1
|
Wang H, Ba J, Kang Y, Gong Z, Liang T, Zhang Y, Qi J, Wang J. Recent Progress in CDK4/6 Inhibitors and PROTACs. Molecules 2023; 28:8060. [PMID: 38138549 PMCID: PMC10745860 DOI: 10.3390/molecules28248060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cell division in eukaryotes is a highly regulated process that is critical to the life of a cell. Dysregulated cell proliferation, often driven by anomalies in cell Cyclin-dependent kinase (CDK) activation, is a key pathological mechanism in cancer. Recently, selective CDK4/6 inhibitors have shown clinical success, particularly in treating advanced-stage estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. This review provides an in-depth analysis of the action mechanism and recent advancements in CDK4/6 inhibitors, categorizing them based on their structural characteristics and origins. Furthermore, it explores proteolysis targeting chimers (PROTACs) targeting CDK4/6. We hope that this review could be of benefit for further research on CDK4/6 inhibitors and PROTACs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jinming Campus, Kaifeng 475004, China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jinming Campus, Kaifeng 475004, China
| |
Collapse
|
2
|
Gurushankar K, Rimac H, Potemkin V, Grishina M. Investigation of the newly characterized baimantuoluoamide a and baimantuoluoamide b alkaloids as potential cyclin-dependent kinase 4 (CDK4) inhibitors using molecular docking and molecular dynamics simulations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Suganya M, Gnanamangai BM, Ravindran B, Chang SW, Selvaraj A, Govindasamy C, Elsadek MF, Ponmurugan P. Antitumor effect of proanthocyanidin induced apoptosis in human colorectal cancer (HT-29) cells and its molecular docking studies. BMC Chem 2019; 13:21. [PMID: 31384770 PMCID: PMC6661762 DOI: 10.1186/s13065-019-0525-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/16/2019] [Indexed: 01/06/2023] Open
Abstract
Proanthocyanidin (PAC) is a promising compound that has displayed its potent antineoplastic properties with a specific intrinsic pathway. This precise us to explore the phyto-preventive effect of PAC against colon cancer (HT-29). The results showed that PAC inhibited the cell growth and GI50 value was found to be 6.25 μM for 24 h exposure, when correlated to the normal cell line does not have toxicity was noticed. The linguistic differences, similarly membrane blebbing, cell shrinkage fragmented nuclear bodies and mitochondrial membrane were observed in AO/EtBr and DAPI staining. The features of regular mechanical apoptotic characterization was analyzed by DNA fragmentation. The cell cycle arrest at G2/M phases was detected using FACS analysis. The early and late apoptotic cells were observed by using Annexin V/PI staining. The ligand-protein interaction and docking studies were performed using Schrodinger's software. The QPLD analysis of docking studies revealed that PAC exhibited better binding affinity of - 5.23, - 5.17 and - 4.43, - 4.47 kcal/mol against BCL-XL, CDK2 and were compared with 5-FU respectively, which significantly reveals the anticancerous activity of Proanthocyanidin compound. Thus, the PAC compound provides future application of therapeutic option in the treatment of colon cancers.
Collapse
Affiliation(s)
- Mani Suganya
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu 637215 India
| | | | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, 16227 South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, 16227 South Korea
| | - Arokiyaraj Selvaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433 Saudi Arabia
| | - Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433 Saudi Arabia
| | - Ponnusamy Ponmurugan
- Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| |
Collapse
|
4
|
Vetrivel U, Nagarajan H. Deciphering ophthalmic adaptive inhibitors targeting RON4 of Toxoplasma gondii: An integrative in silico approach. Life Sci 2018; 213:82-93. [DOI: 10.1016/j.lfs.2018.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
|
5
|
Sivashanmugam M, K N S, V U. Virtual screening of natural inhibitors targeting ornithine decarboxylase with pharmacophore scaffolding of DFMO and validation by molecular dynamics simulation studies. J Biomol Struct Dyn 2018; 37:766-780. [PMID: 29436980 DOI: 10.1080/07391102.2018.1439772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ornithine decarboxylase (ODC) is an enzyme that initiates polyamine synthesis in human. Polyamines play key roles in cell-cell adhesion, cell motility and cell cycle regulation. Higher synthesis of polyamines also occurs in rapidly proliferating cancer cells are mediated by ODC. As per earlier studies, di-flouro-methyl-orninthine (DFMO) is a proven efficient inhibitor ODC targeting the catalytic activity, however, its usage is limited due to side effects. Targeting ODC is considered as a potential therapeutic modality in the treatment of cancer. In this study, it is attempted to use DFMO scaffold to build a ligand-based pharmocophore query using MOE to screen similar active compounds from Universal Natural Products Database with better ADMET properties. The identified compounds were virtually screened against the active cavity of ODC using Glide. Further, potential natural hits targeting ODC were shortlisted based on Molecular Mechanics/Generalized-Born/Surface Area (MM-GBSA) score. Finally, molecular dynamics simulations were performed for the natural molecule hit and DFMO in complex with ODC using Desmond. Among the hits shortlisted, 2-amino-5, 9, 13, 17-tetramethyloctadeca-8, 16-diene-1, 3, 14-triol (UNPD208110) was found to be highly potential, as it showed a higher binding affinity in terms of interactions with key active cavity residues, and also showed better ADMET property, HUMO-LUMO gap energy and more stable complex formation with ODC compared to DFMO. Hence, the proposed molecule (UNPD208110) shall be favourably considered as a potential natural inhibitor targeting ODC-mediated disease conditions.
Collapse
Affiliation(s)
- Muthukumaran Sivashanmugam
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation , Chennai , India.,b School of Chemical and Biotechnology , SASTRA University , Thanjavur , India
| | - Sulochana K N
- c R.S. Mehta Jain Department of Biochemistry and Cell Biology , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation , Chennai , India
| | - Umashankar V
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation , Chennai , India
| |
Collapse
|
6
|
Linarin suppresses glioma through inhibition of NF-κB/p65 and up-regulating p53 expression in vitro and in vivo. Biomed Pharmacother 2017; 95:363-374. [DOI: 10.1016/j.biopha.2017.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 01/16/2023] Open
|
7
|
Xu ZF, Sun XK, Lan Y, Han C, Zhang YD, Chen G. Linarin sensitizes tumor necrosis factor-related apoptosis (TRAIL)-induced ligand-triggered apoptosis in human glioma cells and in xenograft nude mice. Biomed Pharmacother 2017; 95:1607-1618. [PMID: 28950661 DOI: 10.1016/j.biopha.2017.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is reported as a promising anti-cancer therapeutic agent. Nevertheless, a variety of cancer cells, including human malignant glioma cells, are resistant to TRAIL treatment, indicating that it is necessary to find effective strategies to overcome the TRAIL resistance. Linarin (LIN), a natural flavonoid compound in Flos Chrysanthemi Indici (FCI), has been exhibited to exert various pharmacological activities, including anti-cancer. Here in our study, we found that non-cytotoxic doses of LIN (5μM) dramatically potentiated TRAIL (80ng/ml)-induced cytotoxicity (52.36±1.58%) and apoptosis (68.50±1.23%) using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and flow cytometry assays, respectively, in human glioma cells of U87MG. Apoptosis was evidenced by enhanced cleavage of Caspase-8/-9/-3 and poly (ADP-ribose) polymerase (PARP), and reduced anti-apoptotic proteins, including B-cell leukemia/lymphoma 2 (Bcl-2), mantle cell lymphoma (Mcl)-1, and Survivin. Moreover, both intrinsic and extrinsic apoptosis pathways were included in apoptosis induced by LIN and TRAIL co-treatment, along with high release of Cyto-c into cytoplasm and enhancement of fas-associated protein with death domain (FADD), death-inducing signaling complex (DISC), death receptor 4 (DR) 4 and DR5, respectively. Reactive oxygen species (ROS) generation, up to 39.86±2.32%, was also highly triggered by TRAIL and LIN combinational treatment, which was accompanied with high phosphorylation of c-Jun-N-terminal kinase (JNK). In vivo, TRAIL and LIN double treatment significantly reduced the tumor growth using xenograft tumor model through inducing apoptosis. We demonstrated that combining LIN with TRAIL treatments might be effective against TRAIL-resistant glioma cells through inducing apoptosis regulated by ROS generation.
Collapse
Affiliation(s)
- Zan-Feng Xu
- Department of Neurosurgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science, No. 555 Youyi East Road, Xi'an 710054, China
| | - Xiao-Ke Sun
- Department of Neurosurgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science, No. 555 Youyi East Road, Xi'an 710054, China
| | - Ying Lan
- Department of Neurosurgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science, No. 555 Youyi East Road, Xi'an 710054, China
| | - Chao Han
- Department of Neurosurgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science, No. 555 Youyi East Road, Xi'an 710054, China
| | - Yong-Dong Zhang
- Department of Neurosurgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science, No. 555 Youyi East Road, Xi'an 710054, China
| | - Gang Chen
- Department of Neurosurgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science, No. 555 Youyi East Road, Xi'an 710054, China.
| |
Collapse
|
8
|
Šmejkal K, Malaník M, Zhaparkulova K, Sakipova Z, Ibragimova L, Ibadullaeva G, Žemlička M. Kazakh Ziziphora Species as Sources of Bioactive Substances. Molecules 2016; 21:molecules21070826. [PMID: 27347924 PMCID: PMC6274025 DOI: 10.3390/molecules21070826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 01/19/2023] Open
Abstract
Ziziphora species represent the prototypical example of the Lamiaceae family. The phytochemicals present in Ziziphora include monoterpenic essential oils, triterpenes and phenolic substances belonging to the flavonoids. In Kazakh traditional medicine, Ziziphora species possess several medicinal uses. In particular, Z. bungeana Lam. and Z. clinopodioides Lam. are used for the treatment of illnesses related to the cardiovascular system or to combat different infections. Unfortunately, the majority of the information about the complex Ziziphora species is only available in Russian and Chinese language, therefore, we decided gather all available information on Kazakhstan Ziziphora, namely its content compounds, medicinal uses and published patents, to draw the attention of scientists to this very interesting plant with high medicinal potential.
Collapse
Affiliation(s)
- Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno 61242, Czech Republic.
| | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno 61242, Czech Republic.
| | - Karlygash Zhaparkulova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Zuriyadda Sakipova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Liliya Ibragimova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Galya Ibadullaeva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Milan Žemlička
- Department of Pharmacognosy and Botany, The University of Veterinary Medicine and Pharmacy in Košice, Košice 04181, Slovakia.
| |
Collapse
|