1
|
Golestani P. Lipid-based nanoparticles as a promising treatment for the skin cancer. Heliyon 2024; 10:e29898. [PMID: 38698969 PMCID: PMC11064151 DOI: 10.1016/j.heliyon.2024.e29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The prevalence of skin disorders, especially cancer, is increasing worldwide. Several factors are involved in causing skin cancer, but ultraviolet (UV) light, including sunlight and tanning beds, are considered the leading cause. Different methods such as chemotherapy, radiotherapy, cryotherapy, and photodynamic therapy are mostly used for the skin cancer treatment. However, drug resistance and toxicity against cancer cells are related to these treatments. Lipid-nanoparticles have attracted significant interest as delivery systems due to non-invasive and targeted delivery based on the type of active drug. However, the stratum corneum, the outer layer of the skin, is inherently impervious to drugs. Due to their ability to penetrate the deep layers of the skin, skin delivery systems are capable of delivering drugs to target cells in a protected manner. The aim of this review was to examine the properties and applications of nanoliposomes used in the treatment and prevention of numerous types of skin cancer.
Collapse
Affiliation(s)
- Parisa Golestani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Panchal PA, Patel S, Patel A, Ahlawat P. Proniosomes Nanoparticle for the Treatment of Peripheral Arterial Disease. Pharm Nanotechnol 2024; 12:428-437. [PMID: 37702235 DOI: 10.2174/2211738511666230912160729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/01/2023] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The common symptom of systemic atherosclerosis is peripheral arterial disease (PAD), which occurs when the artery lumen in the lower extremities gradually becomes blocked by atherosclerotic plaque. The most frequent symptom of lower extremity PAD, called "vascular claudication," which is pain experienced when walking. Partial or total blockage of the peripheral arteries in the upper and lower limbs is called PAD. The danger of death from concurrent coronary artery and cerebrovascular atherosclerosis outweighs the risk of amputation. OBJECTIVES However, niosomes have issues with fusion, aggregation, leakage, vesicle sedimentation, and difficulty in sterilizing. A more recent strategy known as pro-vesicular carriers was used to solve these issues. The formulations in Proniosomes are dry and anhydrous, protected with a non-ionic surfactant that serves as a carrier when combined with water. MATERIALS AND METHODS Formulation prepared by organic solvent, surfactant, cholesterol, other components and hydration medium. Coacervation Phase separation Technique used for proniosome Nanoparticle. Box Bhenken Design is used for optimization batches. RESULTS In this context, we shall discuss the development of Proniosome for the treatment of peripheral arterial diseases. From here, we know that proniosome nanoparticles is pro vesicular system good characteristics and effectiveness for treating peripheral arterial diseases. CONCLUSION Proniosomes may be created using various techniques, which may impact how they develop along with the drug's characteristics. They increase the drug's stability while being delivered while being entrapped. They don't need particular conditions for handling, protection, storage, or industrial manufacturing.
Collapse
Affiliation(s)
- Preyash A Panchal
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
3
|
Alshora D, Ibrahim M, Alanazi N, Alowyid M, Ali Alnakhli Z, Mohammed Alshiban N, Maodaa S, Alyami NM, Alotaibi I. Formulation of Glibenclamide proniosomes for oral administration: Pharmaceutical and pharmacodynamics evaluation. Saudi Pharm J 2023; 31:101830. [PMID: 38028219 PMCID: PMC10666557 DOI: 10.1016/j.jsps.2023.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Glibenclamide (GB), oral antidiabetic sulfonylurea, is used in the management of diabetes mellitus type II. It suffers from low bioavailability due to low water solubility. This work aimed to enhance the dissolution of GB by formulating the drug as a proniosomes which then improves the pharmacological effect. GB proniosomal formulations were prepared using a slurry method with sucrose as a carrier. The formulations were characterized by particle size, zeta potential, entrapment efficiency %, flow properties of the powder, and in vitro dissolution study. The pharmacological effect was also assessed by determining and measuring the fasting blood glucose level (BGL) before and after the treatment. Formulating GB proniosomes with the slurry method produces a free-flowing powder with a particle size range from 190.050 ± 43.204 to 1369.333 ± 150.407 nm and the zeta potential was above 20 mV (-24 to -58 mV), indicating good stability. The dissolution rate for all formulations was higher than that of the pure drug, indicating the efficiency of the proniosome in enhancing the drug solubility. A significant reduction in the fasting blood glucose level (73 %) was observed in animals treated with proniosomal formulation with no sign of liver damage. In contrast, the pharmacodynamics results show a significant reduction in fasting blood glucose level for animals treated with proniosomes compared to a 17.6 % reduction in BGL after treatment with pure drug. Moreover, the histopathological results showed no sign of liver damage that occurred with proniosomal treatment. GB proniosomal formulations is a promising drug delivery system with good therapeutic efficacy and stability.
Collapse
Affiliation(s)
- Doaa Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nouf Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Malak Alowyid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zainab Ali Alnakhli
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Noura Mohammed Alshiban
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Nouf M. Alyami
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Ibrahim Alotaibi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Ergin AD, Üner B, Balcı Ş, Demirbağ Ç, Benetti C, Oltulu Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer's Disease Through the Arginine Based Proniosomes. J Pharm Sci 2023; 112:2921-2932. [PMID: 37506768 DOI: 10.1016/j.xphs.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Coenzyme Q10 (CoQ10) is a fat-soluble vitamin-with a benzoquinone-like structure. CoQ10 plays a role in membrane stability, energy conversion, and ATP production. It is also one of the important antioxidants in the body. The bioavailability of exogenous CoQ10 is extremely low due to its poor aqueous solubility and large molecular mass. In this study, mixed proniosomal drug delivery systems have been used to increase solubility and bioavailability of CoQ10. Arginine (semi-essential amino acid) was incorporated in the formulation composition to achieve higher efficacy by boosting nitric oxide presence, endothelial dysfunction, and cellular uptake. Proniosomes were investigated in terms of particle size, polydispersity index, zeta potential, encapsulation efficiency, and process yield, and optimization studies were carried on by utilizing STATISTICA 8.0 software considering dependent factors (carrier amount, drug amount, and surfactant ratio). Optimum proniosome formulation (particle size 187.5 ± 16.35 nm, zeta potential: -44.7 ± 12.8 mV, encapsulation efficiency 99.05±0.30%, and product yield: 90.55%) was evaluated for thermal analysis, in-vitro drug release using microcentrifuge method. In-vitro cytotoxicity studies of proniosomes were performed on intestinal Epithelial Cells (Cellartis®, ChiPSC18) and no cytotoxic effects was seen during the 72 h. Besides, anti Alzheimer effect was investigated on APPSL-GFP lentivirus-infected human neural cells (APPSL-GFP-l-HNC) and Alzheimer biomarkers (p-tau181 and p-tau217). While CoQ10's relative bioavailability was statistically increased by proniosome compared to CoQ10 suspension (p<0.01, Grubb test). PK parameters of proniosome formulation, obtained with non-compartmental modeling, were fitting to the data (R2=0.956±0.026). The study results proved that proniosomal formulation has a high potential drug delivery system for both increasing bioavailability and anti-Alzheimer effect of CoQ10.
Collapse
Affiliation(s)
- Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey; Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey; Department of Neuroscience, University of Turin, Turin, Italy.
| | - Burcu Üner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, St. Louis College of Pharmacy, USA
| | - Şencan Balcı
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey
| | - Çağlar Demirbağ
- Department of Analytical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Camillo Benetti
- Faculty of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Çağatay Oltulu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| |
Collapse
|
5
|
Abdelbari MA, Elshafeey AH, Abdelbary AA, Mosallam S. Implementing Nanovesicles for Boosting the Skin Permeation of Non-steroidal Anti-inflammatory Drugs. AAPS PharmSciTech 2023; 24:195. [PMID: 37770750 DOI: 10.1208/s12249-023-02649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased lately around the world, as they are considered essential and popular drugs for effective reduction of pain and inflammation. They have analgesic, antipyretic, and anti-inflammatory activities; also, it was reported recently that they protect against various critical disorders like heart attacks and cancer. However, oral use of NSAIDs may cause several pulmonary, gastrointestinal, hepatic, cardiovascular, cerebral, and renal complications. Therefore, topical NSAIDs were recommended as a substitute to oral NSAIDs for the treatment of inflammation and pain. Still, the skin permeation of NSAIDs is considered a challenge, as the skin have an effective barrier function. Therefore, this review investigates various advanced vesicular nanocarriers and their applications through the skin, to augment the topical delivery of NSAIDs through stratum corneum over the conventional systems, enhance their effectiveness, and reduce the unwanted side effects. These innovative systems can manage bioavailability, solubility, stability, safety, and efficacy issues present in conventional systems.
Collapse
Affiliation(s)
- Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Aly Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
6
|
Kumaar NR, Nair SC. Nanomaterials: an intra-periodontal pocket drug-delivery system for periodontitis. Ther Deliv 2023; 14:227-249. [PMID: 37291865 DOI: 10.4155/tde-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Periodontitis is a microbiological condition that affects the tissues supporting the teeth. The fundamental to effective periodontal therapy is choosing the suitable antimicrobial and anti-inflammatory agent, together with the proper route of drug administration and delivery system. Intra-periodontal pocket approach with nano drug-delivery systems (NDDS) such as polymeric nanoparticles, gold nanoparticles, silica nanoparticles, magnetic nanoparticles, liposomes, polymersomes, exosomes, nano micelles, niosome, solid lipid nanoparticles, nano lipid carriers, nanocomposites, nanogels, nanofibers, scaffolds, dendrimers, quantum dots, etc., will be appropriate route of drug administration and delivery system. This NDDS delivers the drugs at the site of infection to inhibit growth and promote tissue regeneration. The present review focused on providing comprehensive information on the NDDS for periodontitis, which enhanced therapeutic outcomes via intra-periodontal pocket delivery.
Collapse
Affiliation(s)
- Nethish R Kumaar
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Sreeja C Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
7
|
AJRIN M, ANJUM F. Proniosome: A Promising Approach for Vesicular Drug Delivery. Turk J Pharm Sci 2022; 19:462-475. [PMID: 36047601 PMCID: PMC9438758 DOI: 10.4274/tjps.galenos.2021.53533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022]
Abstract
Different types of drug delivery systems are intended to deliver therapeutic agents to the appropriate site of interest to get desired pharmacological effect. In the field of drug delivery, the advancement of nanotechnology helps develop novel dosage forms such as liposome, noisome, and proniosome. Proniosomes are promising drug carriers, that are dry formulations, and after hydration, are converted to noisome dispersion. Dry proniosomal powder can deliver a unit dose of the drug with improved drug stability and solubility. By using this formulation, both the hydrophilic and lipophilic drugs can be delivered through different routes like oral, topical, transdermal, vaginal, etc. This review revolves on different features of proniosomes such as their structure, formulation materials of proniosomes, preparation methods, evaluation, and application.
Collapse
Affiliation(s)
- Marzina AJRIN
- University of Science and Technology Chittagong, Department of Pharmacy, Chattogram, Bangladesh
| | - Fahmida ANJUM
- University of Science and Technology Chittagong, Department of Pharmacy, Chattogram, Bangladesh
| |
Collapse
|
8
|
Mohanty D, Zafar A, Jafar M, Upadhyay AK, Haque MA, Gupta JK, Bakshi V, Ghoneim MM, Alshehri S, Jahangir MA, Ansari MJ. Development, In-Vitro Characterization and Preclinical Evaluation of Esomeprazole-Encapsulated Proniosomal Formulation for the Enhancement of Anti-Ulcer Activity. Molecules 2022; 27:molecules27092748. [PMID: 35566099 PMCID: PMC9101870 DOI: 10.3390/molecules27092748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Objective: The present study aimed to develop and optimize esomeprazole loaded proniosomes (EZL-PNs) to improve bioavailability and therapeutic efficacy. Method: EZL-PNs formulation was developed by slurry method and optimized by 33 box-Bhekhen statistical design software. Span 60 (surfactant), cholesterol, EZL concentration were taken as independent variables and their effects were evaluated on vesicle size (nm), entrapment efficiency (%, EE) and drug release (%, DR). Furthermore, optimized EZL-PNs (EZL-PNs-opt) formulation was evaluated for ex vivo permeation, pharmacokinetic and ulcer protection activity. Result: The EZL-PNs-opt formulation showed 616 ± 13.21 nm of vesicle size, and 81.21 ± 2.35% of EE. EZL-PNs-opt exhibited negative zeta potential and spherical confirmed scanning electron microscopy. EZL-PNs-opt showed sustained release of EZL (95.07 ± 2.10% in 12 h) than pure EZL dispersion. The ex-vivo gut permeation result exhibited a significantly (p < 0.05) enhanced flux than pure EZL. The in vivo results revealed 4.02-fold enhancement in bioavailability and 61.65% protection in ulcer than pure EZL dispersion (43.82%). Conclusion: Our findings revealed that EZL-PNs formulation could be an alternative delivery system of EZL to enhance oral bioavailability and antiulcer activity.
Collapse
Affiliation(s)
- Dibyalochan Mohanty
- Department of Pharmaceutics, Anurag University, Hyderabad 500088, India;
- Correspondence: (D.M.); (M.A.J.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patila 147001, India;
| | | | | | - Vasudha Bakshi
- Department of Pharmaceutics, Anurag University, Hyderabad 500088, India;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al-Maarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Asadullah Jahangir
- Department of Pharmaceutics, Nibha Institute of Pharmaceutical Sciences, Rajgir 803116, India
- Correspondence: (D.M.); (M.A.J.)
| | - Mohammed Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj 11942, Saudi Arabia;
| |
Collapse
|
9
|
Al Saqr A, Annaji M, Poudel I, Rangari S, Boddu SHS, Tiwari AK, Babu RJ. Niosomal formulation of hydroxytyrosol, a polyphenolic antioxidant, for enhancing transdermal delivery across human cadaver skin. Pharm Dev Technol 2022; 27:155-163. [PMID: 34978253 DOI: 10.1080/10837450.2022.2025540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hydroxytyrosol (HT), a naturally occurring polyphenol from the olive plant, is a potent antioxidant, cardioprotective, neuroprotective, and anti-inflammatory agent. Upon oral administration, HT undergoes rapid elimination within minutes and thus limiting its therapeutic utility. Due to its hydrophilic nature, percutaneous absorption and transdermal delivery of HT are very low. The aim of this research was to enhance the skin permeation of hydroxytyrosol using a niosome gel formulation. The formulations prepared with Span 60 as surfactant showed uniform particle size and high encapsulation efficiency (>90%). The niosome formulations showed a pseudoplastic behavior for topical application within the lipid/surfactant composition of 45-50%. The formulations showed a controlled release of HT compared to the HT solution. The flux of HT across human skin was increased by 28 and 4.4 fold compared to aqueous and ethanolic HT solutions, respectively (p < 0.001). The presence of lecithin lowered the flux and increased the retention of the formulations compared to HT solutions (p < 0.001). The formulations containing lecithin showed two-fold higher skin retention of hydroxytyrosol (p < 0.05). In conclusion, this study demonstrates niosome gel as a promising alternative to oral delivery of HT, providing sustained delivery and greater efficacy.
Collapse
Affiliation(s)
- Ahmed Al Saqr
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Manjusha Annaji
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Ishwor Poudel
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Shivani Rangari
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - R Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
10
|
Satija S, Dhanjal DS, Sharma P, Hussain MS, Chan Y, Ng SW, Prasher P, Dureja H, Chopra C, Singh R, Gupta G, Chellappan DK, Dua K, Mehta M. Vesicular Drug Delivery Systems in Respiratory Diseases. ADVANCED DRUG DELIVERY STRATEGIES FOR TARGETING CHRONIC INFLAMMATORY LUNG DISEASES 2022:125-141. [DOI: 10.1007/978-981-16-4392-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
11
|
Singh S, Sharma N, Behl T, Sarkar BC, Saha HR, Garg K, Singh SK, Arora S, Amran MS, Abdellatif AAH, Bilgrami AL, Ashraf GM, Rahman MS. Promising Strategies of Colloidal Drug Delivery-Based Approaches in Psoriasis Management. Pharmaceutics 2021; 13:pharmaceutics13111978. [PMID: 34834393 PMCID: PMC8623849 DOI: 10.3390/pharmaceutics13111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disorder that moderately affects social and interpersonal relationships. Conventional treatments for psoriasis have certain problems, such as poor drug penetration through the skin, hyper-pigmentation, and a burning sensation on normal and diseased skin. Colloidal drug delivery systems overcome the pitfalls of conventional approaches for psoriasis therapeutics and have improved patient safety parameters, compliance, and superior effectiveness. They also entail reduced toxicity. This comprehensive review’s topics include the pathogenesis of psoriasis, causes and types of psoriasis, conventional treatment alternatives for psoriasis, the need for colloidal drug delivery systems, and recent studies in colloidal drug delivery systems for the treatment of psoriasis. This review briefly describes colloidal drug delivery approaches, such as emulsion systems—i.e., multiple emulsion, microemulsion, and nano-emulsion; vesicular systems—i.e., liposomes, ethosomes, noisomes, and transferosomes; and particulate systems—i.e., solid lipid nanoparticles, solid lipid microparticles, nano-structured lipid carriers, dendrimers, nanocrystals, polymeric nanoparticles, and gold nanoparticles. The review was compiled through an extensive search of the literature through the PubMed, Google Scholar, and ScienceDirect databases. A survey of literature revealed seven formulations based upon emulsion systems, six vesicular drug delivery systems, and fourteen particulate systems reported for antipsoriatic drugs. Based on the literature studies of colloidal approaches for psoriasis management carried out in recent years, it has been concluded that colloidal pharmaceutical formulations could be investigated broadly and have a broad scope for effective management of many skin disorders in the coming decades.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| | - Bidhan Chandra Sarkar
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Hasi Rani Saha
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Kanika Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Supriya Kamari Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Sandeep Arora
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh;
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| |
Collapse
|
12
|
Schlich M, Lai F, Maria Fadda A, Sinico C, Pini E. Drug-Excipients Compatibility Studies in Proniosomal Formulation: A Case Study with Resveratrol. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2917-2921. [PMID: 33653458 DOI: 10.1166/jnn.2021.19056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Proniosomal drug delivery system is one of the advancements in nanotechnology. Similarly to traditional dosage forms, chemical and physical compatibility of proniosomes components with the active ingredient(s) is a key step in the preformulation process of such systems. In this work, the compatibility of resveratrol with selected excipients in the development of proniosomal formulation was investigated by thermal and spectroscopic techniques. To evaluate the drug-excipient compatibility, different techniques such as differential scanning calorimetric study, attenuated total reflectance Fourier transform infrared spectroscopy study and powder X-ray diffraction were adopted. The results showed that the excipients used in the formulation were compatible with resveratrol.
Collapse
Affiliation(s)
- Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Elena Pini
- Department of Pharmaceutical Science, University of Milan, Via Venezian 21, 20133, Milan, Italy
| |
Collapse
|
13
|
Peter M, Panonnummal R. A Review on Newer Ocular Drug Delivery Systems with an Emphasis on Glaucoma. Adv Pharm Bull 2021; 11:399-413. [PMID: 34513615 PMCID: PMC8421633 DOI: 10.34172/apb.2021.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is an irreversible condition resulting from the increase in intraocular pressure (IOP); which leads to permanent loss of vision with the destruction of retinal ganglion cells (RGCs). The IOP elevations are controlled in normal by the physiological flow of aqueous humour. A population with age above 40 is more susceptible to glaucoma. Other factors like gender, genetics, race etc. plays major roles in the development of the disease. Current treatment methods available for the disease includes drugs come under the classes of beta receptor blockers, carbonic anhydrase inhibitors, cholinergic agonists, prostaglandins etc. N-methyl-D-aspartate (NMDA) antagonists, inducible nitric oxide synthase (iNOS) inhibition, cytoskeletal agents, Rho-kinase inhibitors etc are few novel targets sites which are in research focus for the treatment of the disease. Developments in nanomedicine are also being evaluated for their potential in treating the growing glaucomatous population. Nanosystems are suggested to avoid the difficulties in tackling the various ocular barriers to a limit, help to decrease the instillation frequency of topical medication and can provide drug delivery in a sustained or controlled manner. This review focuses on the current and emerging treatment methods for glaucoma along with some of the nanoformulations for ocular drug delivery.
Collapse
Affiliation(s)
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| |
Collapse
|
14
|
Lipid nanovesicles for biomedical applications: 'What is in a name'? Prog Lipid Res 2021; 82:101096. [PMID: 33831455 DOI: 10.1016/j.plipres.2021.101096] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Vesicles, generally defined as self-assembled structures formed by single or multiple concentric bilayers that surround an aqueous core, have been widely used for biomedical applications. They can either occur naturally (e.g. exosomes) or be produced artificially and range from the micrometric scale to the nanoscale. One the most well-known vesicle is the liposome, largely employed as a drug delivery nanocarrier. Liposomes have been modified along the years to improve physicochemical and biological features, resulting in long-circulating, ligand-targeted and stimuli-responsive liposomes, among others. In this process, new nomenclatures were reported in an extensive literature. In many instances, the new names suggest the emergence of a new nanocarrier, which have caused confusion as to whether the vesicles are indeed new entities or could simply be considered modified liposomes. Herein, we discussed the extensive nomenclature of vesicles based on the suffix "some" that are employed for drug delivery and composed of various types and proportions of lipids and others amphiphilic compounds. New names have most often been selected based on changes of vesicle lipid composition, but the payload, structural complexity (e.g. multicompartment) and new/improved proprieties (e.g. elasticity) have also inspired new vesicle names. Based on this discussion, we suggested a rational classification for vesicles.
Collapse
|
15
|
Neupane YR, Mahtab A, Siddiqui L, Singh A, Gautam N, Rabbani SA, Goel H, Talegaonkar S. Biocompatible Nanovesicular Drug Delivery Systems with Targeting Potential for Autoimmune Diseases. Curr Pharm Des 2020; 26:5488-5502. [DOI: 10.2174/1381612826666200523174108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s
immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired
antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis,
systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like
Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and
brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable
pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted
targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes,
niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated
exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases.
These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less
immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs
to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with
physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and
can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of
various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage
regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and
prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.
Collapse
Affiliation(s)
- Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore
| | - Asiya Mahtab
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Lubna Siddiqui
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, RAK college of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras All Khaimah, United Arab Emirates
| | - Honey Goel
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
16
|
Eltellawy YA, El-Kayal M, Abdel-Rahman RF, Salah S, Shaker DS. Optimization of transdermal atorvastatin calcium - Loaded proniosomes: Restoring lipid profile and alleviating hepatotoxicity in poloxamer 407-induced hyperlipidemia. Int J Pharm 2020; 593:120163. [PMID: 33309831 DOI: 10.1016/j.ijpharm.2020.120163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 01/22/2023]
Abstract
In an attempt to optimize the anti- hyperlipidemic effect and reduce statins induced hepatotoxicity, Atorvastatin Calcium (ATC) transdermal proniosomal gel (PNG) was developed. Different non-ionic surfactants (NISs) (Spans, Tweens, Cremophor RH 40 and Brij 52) were incorporated in the vesicle's lipid bilayer, in combination with lecithin. PNG formulae were characterized for encapsulation efficiency percent (% EE), vesicle size, polydispersity index (PDI) and zeta potential (ZP). Ex-vivo permeation study was performed using full thickness rat skin measuring drug flux and skin permeability coefficients. The pharmacodynamic performance of optimized transdermal ATC- PNG on both lipid profile and liver biomarkers was assessed and compared to oral ATC administration in poloxamer 407-induced hyperlipidemic rats. The liver tissues were subjected to histological examination as well. The results revealed nano-size range vesicles with relatively high ATC entrapment efficiency. Ex-vivo results demonstrated the permeation superiority of ATC proniosomes over free drug. Pharmacodynamic study revealed that transdermal administration of ATC- PNG succeeded in retaining the anti-hyperlipidemic efficacy of orally administered ATC without elevating liver biomarkers. The histological examination signified the role of optimized ATC-PNG in hindering statin- induced hepatocellular damage. The obtained results suggested a promising, easy-to-manufacture and effective ATC proniosomal gel for safe treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Yasmin A Eltellawy
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo, Egypt.
| | - Maha El-Kayal
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo, Egypt
| | | | - Salwa Salah
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Dalia S Shaker
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo, Egypt.
| |
Collapse
|
17
|
Badria FA, Abdelaziz AE, Hassan AH, Elgazar AA, Mazyed EA. Development of Provesicular Nanodelivery System of Curcumin as a Safe and Effective Antiviral Agent: Statistical Optimization, In Vitro Characterization, and Antiviral Effectiveness. Molecules 2020; 25:E5668. [PMID: 33271831 PMCID: PMC7731007 DOI: 10.3390/molecules25235668] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/23/2023] Open
Abstract
Curcumin is a natural compound that has many medical applications. However, its low solubility and poor stability could impede its clinical applications. The present study aimed to formulate dry proniosomes to overcome these pitfalls and improve the therapeutic efficacy of Curcumin. Curcumin-loaded proniosomes were fabricated by the slurry method according to 32 factorial design using Design-Expert software to demonstrate the impact of different independent variables on entrapment efficiency (EE%) and % drug released after 12 h (Q12h). The optimized formula (F5) was selected according to the desirability criteria. F5 exhibited good flowability and appeared, after reconstitution, as spherical nanovesicles with EE% of 89.94 ± 2.31% and Q12h of 70.89 ± 1.62%. F5 demonstrated higher stability and a significant enhancement of Q12h than the corresponding niosomes. The docking study investigated the ability of Curcumin to bind effectively with the active site of DNA polymerase of Herpes simplex virus (HSV). The antiviral activity and the safety of F5 were significantly higher than Curcumin. F5 improved the safety of Acyclovir (ACV) and reduced its effective dose that produced a 100% reduction of viral plaques. Proniosomes could be promising stable carriers of Curcumin to be used as a safe and efficient antiviral agent.
Collapse
Affiliation(s)
- Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Abdelaziz E. Abdelaziz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Amira H. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Eman A. Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
18
|
Misra C, Raza K, Goyal AK. The Scope and Challenges of Vesicular Carrier-Mediated Delivery of Docetaxel for the Management of Cancer. Curr Drug Deliv 2020; 17:874-884. [DOI: 10.2174/1567201817666200623121633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 01/20/2023]
Abstract
Since the discovery of liposomes, these vesicular carriers have attracted the researchers from
all the vistas of the biomedical domain to explore and harness the potential benefits. Many novel drug
delivery-based products have been approved by the United States Food and Drug Administration (USFDA)
and other federal agencies of the globe, out of which the major share is of the liposomes and
related carriers. Taking cognizance of it, the US-FDA has recently come up with ‘<i>Guidance for Industry</i>
on <i>Liposome Drug Products</i>’. In cancer management, chemotherapy is the most frequently employed
approach which is still not devoid of untoward challenges and side effects. In chemotherapy,
the taxanes, esp. Docetaxel shares a huge percentage in the prescription pattern. Also, the first marketed
liposomal product was encasing one drug of this category. Henceforth, the present review will
highlight the advances in the delivery of taxanes, in particular docetaxel, with an emphasis on the need,
success and pharmacoeconomic aspects of such vesicular-carrier mediated docetaxel delivery.
Collapse
Affiliation(s)
- Charu Misra
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Dist. Ajmer, Rajasthan-305 817, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Dist. Ajmer, Rajasthan-305 817, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Dist. Ajmer, Rajasthan-305 817, India
| |
Collapse
|
19
|
Aboumanei MH, Mahmoud AF. Design and development of a proniosomal transdermal drug delivery system of caffeine for management of migraine: In vitro characterization, 131I-radiolabeling and in vivo biodistribution studies. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Khudair N, Agouni A, Elrayess MA, Najlah M, Younes HM, Elhissi A. Letrozole-loaded nonionic surfactant vesicles prepared via a slurry-based proniosome technology: Formulation development and characterization. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Padmanabhan VP, Balakrishnan S, Kulandaivelu R, T. S. N. SN, Lakshmipathy M, Sagadevan S, Mohammad F, Al-Lohedan HA, Paiman S, Oh WC. Nanoformulations of core–shell type hydroxyapatite-coated gum acacia with enhanced bioactivity and controlled drug delivery for biomedical applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj00668h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, nanospherical hydroxyapatite (HAP) was prepared that has combined properties of controlled drug delivery, biocompatibility, and antibacterial activity to have applications in the biomedical sector.
Collapse
Affiliation(s)
| | - Subha Balakrishnan
- Department of Analytical Chemistry, University of Madras, Gundy Campus
- Chennai-600025
- India
| | | | - Sankara Narayanan T. S. N.
- Department of Dental Biomaterials and Institute of Biodegradable Materials
- Chonbuk National University
- Jeonju 561-756
- South Korea
| | | | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Faruq Mohammad
- Surfactants Research Chair
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
| | - Hamad A. Al-Lohedan
- Surfactants Research Chair
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
| | - Suriati Paiman
- Department of Physics
- Faculty of Science
- Universiti Putra Malaysia
- 43400, Serdang
- Malaysia
| | - Won Chun Oh
- Department of Advanced Materials Science and Engineering
- Hanseo University
- Seosan-si
- Korea
| |
Collapse
|
23
|
SreeHarsha N, Venugopala KN, Nair AB, Roopashree TS, Attimarad M, Hiremath JG, Al-Dhubiab BE, Ramnarayanan C, Shinu P, Handral M, Haroun M, Tratrat C. An Efficient, Lung-Targeted, Drug-Delivery System To Treat Asthma Via Microparticles. Drug Des Devel Ther 2019; 13:4389-4403. [PMID: 31920288 PMCID: PMC6938183 DOI: 10.2147/dddt.s216660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/17/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chronic diseases such as diabetes, asthma, and heart disease are the leading causes of death in developing countries. Public health plays an important role in preventing such diseases to improve individuals' quality of life. Conventional dosage schemes used in public health to cure various diseases generally lead to undesirable side effects and renders the overall treatment ineffective. For example, a required concentration of drug cannot reach the lungs using conventional methods to cure asthma. Microspheres have emerged as a confirmed drug-delivery system to cure asthma. METHOD In this paper, a salbutamol-loaded poly lactic acid-co-glycolic acid-polyethylene glycol (PLGA-PEG) microsphere (SPP)-based formulation was prepared using a Buchi B-90 nanospray drier. Face-centered central composite design (CCD) was applied to optimize the spray-drying process. RESULTS The drug content and product yield were found to be 72%±0.8% and 86%±0.4%, respectively; drug release (91.1%) peaked for up to 12 hrs in vitro. Microspheres obtained from the spray dryer were found to be shriveled. The experiments were carried out and verified using various groups of rabbits. In our study, the particle size (8.24 µm) was observed to be an essential parameter for drug delivery. The in vivo results indicated that the targeting efficacy and drug concentration in the lung was higher with the salbutamol-loaded PLGA-PEG SPP formulation (1,410.1±10.11 µg/g, 15 mins), as compared to the conventional formulation (92±0.56 µg/g, 10 min). The final product was stable under 5°C±2°C, 25°C±2°C, and 40°C±2°C/75%±5% relative humidity. In addition, these co-polymers have a good safety profile, as determined by testing on human alveolar basal epithelium A549 cell lines. CONCLUSION Our results prove that microspheres are an alternative drug-delivery system for lung-targeted asthma treatments used in public health.
Collapse
Affiliation(s)
- Nagaraja SreeHarsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bengaluru, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban4001, South Africa
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Teeka S Roopashree
- Department of Pharmacognosy, Government College of Pharmacy, Bengaluru, India
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Bandar E Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mukund Handral
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, PES University, Bengaluru, India
| | - Micheline Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
24
|
Emad Eldeeb A, Salah S, Ghorab M. Proniosomal gel-derived niosomes: an approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in-vivo pharmacodynamic study. Drug Deliv 2019; 26:509-521. [PMID: 31090464 PMCID: PMC6534210 DOI: 10.1080/10717544.2019.1609622] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Brimonidine tartrate (BRT) is a hydrophilic α2 adrenergic agonist used for the treatment of glaucoma. Glaucoma is an ocular disease affecting the anterior segment of the eye requiring lifetime treatment. Owing to the obstacles facing ocular delivery systems and hydrophilicity of BRT, frequent administration of the eye drops is required. Niosomes have been widely used to improve the ocular bioavailability of the topically applied drugs and to enhance the ocular residence time. However, they have drawbacks as physical instability, aggregation, and loss of the entrapped drug. For this reason, BRT proniosomes were prepared to overcome niosomal instability issues. A D-optimal design was utilized to determine the optimum conditions for preparation of the proniosomal gels. Independent variables were amount of surfactant, surfactant:cholesterol ratio, and type of surfactant used. The dependent variables were entrapment efficiency (EE%), particle size, percentage of drug released after 2 h (Q2h), and percentage of drug released after 24 h (Q24h). The optimum formula was suggested with desirability 0.732 and the composition of 540 mg Span 60 and 10:1 surfactant:cholesterol ratio. The results obtained after reconstitution were; EE% of 79.23 ± 1.12% particle size of 810.95 ± 16.758 nm, polydispersity index (PDI) 0.6785 ± 0.213, zeta potential 59.1 ± 0.99 mV, Q2h40.98 ± 1.29%, Q8h 63.35 ± 6.07%, and Q24h = 91.11 ± 1.76%. Transmission electron microscope imaging of the formula showed the typical spherical shape of niosomes. In-vivo pharmacodynamic study assured the improved ocular bioavailability of BRT selected formula when compared with Alphagan®P with relative AUC0-24 of 5.024 and 7.90 folds increase in the mean residence time (MRT). Lack of ocular irritation of the formula was assured by Draize test.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Sammour RMF, Taher M, Chatterjee B, Shahiwala A, Mahmood S. Optimization of Aceclofenac Proniosomes by Using Different Carriers, Part 1: Development and Characterization. Pharmaceutics 2019; 11:pharmaceutics11070350. [PMID: 31323799 PMCID: PMC6680652 DOI: 10.3390/pharmaceutics11070350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
In the contemporary medical model world, the proniosomal system has been serving as a new drug delivery system that is considered to significantly enhance the bioavailability of drugs with low water solubility. The application of this system can improve the bioavailability of aceclofenac that is used for the relief of pain and inflammation in osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. The present study is intended to develop an optimized proniosomal aceclofenac formula by the use of different carriers. Aceclofenac proniosomes have been prepared by slurry method, and different carriers such as maltodextrin, mannitol, and glucose were tried. Prepared proniosomes characterized by differential scanning calorimetry (DSC) analysis and Fourier transform infrared (FTIR) analysis revealed the compatibility of the drug chosen with the ingredient added, powder X-ray diffractometry (XRD) confirmed the amorphous phase of the prepared proniosomes, and finally, the surfactant layer was observed by scanning electron microscopy (SEM). Aceclofenac physical state transformations were confirmed with all formulas but maltodextrin proniosomes exhibited solubility more than other formulations. HPLC method has been used to analyze the niosomes derived from proniosomes in terms of their entrapment capability and drug content. The obtained results revealed that aceclofenac proniosomes can be successfully prepared by using different carriers.
Collapse
Affiliation(s)
- Rana M F Sammour
- Pharmaceutical Technology Department, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Pharmaceutics Department, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Muhammad Taher
- Pharmaceutical Technology Department, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Bappaditya Chatterjee
- Pharmaceutical Technology Department, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | | | - Syed Mahmood
- Department of Pharmaceutical Engineering, Faculty of Engineering Technology, University Malaysia Pahang, Kuantan 26600, Pahang, Malaysia
- Centre for Excellence for Advanced Research in Fluid flow (CARIFF), University Malaysia Pahang, Kuantan 26600, Pahang, Malaysia
| |
Collapse
|
26
|
Abu El-Enin ASM, Khalifa MKA, Dawaba AM, Dawaba HM. Proniosomal gel-mediated topical delivery of fluconazole: Development, in vitro characterization, and microbiological evaluation. J Adv Pharm Technol Res 2019; 10:20-26. [PMID: 30815384 PMCID: PMC6383348 DOI: 10.4103/japtr.japtr_332_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The aim of this study was to explore the potential of proniosomal gel for topical delivery of fluconazole, an antifungal drug used in fungal infections caused by pathogenic fungi. Fluconazole-loaded proniosomal gels were prepared by the coacervation phase separation method using different nonionic surfactants (spans and tweens). The prepared fluconazole proniosomal gels were evaluated for various parameters such as particle size (PS), drug entrapment efficiency percentage (EE%), and in vitro drug release. The experimental results showed that the EE% for the prepared formulae are acceptable (85.14%–97.66%) and they are nanosized (19.8–50.1 nm) and the diffusion from the gels gave the desired sustaining effect. F4, which was prepared from span 60, tween 80 (1:1), and cholesterol showed highest EE% and gave slow release (40.50% ± 1.50% after 6 h), was subjected to zeta potential (ZP) test, transmission electron microscopy as well as microbiological study. The results showed a well-defined spherical vesicle with sharp boundaries with good physical stability of fluconazole within the prepared gel. Moreover, F4 showed an excellent microbiological activity represented by a greater zone of inhibition (5.3 cm) compared to control gel (fluconazole in 2% hydroxy propyl methyl cellulose (HPMC) gel formula) (4.2 cm) and plain gel with no drug (0 cm) against Candida albicans. This study showed the suitability of the proniosomal gel in attaining the desired sustainment effect for topical delivery of fluconazole for the management of fungal infection. The physical stability study showed that there was no significant change in EE%, PS, and ZP of fluconazole proniosomal gel after storage for 6 months.
Collapse
Affiliation(s)
- Amal Saber Mohammed Abu El-Enin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Maha Khalifa Ahmed Khalifa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya Mohammed Dawaba
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hamdy Mohammed Dawaba
- Department of Pharmaceutics, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
27
|
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Adv Pharmacol Sci 2018; 2018:6847971. [PMID: 30651728 PMCID: PMC6311792 DOI: 10.1155/2018/6847971] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/15/2018] [Indexed: 01/25/2023] Open
Abstract
Niosomes (the nonionic surfactant vesicles), considered as novel drug delivery systems, can improve the solubility and stability of natural pharmaceutical molecules. They are established to provide targeting and controlled release of natural pharmaceutical compounds. Many factors can influence on niosome construction such as the preparation method, type and amount of surfactant, drug entrapment, temperature of lipids hydration, and the packing factor. The present review discusses about the most important features of niosomes such as their diverse structures, the different preparation approaches, characterization techniques, factors that affect their stability, their use by various routes of administration, their therapeutic applications in comparison with natural drugs, and specially the brain targeting with niosomes-ligand conjugation. It also provides recent data about the various types of ligand agents which make available active targeting drug delivery to the central neuron system. This system has an optimistic upcoming in pharmaceutical uses, mostly with the improving availability of innovative schemes to overcome blood-brain barrier and targeting the niosomes to the brain.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hossein Danafar
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
28
|
Bubshait DA, Al-Dakheel DA, Alanii FM. Topical vitamin D3: A randomized controlled trial (RCT). Clin Nutr ESPEN 2018; 27:16-19. [PMID: 30144887 DOI: 10.1016/j.clnesp.2018.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The intent of this study was to test the effect of Top-D, a topical Vitamin D preparation, in delivering vitamin D. METHODS Five hundred and fifty healthy patients, with vitamin D insufficiency and deficiency were recruited after written informed consent. Demographic data was recorded, adequate history and clinical examination was done to rule out any metabolic diseases. Complete blood picture, serum calcium, phosphorous, Parathormone and 25 Hydroxy-vitamin D3 (25OHD) was carried out before enrollment of the patients. Patients were divided randomly into two groups 350 in study group and 200 in the control group. Patients in the study group were given Top-D (Vitamin D3 gel made from proniosomal technology) to apply daily on the skin. Top-D 1 g contained 5000 IU of vitamin D3. The control group was given 1 g of Aloe vera gel to be applied every day. The two groups had no knowledge to which group they belong. After 4 months serum 25OHD was tested again. RESULTS Three hundred and forty five patients in study group and 192 in control group completed the study. The mean age of the patients in the both the groups was 42 years (18-80 years). The pretreatment 25OHD level in the study group was 11.03 ± 4.57 (2-12) ng/l compared to the control group 10.36 ± 4.09 (2-21) and post treatment the levels were 37.17 ± 6.04 (12-54) ng/ml and 10.51 ± 3.5 (2-19) ng/ml (p < 0.001). CONCLUSION The results of this study indicate that transdermal route of vitamin D is potentially, safe and can give desired results to raise the vitamin D levels. This route is an alternate route for supplementation of vitamin D which should be utilized.
Collapse
Affiliation(s)
- Dalal A Bubshait
- Department of Orthopaedic Surgery, College of Medicine, Imam AbdulRahman Bin Faisal University, Dammam; King Fahd Hospital of the University, Al Khobar, Saudi Arabia.
| | - Dakheel A Al-Dakheel
- Department of Orthopaedic Surgery, College of Medicine, Imam AbdulRahman Bin Faisal University, Dammam; King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Fawaz M Alanii
- Department of Orthopaedic Surgery, College of Medicine, Imam AbdulRahman Bin Faisal University, Dammam; King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| |
Collapse
|
29
|
Sohail MF, Rehman M, Sarwar HS, Naveed S, Salman O, Bukhari NI, Hussain I, Webster TJ, Shahnaz G. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomedicine 2018; 13:3145-3161. [PMID: 29922053 PMCID: PMC5997133 DOI: 10.2147/ijn.s164518] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research.
Collapse
Affiliation(s)
- Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore
| | - Mubashar Rehman
- Department of Pharmacy, University of Lahore-Gujrat Campus, Gujrat
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Hafiz Shoaib Sarwar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
| | - Sara Naveed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore
| | - Omer Salman
- Department of Pharmacy, University of Lahore, Lahore Campus
| | - Nadeem Irfan Bukhari
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
| |
Collapse
|
30
|
De A, Venkatesh N, Senthil M, Sanapalli BKR, Shanmugham R, Karri VVSR. Smart niosomes of temozolomide for enhancement of brain targeting. Nanobiomedicine (Rij) 2018; 5:1849543518805355. [PMID: 30344765 PMCID: PMC6187422 DOI: 10.1177/1849543518805355] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 01/29/2023] Open
Abstract
Drug delivery to the brain is challenging because of the low permeability of blood-brain barrier, and therefore, optimum concentration of chemotherapeutics in the target area specifically for glioblastoma, an aggressive brain tumor, opens a new path of research. To achieve the goal, the oral alkylating agent temozolomide was incorporated into niosomes, and the surface was modified with chlorotoxin, a small 36 amino acid peptide discovered from the venom of scorpion Leiurus quinquestriatus. Active targeting using nanosized particles facilitates an increase in the accumulation of drugs in the cerebri by 3.04-folds. Temozolomide-loaded niosomes were prepared using conventional thin-film hydration method and characterized. Niosomes coated with chlorotoxin were produced with the size of 220 ± 1.45 nm with an entrapment efficiency of 79.09 ± 1.56%. Quantitative tissue distribution studies indicate enhanced permeation of the drug into the brain because of surface modification with less deposition in the highly perfused organs.
Collapse
Affiliation(s)
- Anindita De
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Nagasamy Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - M Senthil
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - R Shanmugham
- Department of Pharmaceutical Analysis, Sree Vidyanikethan College of Pharmacy, Tirupati, Jawaharlal Nehru Technological University Ananthapur, Andhra Pradesh, India
| | | |
Collapse
|
31
|
Ravaghi M, Sinico C, Razavi SH, Mousavi SM, Pini E, Fadda AM. Proniosomal powders of natural canthaxanthin: Preparation and characterization. Food Chem 2017; 220:233-241. [DOI: 10.1016/j.foodchem.2016.09.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
32
|
Verma P, Prajapati SK, Yadav R, Senyschyn D, Shea PR, Trevaskis NL. Single Intravenous Dose of Novel Flurbiprofen-Loaded Proniosome Formulations Provides Prolonged Systemic Exposure and Anti-inflammatory Effect. Mol Pharm 2016; 13:3688-3699. [DOI: 10.1021/acs.molpharmaceut.6b00504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Preeti Verma
- Drug
Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
- Institute
of Pharmacy, Bundelkhand University, Jhansi-284001, Uttar Pradesh, India
| | - Sunil K. Prajapati
- Institute
of Pharmacy, Bundelkhand University, Jhansi-284001, Uttar Pradesh, India
| | - Rajbharan Yadav
- Drug
Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Danielle Senyschyn
- Drug
Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Peter R. Shea
- Anaesthetic Group Ballarat, 6 Drummond
Street, North Ballarat, VIC 3350, Australia
| | - Natalie L. Trevaskis
- Drug
Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
33
|
Tolterodine Tartrate Proniosomal Gel Transdermal Delivery for Overactive Bladder. Pharmaceutics 2016; 8:pharmaceutics8030027. [PMID: 27589789 PMCID: PMC5039446 DOI: 10.3390/pharmaceutics8030027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/22/2023] Open
Abstract
The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT) for the treatment of overactive bladder (OAB). Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE), vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%-91.68% and vesicle size was 253-845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB.
Collapse
|
34
|
Rajabalaya R, David SR, Chellian J, Xin Yun G, Chakravarthi S. Transdermal delivery of oxybutynin chloride proniosomal gels for the treatment of overactive bladder. Drug Deliv 2015; 23:1578-87. [PMID: 26634274 DOI: 10.3109/10717544.2015.1116027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Overactive bladder (OAB) is a common problem and anticholinergic drugs are first-line therapy, but they have side effects. OBJECTIVE Development of oxybutynin chloride (OC) proniosomal gels and analyses of its efficacy for OAB treatment. MATERIALS AND METHODS Phase separation coacervation was used to prepare proniosomal gels using various non-ionic surfactants, lipids, soy lecithin and isopropyl alcohol. Gels were characterized with regard to entrapment efficiency (EE), vesicle size, surface morphology (using environmental scanning electron microscopy [E-SEM]), stability, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, in vitro skin permeation, in vivo animal studies and histopathology. RESULTS AND DISCUSSION EE was 87-92%, vesicle size was 0.38-5.0 μm, and morphology showed some loosened pores in proniosomes after hydration. ATR-FTIR spectroscopy showed no significant shifts in peaks corresponding to OC and excipients. Most formulations exhibited >50% permeation but the cholesterol-containing formulations P3 (Span 20:Span 60 [1:1]) and P4 [Tween 20:Tween 80 (1:1)] had the highest percent cumulative permeation. P3 and P4 also showed faster recovery of cholinergic effects on salivary glands than oral formulations. P3 and P4 had pronounced therapeutic effects in reduction of urinary frequency and demonstrated improvements in bladder morphology (highly regenerative surface of the transitional epithelium). CONCLUSION These results suggest that OC could be incorporated into proniosomal gels for transdermal delivery in the treatment of OAB.
Collapse
Affiliation(s)
- Rajan Rajabalaya
- a Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam , Brunei Darussalam .,b School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur , Malaysia , and
| | - Sheba R David
- a Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam , Brunei Darussalam .,b School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur , Malaysia , and
| | - Jestin Chellian
- b School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur , Malaysia , and
| | - Gwee Xin Yun
- b School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur , Malaysia , and
| | - Srikumar Chakravarthi
- b School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur , Malaysia , and.,c School of Medicine, Perdana University, Jalan MAEPS Perdana , Serdang , Selangor , Malaysia
| |
Collapse
|
35
|
Harsha SN, Aldhubiab BE, Nair AB, Alhaider IA, Attimarad M, Venugopala KN, Srinivasan S, Gangadhar N, Asif AH. Nanoparticle formulation by Büchi B-90 Nano Spray Dryer for oral mucoadhesion. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:273-82. [PMID: 25670882 PMCID: PMC4315564 DOI: 10.2147/dddt.s66654] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes is considered one of the main threats to global public health in this era. It is increasing rapidly in every part of the world; the prevalence of the disease will grow to the point where 366 million people will be affected by 2030. The prevalence of diabetes mellitus (DM) in the Saudi population is high, and the majority of patients suffer from type 2 DM. Marketed oral antidiabetic drugs have indicated poor tolerability during chronic treatments, and this contributes to the moderately large proportion of type 2 DM patients that remain inadequately managed. Vildagliptin nanospheres were prepared with aminated gelatin using a spray-drying method; narrow particle-size distribution was seen at 445 nm. The angle of repose was found to be θ <33.5°. The nanospheres appeared to be spherical with a smooth surface. The drug content and percentage yield of the nanospheres were found to be 76.2%±4.6% and 83%±2%, respectively. The nanosphere-swell profile was found to be 165%±7%. The pure drug was 100% dissolved in 30 minutes, and the nanosphere formulation took 12 hours to dissolve (97.5%±2%), and followed a Korsmeyer-Peppas kinetic model with an R (2) of 0.9838. The wash-off test of nanospheres found that they exhibited an excellent mucoadhesive property at 86.7% for 8 hours. The stability-study data showed no changes in the physicochemical properties of the nanospheres, and suggested that the nanospheres be stored below room temperature. The amount of vildagliptin retained was 1.6% within 3 hours, and in comparison with the gelatin vildagliptin nanoparticles formulation, the percentage that was retained was much higher (98.2% in 12 hours).
Collapse
Affiliation(s)
- Sree N Harsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Bander E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Abdulrahman Alhaider
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Nagesh Gangadhar
- Department of Pharmaceutics, East Point College of Pharmacy, Bangalore, India
| | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|