1
|
Mosallam FM, Helmy EA, Nasser HA, El-Batal AI. Novel griseofulvin zinc nanohybrid emulsion for intensifying the antimicrobial control of dermatophytes and some opportunistic pathogens. J Mycol Med 2024; 34:101489. [PMID: 38925022 DOI: 10.1016/j.mycmed.2024.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Dermatophytosis is a critical sort of skin infection caused by dermatophytes. The long-term treatment of such skin infections may be improved through the application of nanotechnology. This study aimed to prepare griseofulvin zinc Nanohybrid emulsion (GF-Zn-NHE) to improve griseofulvin activity against dermatophytes and some opportunistic pathogenic yeasts and bacteria. The GF-Zn-NHE is prepared by ultra-homogenization ultra-sonication strategies and validated by UV-visible spectroscopy analysis that confirms presences of griseofulvin and Zn-NPs peaks at 265 and 360 nm, respectively. The GF-Zn-NHE has mean distribution size 50 nm and zeta potential in the range from -40 to -36 mV with no significant changes in size distribution and particle size within 120 day ageing. Fourier transform infrared spectroscopy spectrum confirmed the presence of griseofulvin and Zn-NPs stretching vibration peaks. Gamma ray has a negative influence on GF-Zn-NE production and stability. GF-Zn-NHE drug release 95% up to 24 h and 98% up to 72 h of GF was observed and Zinc 90% up to 24 h and 95% up to 72 h, respectively. High antimicrobial activity was observed with GF-Zn-NHE against dermatophytic pathogens in compare with GF, GF-NE, zinc nitrate and ketoconazole with inhibition zone ranged from 14 to 36 mm. The results have shown that the MIC value for Cryptococcus neoformans, Prophyromonas gingivalis and Pseudomonas aeruginosa is 0.125 mg ml -1 and for Trichophyton rubrum, L. bulgaricus and Escherichia coli value is 0.25 mg ml -1 and for Candida albicans, Malassezia furfur and Enterococcus faecalis is 0.5 mg ml -1 and finally 1 mg ml -1 for Streptococcus mutans. TEM of treated Cryptococcus neoformans cells with GF-Zn-NHE displayed essentially modified morphology, degradation, damage of organelles, vacuoles and other structures.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Radiation Research Department, Microbiology Lab., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Eman A Helmy
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Hebatallah A Nasser
- Microbilogy and Public health Department, Faculty of pharmacy, Heliopolis University, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, Microbiology Lab., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Khan MS, Fatima M, Wahab S, Khalid M, Kesharwani P. Gallic acid loaded self-nano emulsifying hydrogel-based drug delivery system against onychomycosis. Nanomedicine (Lond) 2024; 19:2065-2083. [PMID: 39143900 PMCID: PMC11485813 DOI: 10.1080/17435889.2024.2386923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: To developed and investigate gallic acid (GA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) for treating onychomycosis via transungual route.Materials & methods: The SNEDDS were prepared by direct dispersion technique and were evaluated for characteristics parameters using Fourier transform infrared, differential scanning calorimetry, confocal microscopy, transmission electron microscopy and zeta sizer. Furthermore, the safety of prepared formulation was evaluated via Hen's egg test-chorioallantoic membrane study and stability was confirmed using different parameters. Also, its effectiveness was evaluated against fungal strain Trichophyton mentagrophytes.Results: The SNEDDS displayed a particle size of 199.8 ± 4.21 nm and a zeta potential; of -22.75 ± 2.09 mV. Drug release study illustrated a sustained release pattern with a release of 70.34 ± 0.20% over a period of 24 h. The penetration across the nail plate was found to be 1.59 ± 0.002 µg/mg and 0.97 ± 0.001 µg/mg for GA loaded SNEDDS and GA solution respectively. An irritation score of 0.52 ± 0.005 and 3.84 ± 0.001 was reported for GA loaded SNEDDS hydrogel and GA solution, indicating a decrease in the drug's irritation potential from slightly irritating to non irritating due to its entrapment within the SNEDDS.Conclusion: GA loaded SNEDDS has potential to address limitations of conventional treatments, enhancing the drug's efficacy and reducing the likelihood of resistance in the treatment of Onychomycosis.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Chavda VP, Balar PC, Bezbaruah R, Vaghela DA, Rynjah D, Bhattacharjee B, Sugandhi VV, Paiva-Santos AC. Nanoemulsions: Summary of a Decade of Research and Recent Advances. Nanomedicine (Lond) 2024; 19:519-536. [PMID: 38293801 DOI: 10.2217/nnm-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Nanoemulsions consist of a combination of several components such as oil, water, emulsifiers, surfactants and cosurfactants. Various techniques for producing nanoemulsions include high-energy and low-energy approaches such as high-pressure homogenization, microfluidization, jet disperser and phase inversion methods. The properties of a formulation can be influenced by elements such as the composition, concentration, size and charge of droplets, which in turn can affect the technique of manufacture. Characterization is conducted by the assessment of several factors such as physical properties, pH analysis, viscosity measurement and refractive index determination. This article offers a thorough examination of the latest developments in nanoemulsion technology, with a focus on their wide-ranging applications and promising future possibilities. It also discusses the administration of nanoemulsions through several methods.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Institute of Pharmacy, Assam Medical College & Hospital, Dibrugarh, Assam, 786002, India
| | - Dixa A Vaghela
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Damanbhalang Rynjah
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Vrashabh V Sugandhi
- Department of Industrial Pharmacy, College of Pharmacy and Health Sciences St. John's University, New York, 11439, USA
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-370
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-548
| |
Collapse
|
4
|
Al Ashmawy AZG, Balata GF. Formulation and in vitro characterization of nanoemulsions containing remdesivir or licorice extract: A potential subcutaneous injection for coronavirus treatment. Colloids Surf B Biointerfaces 2024; 234:113703. [PMID: 38096607 DOI: 10.1016/j.colsurfb.2023.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
The management of coronavirus necessitates that medicines are available, reasonably priced, and easy to administer. The work aimed at formulating and characterizing remdesivir and licorice extract nanoemulsions and comparing their efficacy against coronavirus for further subcutaneous injection. First, the solubility of remdesivir was determined in different oils, surfactants, and co-surfactants to choose the optimal nanoemulsion components. Nanoemulsions were optimized concerning surfactant: co-surfactant ratio (5:1, 4:1, 3:1, 2:1, and 1:1) and oil to surfactant: co-surfactant ratio (1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, and 1:1). The formulations were evaluated concerning % transmittance, emulsification time, pH, viscosity, droplet size, polydispersity index, zeta potential, drug content, transmission electron microscopy, in-vitro drug release, stability (of the optimal formulas), and antiviral effect against coronavirus. The optimal nanoemulsion formula was F7, exhibiting an acceptable pH level, a rapid emulsification rate, a viscosity of 20 cP, and 100% drug content. The formulation droplet size was 16 and 17 nm, the polydispersity index was 0.18 and 0.26, and the zeta potential was - 6.29 and - 10.34 mV for licorice extract and remdesivir nanoemulsions, respectively. However, licorice extract nanoemulsion exhibited better release and physical stability. Licorice extract nanoemulsion may be a potential subcutaneous injection for combating mild to moderate coronavirus.
Collapse
Affiliation(s)
- Al Zahraa G Al Ashmawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Gehan F Balata
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt; Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
5
|
Vishwas S, Bashir B, Birla D, Khandale N, Chaitanya MVNL, Chellappan DK, Gupta G, Negi P, Dua K, Singh SK. Neuroprotective Role of Phytoconstituents-based Nanoemulsion for the Treatment of Alzheimer's Disease. Curr Top Med Chem 2024; 24:1683-1698. [PMID: 38676489 DOI: 10.2174/0115680266296001240327090111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/29/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disorder (ND), affecting more than 44 million individuals globally as of 2023. It is characterized by cognitive dysfunction and an inability to perform daily activities. The progression of AD is associated with the accumulation of amyloid beta (Aβ), the formation of neurofibrillary tangles (NFT), increased oxidative stress, neuroinflammation, mitochondrial dysfunction, and endoplasmic reticulum stress. Presently, various phytomedicines and their bioactive compounds have been identified for their neuroprotective effects in reducing oxidative stress, alleviating neuroinflammation, and mitigating the accumulation of Aβ and acetylcholinesterase enzymes in the hippocampus and cerebral cortex regions of the brain. However, despite demonstrating promising anti-Alzheimer's effects, the clinical utilization of phytoconstituents remains limited in scope. The key factor contributing to this limitation is the challenges inherent in traditional drug delivery systems, which impede their effectiveness and efficiency. These difficulties encompass insufficient drug targeting, restricted drug solubility and stability, brief duration of action, and a lack of control over drug release. Consequently, these constraints result in diminished bioavailability and insufficient permeability across the blood-brain barrier (BBB). In response to these challenges, novel drug delivery systems (NDDS) founded on nanoformulations have emerged as a hopeful strategy to augment the bioavailability and BBB permeability of bioactive compounds with poor solubility. Among these systems, nanoemulsion (NE) have been extensively investigated for their potential in targeting AD. NE offers several advantages, such as ease of preparation, high drug loading, and high stability. Due to their nanosize droplets, NE also improves gut and BBB permeability leading to enhanced permeability of the drug in systemic circulation and the brain. Various studies have reported the testing of NE-based phytoconstituents and their bioactives in different animal species, including transgenic, Wistar, and Sprague-Dawley (SD) rats, as well as mice. However, transgenic mice are commonly employed in AD research to analyze the effects of Aβ. In this review, various aspects such as the neuroprotective role of various phytoconstituents, the challenges associated with conventional drug delivery, and the need for NDDS, particularly NE, are discussed. Various studies involving phytoconstituent-based NE for the treatment of AD are also discussed.
Collapse
Affiliation(s)
- Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Jaipur, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Bajhol), Solan, H.P., 173212, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
6
|
Nair AB, Chaudhary S, Jacob S, Patel D, Shinu P, Shah H, Chaudhary A, Aldhubiab B, Almuqbil RM, Alnaim AS, Alqattan F, Shah J. Intranasal Administration of Dolutegravir-Loaded Nanoemulsion-Based In Situ Gel for Enhanced Bioavailability and Direct Brain Targeting. Gels 2023; 9:gels9020130. [PMID: 36826300 PMCID: PMC9956165 DOI: 10.3390/gels9020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Dolutegravir's therapeutic effectiveness in the management of neuroAIDS is mainly limited by its failure to cross the blood-brain barrier. However, lipid-based nanovesicles such as nanoemulsions have demonstrated their potential for the brain targeting of various drugs by intranasal delivery. Thus, the purpose of this study was to develop a Dolutegravir-loaded nanoemulsion-based in situ gel and evaluate its prospective for brain targeting by intranasal delivery. Dolutegravir-loaded nanoemulsions were prepared using dill oil, Tween® 80, and Transcutol® P. Optimization of the nanoemulsion particle size and drug release was carried out using a simplex lattice design. Formulations (F1-F7 and B1-B6) were assessed for various pharmaceutical characteristics. Ex vivo permeation and ciliotoxicity studies of selected in situ gels (B1) were conducted using sheep nasal mucosa. Drug targeting to the brain was assessed in vivo in rats following the nasal delivery of B1. The composition of oil, surfactant, and cosurfactant significantly (p < 0.05) influenced the dependent variables (particle size and % of drug release in 8 h). Formulation B1 exhibits pharmaceutical characteristics that are ideal for intranasal delivery. The mucosal steady-state flux noticed with BI was significantly greater (p < 0.005) than for the control gel. A histopathology of nasal mucosa treated with BI showed no signs of toxicity or cellular damage. Intranasal administration of B1 resulted in greater Cmax (~six-fold, p < 0.0001) and AUC0-α (~five-fold, p < 0.0001), and decreased Tmax (1 h) values in the brain, compared to intravenous administration. Meantime, the drug level in the plasma was relatively low, suggesting less systemic exposure to Dolutegravir through intranasal delivery. In summary, the promising data observed here signifies the prospective of B1 to enhance the brain targeting of Dolutegravir by intranasal delivery and it could be used as a feasible and practicable strategy for the management of neuroAIDS.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| | - Sunita Chaudhary
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Dhwani Patel
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hiral Shah
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Ankit Chaudhary
- Department of Quality Assurance, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, India
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| |
Collapse
|
7
|
Gul H, Naseer RD, Abbas I, Khan EA, Rehman HU, Nawaz A, Azad AK, Albadrani GM, Altyar AE, Albrakati A, Abdel-Daim MM. The Therapeutic Application of Tamarix aphylla Extract Loaded Nanoemulsion Cream for Acid-Burn Wound Healing and Skin Regeneration. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010034. [PMID: 36676658 PMCID: PMC9863468 DOI: 10.3390/medicina59010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022]
Abstract
Background and Objectives: Nanomedicine is a constantly growing field for the diagnosis and treatment of various diseases as well as for regenerative therapy. Nanotechnology-based drug-delivery systems improve pharmacological and pharmacokinetic profiles of plants based biologically active molecules. Based on traditional claims, leaves of the Tamarix aphylla (TA) were investigated for their potential healing activity on burn wounds. Materials and Methods: In this study, TA-based nanoemulsion was prepared. The nanoemulsion was characterized for size, zeta potential, pH, viscosity, and stability. The nanoemulsion containing plant extract was converted into cream and evaluated for its efficacy against acid-burn wounds inflicted in the dorsum of rabbits. The animals were classified into four main groups: Group A as a normal control group, Group B as a positive control (treated with cream base + silver sulfadiazine), Group C as a standard drug (silver sulfadiazine), and Group D as a tested (treated with nanoemulsion cream containing TA extract). The prepared system could deliver TA to the target site and was able to produce pharmacological effects. On days 0, 7, 14, 21, 28, and 35, wound contraction rate was used to determine healing efficacy. The wound samples were collected from the skin for histological examination. Results: Based on statistical analysis using wound-healing time, Group D showed a shorter period (21.60 ± 0.5098) (p < 0.01) than the average healing time of Group C (27.40 ± 0.6002) (p < 0.05) and Group B (33.40 ± 0.8126) (p < 0.05). The histopathological assessment showed that burn healing was better in Group D compared with Group C and Group B. The nanoemulsion cream had a non-sticky texture, low viscosity, excellent skin sensations, and a porous structure. By forming a protective layer on the skin and improving moisture, it enhanced the condition of burnt skin. Conclusions: According to the findings of this study, nanoemulsion cream containing TA extract has great potential in healing acid-burn wounds
Collapse
Affiliation(s)
- Haiwad Gul
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rana Dawood Naseer
- Department of Pharmacy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ifraha Abbas
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ejaz Ali Khan
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Habib Ur Rehman
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Asif Nawaz
- Advanced Drug Delivery Lab, GCPS, Faculty of Pharmacy, Gomal University, D. I. Khan 29111, Pakistan
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
- Correspondence: (A.K.A.); (M.M.A.-D.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.K.A.); (M.M.A.-D.)
| |
Collapse
|
8
|
Sheta NM, Boshra SA, Mamdouh MA, Abdel-Haleem KM. Design and optimization of silymarin loaded in lyophilized fast melt tablets to attenuate lung toxicity induced via HgCl 2 in rats. Drug Deliv 2022; 29:1299-1311. [PMID: 35470762 PMCID: PMC9045763 DOI: 10.1080/10717544.2022.2068696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to develop fast melting tablets (FMTs) using silymarin (SM) owing to FMTs rapid disintegration and dissolution. FMTs represent a pathway to help patients to increase their compliance level of treatment via facile administration without water or chewing beside reduction cost. One of the methods for FMTs formulation is lyophilization. Optimization of SM-FMTs was developed via a 32 factorial design. All prepared SM-FMTs were evaluated for weight variation, thickness, breaking force, friability, content uniformity, disintegration time (DT), and % SM released. The optimized FMT formula was selected based on the criteria of scoring the fastest DT and highest % SM released after 10 min (Q10). Optimized FMT was subjected to Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) besides investigating its lung-protective efficacy. All SM-FMT tablets showed acceptable properties within the pharmacopeial standards. Optimized FMT (F7) scored a DT of 12.5 ± 0.64 Sec and % SM released at Q10 of 82.69 ± 2.88%. No incompatibilities were found between SM and excipients, it showed a porous structure under SEM. The optimized formula decreased cytokines, up-regulated miRNA133a, and down-regulated miRNA-155 and COX-2 involved in the protection against lung toxicity prompted by HgCl2 in a manner comparable to free SM at the same dosage.
Collapse
Affiliation(s)
- Nermin M. Sheta
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sylvia A. Boshra
- Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohamed A. Mamdouh
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | |
Collapse
|
9
|
HPLC method for simultaneous estimation of paclitaxel and baicalein: pharmaceutical and pharmacokinetic applications. Bioanalysis 2022; 14:1005-1020. [PMID: 36066029 DOI: 10.4155/bio-2022-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A novel HPLC method was developed and validated for the simultaneous estimation of paclitaxel (PTX) and baicalein (BAC). Materials & methods: The analytes were resolved in a C18 column using the aqueous solution of formic acid (0.10% v/v) and MeOH (30:70 v/v). Results: The developed method was found to be linear over the concentration ranges 0.039-10 μg/ml and 0.019-10 μg/ml for PTX and BAC, respectively. The lower limits of quantification obtained were 0.042 μg/ml and 0.361 μg/ml for PTX and BAC, respectively. Conclusion: The developed method was found to be precise and accurate as per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines, for simultaneous estimation of PTX and BAC, having an application in formulation development and bioanalytical studies.
Collapse
|
10
|
Iacob-Tudose ET, Mamaliga I, Iosub AV. TES Nanoemulsions: A Review of Thermophysical Properties and Their Impact on System Design. NANOMATERIALS 2021; 11:nano11123415. [PMID: 34947766 PMCID: PMC8703648 DOI: 10.3390/nano11123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Thermal energy storage materials (TES) are considered promising for a large number of applications, including solar energy storage, waste heat recovery, and enhanced building thermal performance. Among these, nanoemulsions have received a huge amount of attention. Despite the many reviews published on nanoemulsions, an insufficient number concentrate on the particularities and requirements of the energy field. Therefore, we aim to provide a review of the measurement, theoretical computation and impact of the physical properties of nanoemulsions, with an integrated perspective on the design of thermal energy storage equipment. Properties such as density, which is integral to the calculation of the volume required for storage; viscosity, which is a decisive factor in pressure loss and for transport equipment power requirements; and thermal conductivity, which determines the heating/cooling rate of the system or the specific heat directly influencing the storage capacity, are thoroughly discussed. A comparative, critical approach to all these interconnected properties in pertinent characteristic groups, in close association with the practical use of TES systems, is included. This work aims to highlight unresolved issues from previous investigations as well as to provide a summary of the numerical simulation and/or application of advanced algorithms for the modeling, optimization, and streamlining of TES systems.
Collapse
|
11
|
Khan TA, Azad AK, Fuloria S, Nawaz A, Subramaniyan V, Akhlaq M, Safdar M, Sathasivam KV, Sekar M, Porwal O, Meenakshi DU, Malviya R, Miret MM, Mendiratta A, Fuloria NK. Chitosan-Coated 5-Fluorouracil Incorporated Emulsions as Transdermal Drug Delivery Matrices. Polymers (Basel) 2021; 13:3345. [PMID: 34641162 PMCID: PMC8512026 DOI: 10.3390/polym13193345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of the present study was to develop emulsions encapsulated by chitosan on the outer surface of a nano droplet containing 5-fluorouracil (5-FU) as a model drug. The emulsions were characterized in terms of size, pH and viscosity and were evaluated for their physicochemical properties such as drug release and skin permeation in vitro. The emulsions containing tween 80 (T80), sodium lauryl sulfate, span 20, and a combination of polyethylene glycol (PEG) and T20 exhibited a release of 88%, 86%, 90% and 92%, respectively. Chitosan-modified emulsions considerably controlled the release of 5-FU compared to a 5-FU solution (p < 0.05). All the formulations enabled transportation of 5-FU through a rat's skin. The combination (T80, PEG) formulation showed a good penetration profile. Different surfactants showed variable degrees of skin drug retention. The ATR-FTIR spectrograms revealed that the emulsions mainly affected the fluidization of lipids and proteins of the stratum corneum (SC) that lead to enhanced drug permeation and retention across the skin. The present study concludes that the emulsions containing a combination of surfactants (Tween) and a co-surfactant (PEG) exhibited the best penetration profile, prevented the premature release of drugs from the nano droplet, enhanced the permeation and the retention of the drug across the skin and had great potential for transdermal drug delivery. Therefore, chitosan-coated 5-FU emulsions represent an excellent possibility to deliver a model drug as a transdermal delivery system.
Collapse
Affiliation(s)
- Taif Ali Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (T.A.K.); (A.N.); (M.A.); (M.S.)
| | - Abul Kalam Azad
- Advanced Drug Delivery Laboratory, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Centre of Excellence for Biomaterials and Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (T.A.K.); (A.N.); (M.A.); (M.S.)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (T.A.K.); (A.N.); (M.A.); (M.S.)
| | - Muhammad Safdar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (T.A.K.); (A.N.); (M.A.); (M.S.)
| | - Kathiresan V. Sathasivam
- Centre of Excellence for Biomaterials and Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
- Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Omji Porwal
- Department of Pharmacognosy, Tishk International University, Erbil 44001, KRG, Iraq;
| | | | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Gautam Buddh Nagar, Greater Noida 201310, India; (R.M.); (A.M.)
| | - Mireia Mallandrich Miret
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Ajay Mendiratta
- Department of Pharmacy, SMAS, Galgotias University, Gautam Buddh Nagar, Greater Noida 201310, India; (R.M.); (A.M.)
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Centre of Excellence for Biomaterials and Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| |
Collapse
|
12
|
Amissah F, Andey T, Ahlschwede KM. Nanotechnology-based therapies for the prevention and treatment of Streptococcus mutans-derived dental caries. J Oral Biosci 2021; 63:327-336. [PMID: 34536629 DOI: 10.1016/j.job.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Dental caries results from long-term acid production when sugar is metabolized by a bacterial biofilm, resulting in a loss of calcium and phosphate from the enamel. Streptococcus mutans is a type of acid-producing bacteria and a virulent contributor to oral biofilms. Conventional treatment options, such as cefazolin and ampicillin, have significant levels of bacterial resistance. Other topical agents, such as fluoride, tend to be washed away by saliva, resulting in low therapeutic efficacy. HIGHLIGHT This review aims to highlight the solubility issues that plague poorly water-soluble therapeutic agents, various novel polymeric, and lipid-based nanotechnology systems that aim to improve the retention of therapeutic agents in the oral cavity. CONCLUSION In this review, different formulation types demonstrated improved therapeutic outcomes by enhancing drug solubility, promoting penetration into the deep layers of the biofilm, facilitating prolonged residence time in the buccal cavity, and reducing the emergence of drug-resistant phenotypes. These formulations have a strong potential to give new life to therapeutic agents that have limited physicochemical characteristics.
Collapse
Affiliation(s)
- Felix Amissah
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Terrick Andey
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, Worcester, MA, USA
| | - Kristen M Ahlschwede
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
13
|
Zaid Alkilani A, Hamed R, Hussein G, Alnadi S. Nanoemulsion-based patch for the dermal delivery of ascorbic acid. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Sabreen Alnadi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
14
|
Shehata TM, Khalil HE, Elsewedy HS, Soliman WE. Myrrh essential oil-based nanolipid formulation for enhancement of the antihyperlipidemic effect of atorvastatin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. J Mater Chem B 2021; 9:5221-5244. [PMID: 34142690 DOI: 10.1039/d1tb00559f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| | - Mirosław Kasprzak
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| |
Collapse
|
16
|
Kesharwani SS, Jain V, Dey S, Sharma S, Mallya P, Kumar VA. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Coelho D, Veleirinho B, Mazzarino L, Alberti T, Buzanello E, Oliveira RE, Yunes RA, Moraes M, Steindel M, Maraschin M. Polyvinyl alcohol-based electrospun matrix as a delivery system for nanoemulsion containing chalcone against Leishmania (Leishmania) amazonensis. Colloids Surf B Biointerfaces 2020; 198:111390. [PMID: 33208279 DOI: 10.1016/j.colsurfb.2020.111390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/08/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Cutaneous leishmaniasis is a worldwide public health problem. Conventional therapies, in addition to the high cost, have many adverse effects and cases of parasite's resistance. Chalcones are secondary metabolites precursors in the flavonoid pathway and can be obtained naturally, but with low yield from plant raw material. Thus, the use of synthetic chalcones has been a promising strategy for the development of molecules with leishmanicidal activity. Thus, this work aimed to develop a controlled release system of two synthetic chalcone (trans-chalcones and 3'-(trifluormethyl)-chalcone) using polyvinyl alcohol nanofibers (PVA) as scaffold. The association of chalcones to the nanofibers was made by nanoemulsions (NE) thereof, i.e., a colloidal system on a nanometric scale, which allows compounds with opposite polarities to remain miscible and stable throughout their manipulation. Chalcone nanoemulsions were developed using the spontaneous emulsification technique. The NE were characterized regarding their particle size, polydispersion index (PDI), and zeta potential. The results showed NE with spherical shape, absolute values of zeta potential were higher than 30 mV and homogeneous distribution pattern (PDI < 0.3). Dynamics light scattering (DLS) analysis showed similar hydrodynamic rays, i.e., 180 nm (trans-chalcone NE) and 178 nm (NE containing 3'-(trifluormethyl)-chalcone, in addition to presenting encapsulation efficiency values close to 100 %. Subsequently, the NE were added to a polymeric solution of polyvinyl alcohol (PVA) and processed via the electrospinning technique affording a PVA matrix (15 %, w/v) nanofiber containing the chalcones NE at 1 mg.mL-1. In a follow-up experiment, the skin permeation assay of the PVA matrix-chalcone NE was performed in vitro using Franz type diffusion cells and porcine ear as biological model of study. The results showed that the treatments with the nanofibers containing the chalcone NE were retained mainly in the stratum corneum, while the NE suspensions containing chalcone were retained in the epidermis and dermis. This result is thought to be relevant, since parasites are located mainly in the dermis. Further, in vitro assay against the amastigote form of L. (L) amazonensis, showed IC50 values to trans-chalcone and 3'-(trifluormethyl)-chalcone of 24.42 ± 6.76 μg.mL-1 and 15.36 ± 4.61 μg.mL-1, respectively. In addition to improving the solubility of the compounds tested in culture medium without using organic solvents, chalcones in nano-emulsified form reduced the IC50 to 9.09 ± 1.24 μg.mL-1 (trans-chalcone) and 10.27 ± 2.27 μg.mL-1 (3'-(trifluormethyl)-chalcone) which confirmed the potential of the nanoemulsion containing chalcone for cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Daniela Coelho
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 1346, 401 Road, 88040-900, Florianópolis, Brazil
| | | | | | - Thaís Alberti
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 1346, 401 Road, 88040-900, Florianópolis, Brazil
| | - Elizandra Buzanello
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 1346, 401 Road, 88040-900, Florianópolis, Brazil
| | - Regina Eva Oliveira
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 1346, 401 Road, 88040-900, Florianópolis, Brazil
| | | | - Milene Moraes
- Protozoology Laboratory, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Brazil
| | - Mário Steindel
- Protozoology Laboratory, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Brazil
| | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 1346, 401 Road, 88040-900, Florianópolis, Brazil.
| |
Collapse
|
18
|
Nanoscale Delivery System for Nutraceuticals: Preparation, Application, Characterization, Safety, and Future Trends. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09208-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Takke A, Shende P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102057. [PMID: 31340181 DOI: 10.1016/j.nano.2019.102057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Most of the herbal origin drugs possess water insoluble active constituents which lower the bioavailability and increase systemic clearance after administration of repeated or higher dose of drug. Silymarin is extracted from the seeds and fruits of milk thistle plant Silybum marianum which consists of main biologically active component as silibinin. However, the clinical applications of silibinin show some limitations due to low aqueous solubility, poor penetration into the epithelial cells of intestine, high metabolism and rapid systemic elimination. But nanotechnology-based drug delivery system explores great potential for phytochemicals to enhance the aqueous solubility and bioavailability of BCS class II and IV drugs, improve stability and modify the pharmacological activity. This review focuses on the therapeutic properties of silibinin and discusses the benefits, challenges and applications of silibinin nanoformulations. Such nanotherapeutic system as a regular medicine will be an attractive approach to reduce the adverse events and toxicities of current therapies.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India.
| |
Collapse
|
20
|
Ugur Kaplan AB, Cetin M, Orgul D, Taghizadehghalehjoughi A, Hacımuftuoglu A, Hekimoglu S. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Evaluation of Larvicidal and Repellent Activity of Nanocrystal Emulsion Synthesized from F. glomerata and Neem Oil Against Mosquitoes. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01611-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Rodríguez-Flores EM, Mata-Espinosa D, Barrios-Payan J, Marquina-Castillo B, Castañón-Arreola M, Hernández-Pando R. A significant therapeutic effect of silymarin administered alone, or in combination with chemotherapy, in experimental pulmonary tuberculosis caused by drug-sensitive or drug-resistant strains: In vitro and in vivo studies. PLoS One 2019; 14:e0217457. [PMID: 31145751 PMCID: PMC6542514 DOI: 10.1371/journal.pone.0217457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
For many years, tuberculosis (TB) has been a major public health problem worldwide. Advances for treatment and eradication have been very limited. Silymarin (Sm) is a natural product with antioxidant and hepatoprotective activities that has been proposed as a complementary medicine to reduce the liver injury produced by the conventional anti-TB chemotherapy. Sm also has immunoregulatory and microbicide properties. In this study, we determined the effect of Sm on the growth control of mycobacteria. In vitro studies showed that Sm and Silibinin (the principal active compound of Sm) have microbicidal activity against drug-sensitive and multidrug-resistant (MDR) mycobacteria, induce the production of protective cytokines from infected macrophages, and improve the growth control of mycobacteria (p ≤ 0.0001). Studies in vivo using a model of progressive pulmonary TB in BALB/c mice infected with drug-sensitive or MDR mycobacteria have shown that Sm induces significant expression of Th-1 cytokines such as IFN-γ and IL-12 as well as TNFα, which produce significant therapeutic activity when administered alone and apparently have a synergistic effect with chemotherapy. These results suggest that Sm has a bactericidal effect and can contribute to the control and establishment of a TH1 protective immune response against mycobacterial infection. Thus, it seems that this flavonoid has a promising potential as adjuvant therapy in the treatment of TB.
Collapse
Affiliation(s)
- Edén M. Rodríguez-Flores
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
- Genomic Sciences Program, Autonomous University of México City, Mexico City, México
| | - Dulce Mata-Espinosa
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | - Brenda Marquina-Castillo
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | | | - Rogelio Hernández-Pando
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| |
Collapse
|
23
|
Hua X, Ding P, Wang M, Chi K, Yang R, Cao Y. Emulsions prepared by ultrahigh methoxylated pectin through the phase inversion method. Int J Biol Macromol 2019; 128:167-175. [DOI: 10.1016/j.ijbiomac.2019.01.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/02/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
|
24
|
Antiviral Activities of Silymarin and Derivatives. Molecules 2019; 24:molecules24081552. [PMID: 31010179 PMCID: PMC6514695 DOI: 10.3390/molecules24081552] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Silymarin flavonolignans are well-known agents that typically possess antioxidative, anti-inflammatory, and hepatoprotective functions. Recent studies have also documented the antiviral activities of silymarin and its derivatives against several viruses, including the flaviviruses (hepatitis C virus and dengue virus), togaviruses (Chikungunya virus and Mayaro virus), influenza virus, human immunodeficiency virus, and hepatitis B virus. This review will describe some of the latest preclinical and clinical studies detailing the antiviral profiles of silymarin and its derivatives, and discuss their relevance for antiviral drug development.
Collapse
|
25
|
Bijak M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)-Chemistry, Bioavailability, and Metabolism. Molecules 2017; 22:E1942. [PMID: 29125572 PMCID: PMC6150307 DOI: 10.3390/molecules22111942] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/28/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Milk thistle (Silybum marianum) is a medicinal plant that has been used for thousands of years as a remedy for a variety of ailments. The main component of S. marianum fruit extract (silymarin) is a flavonolignan called silybin, which is not only the major silymarin element but is also the most active ingredient of this extract, which has been confirmed in various studies. This compound belongs to the flavonoid group known as flavonolignans. Silybin's structure consists in two main units. The first is based on a taxifolin, the second a phenyllpropanoid unit, which in this case is conyferil alcohol. These two units are linked together into one structure by an oxeran ring. Since the 1970s, silybin has been regarded in official medicine as a substance with hepatoprotective properties. There is a large body of research that demonstrates silybin's many other healthy properties, but there are still a lack of papers focused on its molecular structure, chemistry, metabolism, and novel form of administration. Therefore, the aim of this paper is a literature review presenting and systematizing our knowledge of the silybin molecule, with particular emphasis on its structure, chemistry, bioavailability, and metabolism.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
26
|
Hoscheid J, Outuki PM, Kleinubing SA, Goes PRD, Lima MM, Cuman RK, Cardoso ML. Pterodon pubescens oil nanoemulsions: physiochemical and microbiological characterization and in vivo anti-inflammatory efficacy studies. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|