1
|
Zhu J, Chen A, Ma H, Cheng YY, Song K. Optimization of Flavonoid Extraction from Eucommia ulmoides pollen using Respond Surface Methodology and its biological activities. Chem Biodivers 2024; 21:e202301308. [PMID: 38163260 DOI: 10.1002/cbdv.202301308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Flavonoids, known for their abundance in Eucommia ulmoides pollen, possess diverse biological functions, including antioxidants, antibacterial agents, and anti-tumor properties. This study aims to establish effective parameters for flavonoid extraction from Eucommia ulmoides pollen using a microwave-assisted method, characterize the flavonoid composition of the extracted material, and explore its biological activities. Building upon the initial results from single-factor experiments, response surface methodology was employed to optimize the extraction parameters. The inhibitory effect of human breast cancer cells (MCF-7) was evaluated by CCK assay and Live/dead staining. Simultaneously, the extract's scavenging ability against DPPH free radicals and its antibacterial properties against Escherichia coli and Staphylococcus aureus were investigated. The results demonstrated that the flavonoid yield reached 3.28 g per 100 g of pollen, closely aligning with the predicted value. The IC50 for flavonoid-mediated DPPH radical scavenging was 0.04 mg/mL. The extract exhibited a robust inhibitory effect on both Escherichia coli and Staphylococcus aureus. Concurrently, the extract displayed a significant inhibitory effect on the growth and proliferation of MCF-7 cells in a dose-dependent and time-dependent manner. In addition, six kinds of flavonoids have been identified by UPLC-TOF-MS/MS technology, providing further support to the study on the anti-oxidation and anti-tumor mechanism of Eucommia ulmoides pollen extracts.
Collapse
Affiliation(s)
- Jingjing Zhu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Ang Chen
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
2
|
Phumat P, Chaichit S, Potprommanee S, Preedalikit W, Sainakham M, Poomanee W, Chaiyana W, Kiattisin K. Influence of Benincasa hispida Peel Extracts on Antioxidant and Anti-Aging Activities, including Molecular Docking Simulation. Foods 2023; 12:3555. [PMID: 37835208 PMCID: PMC10573066 DOI: 10.3390/foods12193555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Benincasa hispida peel, a type of postconsumer waste, is considered a source of beneficial phytochemicals. Therefore, it was subjected to investigation for biological activities in this study. B. hispida peel was extracted using 95% v/v, 50% v/v ethanol and water. The obtained extracts were B95, B50 and BW. B95 had a high flavonoid content (212.88 ± 4.73 mg QE/g extract) and phenolic content (131.52 ± 0.38 mg GAE/g extract) and possessed high antioxidant activities as confirmed by DPPH, ABTS and lipid peroxidation inhibition assays. Moreover, B95 showed inhibitory effects against collagenase and hyaluronidase with values of 41.68 ± 0.92% and 29.17 ± 0.66%, which related to anti-aging activities. Via the HPLC analysis, one of the potential compounds found in B95 was rutin. Molecular docking has provided an understanding of the molecular mechanisms underlying the interaction of extracts with collagenase and hyaluronidase. All extracts were not toxic to fibroblast cells and did not irritate the hen's egg chorioallantoic membrane, which indicated its safe use. In conclusion, B. hispida peel extracts are promising potential candidates for further use as antioxidant and anti-aging agents in the food and cosmetic industries.
Collapse
Affiliation(s)
- Pimpak Phumat
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (S.C.); (S.P.)
| | - Siripat Chaichit
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (S.C.); (S.P.)
| | - Siriporn Potprommanee
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (S.C.); (S.P.)
| | - Weeraya Preedalikit
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.S.); (W.P.); (W.C.)
| | - Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.S.); (W.P.); (W.C.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.S.); (W.P.); (W.C.)
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.S.); (W.P.); (W.C.)
| |
Collapse
|
3
|
Chen YC, Chia YC, Huang BM. Phytochemicals from Polyalthia Species: Potential and Implication on Anti-Oxidant, Anti-Inflammatory, Anti-Cancer, and Chemoprevention Activities. Molecules 2021; 26:molecules26175369. [PMID: 34500802 PMCID: PMC8433920 DOI: 10.3390/molecules26175369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Polyalthia belong to the Annonaceae family and are a type of evergreen tree distributed across many tropical and subtropical regions. Polyalthia species have been used long term as indigenous medicine to treat certain diseases, including fever, diabetes, infection, digestive disease, etc. Recent studies have demonstrated that not only crude extracts but also the isolated pure compounds exhibit various pharmacological activities, such as anti-oxidant, anti-microbial, anti-tumor, anti-cancer, etc. It is known that the initiation of cancer usually takes several years and is related to unhealthy lifestyle, as well as dietary and environmental factors, such as stress, toxins and smoking. In fact, natural or synthetic substances have been used as cancer chemoprevention to delay, impede, or even stop cancer growing. This review is an attempt to collect current available phytochemicals from Polyalthia species, which exhibit anti-cancer potentials for chemoprevention purposes, providing directions for further research on the interesting agents and possible clinical applications.
Collapse
Affiliation(s)
- Yung-Chia Chen
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chen Chia
- Department of Food Science and Technology, TaJen University, Pingtung 90741, Taiwan;
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-06-2353535 (ext. 5337); Fax: +886-06-2093007
| |
Collapse
|
4
|
Zong S, Tang Y, Li W, Han S, Shi Q, Ruan X, Hou F. A Chinese Herbal Formula Suppresses Colorectal Cancer Migration and Vasculogenic Mimicry Through ROS/HIF-1 α/MMP2 Pathway in Hypoxic Microenvironment. Front Pharmacol 2020; 11:705. [PMID: 32499699 PMCID: PMC7242742 DOI: 10.3389/fphar.2020.00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Various malignant tumors, including colorectal cancer, have the ability to form functional blood vessels for tumor growth and metastasis. Vasculogenic mimicry (VM) refers to the ability of highly invasive tumor cells to link each other to form vessels, which is associated with poor cancer prognosis. However, the antitumor VM agents are still lacking in the clinic. Astragalus Atractylodes mixture (AAM), a traditional Chinese medicine, has shown to inhibit VM formation; however the exact mechanism is not completely clarified. In this study, we found that HCT-116 and LoVo could form a VM network. Additionally, hypoxia increases the intracellular reactive oxygen species (ROS) level and accelerates migration, VM formation in colorectal cancer cells, while N-Acetylcysteine (NAC) could reverse these phenomena. Notably, further mechanical exploration confirmed that the matrix metalloprotease 2 (MMP2) induction is ROS dependent under hypoxic condition. On the basis, we found that AAM could effectively inhibit hypoxia-induced ROS generation, migration, VM formation as well as HIF-1α and MMP2 expression. In vivo, AAM significantly inhibits metastasis of colorectal cancer in murine lung-metastasis model. Taken together, these results verified that AAM effectively inhibits migration and VM formation by suppressing ROS/HIF-1α/MMP2 pathway in colorectal cancer under hypoxic condition, suggesting AAM could serve as a therapeutic agent to inhibit VM formation in human colorectal cancer.
Collapse
Affiliation(s)
- Shaoqi Zong
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Tang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Li
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Susu Han
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Ruan
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Vijayakumar R, Abd Gani SS, Zaidan UH, Halmi MIE, Karunakaran T, Hamdan MR. Exploring the Potential Use of Hylocereus polyrhizus Peels as a Source of Cosmeceutical Sunscreen Agent for Its Antioxidant and Photoprotective Properties. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7520736. [PMID: 32454871 PMCID: PMC7222543 DOI: 10.1155/2020/7520736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 11/25/2022]
Abstract
Currently, consumers' demand for sunscreens derived from natural sources that provide photoprotection from ultraviolet (UV) radiation is pushing the cosmetic industry to develop breakthrough formulations of sun protection products by incorporating plant antioxidants as their active ingredients. In this context, the present study was initiated to evaluate the antioxidant and photoprotective properties of the underutilized Hylocereus polyrhizus peel extract (HPPE) using in vitro spectrophotometric techniques. The phytochemical screenings of HPPE conducted via high-performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) revealed the presence of phenolic acids and flavonoids as the major secondary metabolites in HPPE. The antioxidant potentials evaluated based on 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical and total antioxidant capacity assays were in the range of 22.16 ± 0.24%-84.67 ± 0.03% with 50% inhibitory concentration (IC50) of 36.39 ± 0.04 μg/mL and 23.76 ± 0.14%-31.87 ± 0.26% (IC50 = 21.93 ± 0.07 μg/mL), respectively. For the photoprotective evaluation, the results showed that HPPE had significantly high absorbance values (3.1-3.6) at 290-320 nm with an exceptional sun protection factor (SPF) value of 35.02 ± 0.39 at 1.00 mg/mL. HPPE also possessed a broad-spectrum shielding power against both UVA and UVB radiations. Hence, in terms of practical implications, our findings would offer an exciting avenue to develop a photoprotective formulation incorporating the ethanolic extract of Hylocereus polyrhizus peels as a synergistic active ingredient for its excellent UV absorption properties and the strong antioxidant activities.
Collapse
Affiliation(s)
- Ramya Vijayakumar
- Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Salwa Abd Gani
- Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Izuan Effendi Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, George Town, Penang, Malaysia
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, George Town, Penang, Malaysia
| | - Mohd Razak Hamdan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, George Town, Penang, Malaysia
| |
Collapse
|
6
|
Yang H, Zheng J, Wang HY, Li N, Yang YY, Shen YP. Comparative Proteomic Analysis of Three Gelatinous Chinese Medicines and Their Authentications by Tryptic-digested Peptides Profiling using Matrix-assisted Laser Desorption/Ionization-time of Flight/Time of Flight Mass Spectrometry. Pharmacogn Mag 2017; 13:663-667. [PMID: 29200730 PMCID: PMC5701408 DOI: 10.4103/pm.pm_54_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/06/2017] [Indexed: 11/15/2022] Open
Abstract
Background: Gelatinous Chinese medicines (GCMs) including Asini Corii Colla, Testudinis Carapacis ET Plastri Colla, and Cervi Cornus Colla, were made from reptile shell or mammalian skin or deer horn, and consumed as a popular tonic, as well as hemopoietic and hemostatic agents. Misuse of them would not exert their functions, and fake or adulterate products have caused drug market disorder and affected food and drug safety. GCMs are rich in denatured proteins, but insufficient in available DNA fragments, hence commonly used cytochrome c oxidase I barcoding was not successful for their authentication. Objective: In this study, we performed comparative proteomic analysis of them and their animal origins to identify the composition of intrinsic proteins for the first time. Materials and Methods: A reliable and convenient approach was proposed for their authentication, by the incorporation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two-dimensional electrophoresis, and matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). Results: A total of 26 proteins were identified from medicinal parts of original animals, and GCMs proteins presented in a dispersive manner in electrophoresis analyses due to complicated changes in the structure of original proteins caused by long-term decoction and the addition of ingredients during their manufacturing. In addition, by comparison of MALDI-TOF/TOF-MS profiling, 19 signature peptide fragments originated from the protein of GCM products were selected according to criteria. Conclusion: These could assist in the discrimination and identification of adulterates of GCMs and other ACMs for their form of raw medicinal material, the pulverized, and even the complex. SUMMARY Comparative proteomic analysis of three gelatinous Chinese medicines was conducted, and their authentications were based on tryptic-digested peptides profiling using matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry.
Abbreviations used: GCMs: Gelatinous Chinese medicines, COI: Cytochrome c oxidase I, SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, MALDI-TOF/TOF-MS: Matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry, LC: Liquid chromatography, ChP: Chinese Pharmacopoeia, HPLC: High performance liquid chromatography, LC-ESI+-MS: Liquid chromatography-electro spray ionization-mass spectrometry, IEF: isoelectric focusing, HCCA: α-Cyano-4-hydroxycinnamic acid.
Collapse
Affiliation(s)
- Huan Yang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.,Research Centre for Herbalomics and Drug Discovery, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jie Zheng
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hai-Yan Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Department of Quality Assurance, Zhenjiang Institute for Drug Control, Zhenjiang 212050, China
| | - Ya-Ya Yang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yu-Ping Shen
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.,Research Centre for Herbalomics and Drug Discovery, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|