1
|
Jikah AN, Edo GI. Moringa oleifera: a valuable insight into recent advances in medicinal uses and pharmacological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7343-7361. [PMID: 37532676 DOI: 10.1002/jsfa.12892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Moringa oleifera is an important medicinal plant in several countries; for example, Nigeria, the USA, Turkey, Germany, Greece, and Ukraine. The abundant bioactive and nutritional properties of this plant make it useful in many and diverse areas of life, including the health, cosmetic, agricultural, and food industries to mention but a few. Research has found that the presence of proteins, carbohydrates, lipids, vitamins, minerals, flavonoids, phenols, alkaloids, fatty acids, saponins, essential oils, folate, aromatic hydrocarbons, sterols, glucosinolates, and glycosides, among others, characterize the moringa nutrient profile and, as a result, give rise to its remedial effects on ailments such as wounds, stomach and duodenal ulcers, allergies, obesity, diabetes, inflammation, asthma, and so on. It is the aim of this review to provide an insight into such medicinal and pharmacological remedies attributed to moringa, stating both the past and recent discoveries. This review article also takes a look into the botanical features, bioactive compounds, antinutrients, food applications, bacterial fermentation products, biosafety, industrial applications, and other uses of moringa. Finally, with the belief that knowledge is progressive, we acknowledge that there are things yet undiscovered about this wonder plant that will be of value both to medicine and general life; we therefore recommend that research work continues on the moringa plant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Great Iruoghene Edo
- Department of Chemical Science, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
2
|
Guru PR, Kar RK, Nayak AK, Mohapatra S. A comprehensive review on pharmaceutical uses of plant-derived biopolysaccharides. Int J Biol Macromol 2023; 233:123454. [PMID: 36709807 DOI: 10.1016/j.ijbiomac.2023.123454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Biopolysaccharides extracted from plants are mainly photosynthetic byproducts found in leaves, pods, stems, fruits, grains, seeds, corms, rhizomes, roots, bark exudates, and other plant parts. Recently, these plant-derived biopolysaccharides have received a great deal of attention as pharmaceutical excipients in a range of different dosage forms because of several key advantages, such as widespread accessibility from nature as plant-based sources are readily available, sustainable production, availability of easy and cost-effective extraction methodologies, aqueous solubility, swelling capability in the aqueous medium, non-toxicity, biodegradability, etc. The current review presents a comprehensive overview of the uses of plant-derived biopolysaccharides as effective pharmaceutical excipients in the formulations of different kinds of dosage forms, for example gels, pastes, films, emulsions, suspensions, capsules, tablets, nanoparticles, microparticles, beads, buccal formulations, transdermal formulations, ocular formulations, nasal formulations, etc.
Collapse
Affiliation(s)
- Pravat Ranjan Guru
- Department of Pharmaceutics, Dadhichi College of Pharmacy, Vidya Vihar, Sundargram, Cuttack 754002, Odisha, India
| | - Rajat Kumar Kar
- Department of Pharmaceutics, Dadhichi College of Pharmacy, Vidya Vihar, Sundargram, Cuttack 754002, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj 757086, Odisha, India.
| | - Snehamayee Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
3
|
Kumari N, Mishra S. Synthesis, characterization and flocculation efficiency of grafted Moringa gum based derivatives. Carbohydr Polym 2022; 281:119079. [DOI: 10.1016/j.carbpol.2021.119079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022]
|
4
|
Vettumperumal R, Dhineshbabu NR, Karthikeyan B. Material characterizations of Moringa oleifera gum (MOG). PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1989682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- R. Vettumperumal
- Department of Physics, Fodhdhoo School, Fodhdhoo, Republic of Maldives
| | - N. R. Dhineshbabu
- Department of Electronics and Communication Engineering, Aditya Engineering College, Surampalem, Andhra Pradesh, India
| | - B. Karthikeyan
- Department of Physics, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| |
Collapse
|
5
|
Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021; 26:1770. [PMID: 33809917 PMCID: PMC8004199 DOI: 10.3390/molecules26061770] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.
Collapse
Affiliation(s)
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8954, Iran;
| | | | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
6
|
Badwaik HR, Hoque AA, Kumari L, Sakure K, Baghel M, Giri TK. Moringa gum and its modified form as a potential green polymer used in biomedical field. Carbohydr Polym 2020; 249:116893. [PMID: 32933701 DOI: 10.1016/j.carbpol.2020.116893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Over the past few decades, natural gums are extensively investigated by the researchers due to their beneficial physicochemical properties. Among them, the polysaccharide exudates obtained from the stem of the plant Moringa oleifera, known as moringa gum, is investigated widely in the food, pharmaceutical, and other areas. The moringa gum is used in the form of dried powder as a pharmaceutical excipient in various formulations. It is also derivatized either by grafting or by other chemical modifications for enhancing its properties. The research on moringa gum and modified moringa gum has diversified in numerous biomedical fields. However, summarization of these progress are not available in the literature. This article gives an overview of the collection, purification, structural elucidation, and modification of moringa gum. Moreover, the present review furnishes complete information on the various aspects of moringa gum and its applications in various industrial and biomedical fields.
Collapse
Affiliation(s)
- Hemant Ramachandra Badwaik
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India.
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India
| | - Madhuri Baghel
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| |
Collapse
|
7
|
Microencapsulation of Tender Coconut Water by Spray Drying: Effect of Moringa oleifera Gum, Maltodextrin Concentrations, and Inlet Temperature on Powder Qualities. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1934-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|