1
|
Sherkhane R, Singh S, K T A, Kumar A, Sharma A, Gupta SJ. An integrative approach for management of post-traumatic dorsal foot wounds - A case report. J Ayurveda Integr Med 2024; 15:100905. [PMID: 38574517 PMCID: PMC11002676 DOI: 10.1016/j.jaim.2024.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Crush injuries to the foot have become increasingly prevalent in contemporary settings, primarily arising from incidents such as the impact of large objects falling onto the foot or involvement in traffic accidents. The complexity of treating these injuries is compounded by the intricate anatomy of the foot. In specific scenarios, the implementation of an integrated management approach could prove advantageous. In this report, we depict the case of a 23-year-old male who visited the Shalya OPD with a wound on his left foot caused by trauma. The wound covered the medial portion of the foot, involving the dorsal area, and measured roughly 20 cm by 9 cm and was unable to walk. We successfully managed the case by adopting an integrative approach. The Ayurvedic treatment included Panchavalkala kashaya for wound irrigation, as well as oral administration of Amalaki rasayana, Triphala guggulu, Shatavari churna and Ashwagandha churna. Jatyadi taila was topically applied. For the first seven days, in addition to these ayurvedic medications, we also employed analgesics and antibiotics to treat infection and pain. To accomplish early closure, we employed a split-thickness skin graft after sufficient granulation tissue had appeared. The wound was completely healed within three months and the patient was able to walk freely without any support. The combined approach yielded a promising result in this case.
Collapse
Affiliation(s)
- Rahul Sherkhane
- Dept. of Shalya Tantra, Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University, Varanasi, 221005, India.
| | - Shruti Singh
- Dept. of Shalya Tantra, Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University, Varanasi, 221005, India
| | - Aadithyaraj K T
- Dept. of Shalya Tantra, Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Shalya Tantra, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Sharma
- S S Hospital, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shiv Ji Gupta
- Department of Shalya Tantra, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Palanisamy A, Sharma R, Singh PP, Sharma U, Patil RD, Mal G, Singh B. Shatavarin-IV saponin adjuvant elicits IgG and IgG2b responses against Staphylococcus aureus bacterin in a murine model. Heliyon 2023; 9:e15339. [PMID: 37123899 PMCID: PMC10133762 DOI: 10.1016/j.heliyon.2023.e15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Asparagus adscendens Roxb. also known as "safed musli" or "shatavari" is a medicinal plant commonly found in South Asian countries. Shatavari is effective for the treatment of gastric ulcers, renal stones, bronchitis, diabetes, diabetic neuropathy, irritable bowel syndrome, alcohol withdrawal and has reported immunostimulatory effects. In this study, the adjuvant potential of Shatavarin-IV saponin against Staphylococcus aureus bacterin in mice was investigated. Shatavarin-IV was evaluated for its toxicity and immunomodulatory potential against S. aureus bacterin in mice. Cellular and humoral immune responses were assessed. Shatavarin-IV was isolated from the fruit extract of Asparagus adscendens. The confirmation of the isolated molecule as Shatavarin-IV was done via TLC-based comparison with the standard molecule. Further, the structure was confirmed by using extensive spectroscopic analyses and comparing the observed data with literature reports. It was found safe up to the dose of 0.1 mg in the mice model. Shatavarin-IV adjuvant elicited IgG and IgG2b responses at the dose of 40 μg against S. aureus bacterin. However, the cell-mediated immune response was lesser as compared with the commercial Quil-A saponin . We demonstrated that Shatavarin-IV saponin adjuvant produced an optimum humoral immune response against S. aureus bacterin. These results highlight the potential of Shatavarin-IV as an adjuvant in a combination adjuvant in vaccine formulations for induction of potent immune response.
Collapse
Affiliation(s)
- Arivukarasu Palanisamy
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur 176061, Himachal Pradesh, India
| | - Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur 176061, Himachal Pradesh, India
- Corresponding author. ICAR-Indian Veterinary Research Institute, Regional Station, Palampur 176 061, Himachal Pradesh, India. ,
| | - Prithvi Pal Singh
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 062, Himachal Pradesh, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 062, Himachal Pradesh, India
| | - Rajendra Damu Patil
- Department of Veterinary Pathology, DGCN COVAS, CSK HPKV, Palampur 176 062, Himachal Pradesh, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur 176061, Himachal Pradesh, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur 176061, Himachal Pradesh, India
| |
Collapse
|
3
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
4
|
Herbal plants as immunity modulators against COVID-19: A primary preventive measure during home quarantine. J Herb Med 2021; 32:100501. [PMID: 34377631 PMCID: PMC8340568 DOI: 10.1016/j.hermed.2021.100501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
The novel coronavirus or severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a deadly virus which has spread globally and claimed millions of lives. This novel virus transmits mainly through droplets and close human contact. It’s impact in different countries varies depending on geographical location, climatic conditions, food habits, and cultural activities. Several precautionary measures, as well as many medicines, are applied in different combinations to limit the spread of infection. This results in a preliminary relief of people infected in the first stage of infection. An alternative approach has been introduced which proposes natural herbs, which have minimal or no side effects, and improve overall immunity. Some essential herbs with their immunomodulatory effects are mentioned in this article along with suggestions for improved immunity and protection.
Collapse
|
5
|
Sibeko L, Johns T. Global survey of medicinal plants during lactation and postpartum recovery: Evolutionary perspectives and contemporary health implications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113812. [PMID: 33450288 DOI: 10.1016/j.jep.2021.113812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cross-cultural comparison of plants used during lactation and the postpartum period offers insight into a largely overlooked area of ethnopharmacological research. Potential roles of phytochemicals in emerging models of interaction among immunity, inflammation, microbiome and nervous system effects on perinatal development have relevance for the life-long health of individuals and of populations in both traditional and contemporary contexts. AIM OF THE STUDY Delineate and interpret patterns of traditional and contemporary global use of medicinal plants ingested by mothers during the postpartum period relative to phytochemical activity on immune development and gastrointestinal microbiome of breastfed infants, and on maternal health. MATERIALS AND METHODS Published reviews and surveys on galactagogues and postpartum recovery practices plus ethnobotanical studies from around the world were used to identify and rank plants, and ascertain regional use patterns. Scientific literature for 20 most-cited plants based on frequency of publication was assessed for antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antidepressant, analgesic, galactagogic and safety properties. RESULTS From compilation of 4418 use reports related to 1948 species, 105 plant taxa were recorded ≥7 times, with the most frequently cited species, Foeniculum vulgare, Trigonella foenum-graecum, Pimpinella anisum, Euphorbia hirta and Asparagus racemosus, 81, 64, 42, 40 and 38 times, respectively. Species and use vary globally, illustrated by the pattern of aromatic plants of culinary importance versus latex-producing plants utilized in North Africa/Middle East and Sub-Saharan Africa with opposing predominance. For 18/20 of the plants a risk/benefit perspective supports assessment that positive immunomodulation and related potential exceed any safety concerns. Published evidence does not support a lactation-enhancing effect for nearly all the most-cited plants while antidepressant data for the majority of plants are predominately limited to animal studies. CONCLUSIONS Within a biocultural context traditional postpartum plant use serves adaptive functions for the mother-infant dyad and contributes phytochemicals absent in most contemporary diets and patterns of ingestion, with potential impacts on allergic, inflammatory and other conditions. Polyphenolics and other phytochemicals are widely immunologically active, present in breast milk and predominately non-toxic. Systematic analysis of phytochemicals in human milk, infant lumen and plasma, and immunomodulatory studies that differentiate maternal ingestion during lactation from pregnancy, are needed. Potential herb-drug interaction and other adverse effects should remain central to obstetric advising, but unless a plant is specifically shown as harmful, considering potential contributions to health of individuals and populations, blanket advisories against postpartum herbal use during lactation appear empirically unwarranted.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
6
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
7
|
Majumdar S, Verma R, Saha A, Bhattacharyya P, Maji P, Surjit M, Kundu M, Basu J, Saha S. Perspectives About Modulating Host Immune System in Targeting SARS-CoV-2 in India. Front Genet 2021; 12:637362. [PMID: 33664772 PMCID: PMC7921795 DOI: 10.3389/fgene.2021.637362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus induced disease-2019 (COVID-19), is a type of common cold virus responsible for a global pandemic which requires immediate measures for its containment. India has the world's largest population aged between 10 and 40 years. At the same time, India has a large number of individuals with diabetes, hypertension and kidney diseases, who are at a high risk of developing COVID-19. A vaccine against the SARS-CoV-2, may offer immediate protection from the causative agent of COVID-19, however, the protective memory may be short-lived. Even if vaccination is broadly successful in the world, India has a large and diverse population with over one-third being below the poverty line. Therefore, the success of a vaccine, even when one becomes available, is uncertain, making it necessary to focus on alternate approaches of tackling the disease. In this review, we discuss the differences in COVID-19 death/infection ratio between urban and rural India; and the probable role of the immune system, co-morbidities and associated nutritional status in dictating the death rate of COVID-19 patients in rural and urban India. Also, we focus on strategies for developing masks, vaccines, diagnostics and the role of drugs targeting host-virus protein-protein interactions in enhancing host immunity. We also discuss India's strengths including the resources of medicinal plants, good food habits and the role of information technology in combating COVID-19. We focus on the Government of India's measures and strategies for creating awareness in the containment of COVID-19 infection across the country.
Collapse
Affiliation(s)
| | - Rohit Verma
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Avishek Saha
- Ubiquitous Analytical Techniques, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| | | | - Pradipta Maji
- Biomedical Imaging and Bioinformatics Lab, Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| |
Collapse
|
8
|
Adithya J, Nair B, Aishwarya TS, Nath LR. The Plausible Role of Indian Traditional Medicine in Combating Corona Virus (SARS-CoV 2): A Mini-Review. Curr Pharm Biotechnol 2021; 22:906-919. [PMID: 32767920 DOI: 10.2174/1389201021666200807111359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV 2 is a novel virus strain of Coronavirus, reported in China in late December 2019. Its highly contagious nature in humans has prompted WHO to designate the ongoing pandemic as a Public Health Emergency of International Concern. At this moment, there is no specific treatment and the therapeutic strategies to deal with the infection are only supportive, with prevention aimed at reducing community transmission. A permanent solution for the pandemic, which has brought the world economy to the edge of collapse, is the need of the hour. This situation has brought intense research in traditional systems of medicine. Indian Traditional System, Ayurveda, has a clear concept of the cause and treatment of pandemics. Through this review, information on the potential antiviral traditional medicines along with their immunomodulatory pathways are discussed. We have covered the seven most important Indian traditional plants with antiviral properties: Withania somnifera (L.) Dunal (family: Solanaceae), Tinospora cordifolia (Thunb.) Miers (family: Menispermaceae), Phyllanthus emblica L. (family: Euphorbiaceae), Asparagus racemosus L. (family: Liliaceae), Glycyrrhiza glabra L. (family: Fabaceae), Ocimum sanctum L. (family: Lamiaceae) and Azadirachta indica A. Juss (family: Meliaceae) in this review. An attempt is also made to bring into limelight the importance of dietary polyphenol, Quercetin, which is a potential drug candidate in the making against the SARS-CoV2 virus.
Collapse
Affiliation(s)
- J Adithya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - T S Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| |
Collapse
|
9
|
Upadhyay S, Jeena GS, Shukla RK. Recent advances in steroidal saponins biosynthesis and in vitro production. PLANTA 2018; 248:519-544. [PMID: 29748819 DOI: 10.1007/s00425-018-2911-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Steroidal saponins exhibited numerous pharmacological activities due to the modification of their backbone by different cytochrome P450s (P450) and UDP glycosyltransferases (UGTs). Plant-derived steroidal saponins are not sufficient for utilizing them for commercial purpose so in vitro production of saponin by tissue culture, root culture, embryo culture, etc, is necessary for its large-scale production. Saponin glycosides are the important class of plant secondary metabolites, which consists of either steroidal or terpenoidal backbone. Due to the existence of a wide range of medicinal properties, saponin glycosides are pharmacologically very important. This review is focused on important medicinal properties of steroidal saponin, its occurrence, and biosynthesis. In addition to this, some recently identified plants containing steroidal saponins in different parts were summarized. The high throughput transcriptome sequencing approach elaborates our understanding related to the secondary metabolic pathway and its regulation even in the absence of adequate genomic information of non-model plants. The aim of this review is to encapsulate the information related to applications of steroidal saponin and its biosynthetic enzymes specially P450s and UGTs that are involved at later stage modifications of saponin backbone. Lastly, we discussed the in vitro production of steroidal saponin as the plant-based production of saponin is time-consuming and yield a limited amount of saponins. A large amount of plant material has been used to increase the production of steroidal saponin by employing in vitro culture technique, which has received a lot of attention in past two decades and provides a way to conserve medicinal plants as well as to escape them for being endangered.
Collapse
Affiliation(s)
- Swati Upadhyay
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Gajendra Singh Jeena
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
10
|
Jaramillo S, Muriana FJ, Guillen R, Jimenez-Araujo A, Rodriguez-Arcos R, Lopez S. Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|