovascular Medicine, Department of Clinical Science Danderyd Hospital, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Javier Sanchez
- Research and Development Department, Bactiguard AB, Stockholm, Sweden.
- Division of internal and Cardiovascular Medicine, Department of Clinical Science Danderyd Hospital, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
50
|
Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microb Pathog 2016; 98:50-6. [DOI: 10.1016/j.micpath.2016.06.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/09/2023]
|