1
|
Corpuz-Hilsabeck M, Mohajer N, Culty M. Dysregulation of Immature Sertoli Cell Functions by Exposure to Acetaminophen and Genistein in Rodent Cell Models. Cells 2023; 12:1804. [PMID: 37443838 PMCID: PMC10340629 DOI: 10.3390/cells12131804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sertoli cells are essential for germ cell development and function. Their disruption by endocrine disrupting chemicals (EDCs) or drugs could jeopardize spermatogenesis, contributing to male infertility. Perinatal exposure to EDCs and acetaminophen (APAP) disrupts male reproductive functions in animals and humans. Infants can be exposed simultaneously to the dietary soy phytoestrogen genistein (GEN) and APAP used for fever or pain relief. Our goal was to determine the effects of 10-100 µM APAP and GEN, alone or mixed, on immature Sertoli cells using mouse TM4 Sertoli cell line and postnatal-day 8 rat Sertoli cells, by measuring cell viability, proliferation, prostaglandins, genes and protein expression, and functional pathways. A value of 50 µM APAP decreased the viability, while 100 µM APAP and GEN decreased the proliferation. Sertoli cell and eicosanoid pathway genes were affected by GEN and mixtures, with downregulation of Sox9, Cox1, Cox2, and genes relevant for Sertoli cell function, while genes involved in inflammation were increased. RNA-seq analysis identified p53 and TNF signaling pathways as common targets of GEN and GEN mixture in both cell types. These results suggest that APAP and GEN dysregulate immature Sertoli cell function and may aid in elucidating novel EDC and drug targets contributing to the etiology of male infertility.
Collapse
Affiliation(s)
| | | | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
3
|
Manku G, Kong CC, Culty M. Role of the Ubiquitin Ligase RNF149 in the Development of Rat Neonatal Gonocytes. Front Endocrinol (Lausanne) 2022; 13:896507. [PMID: 35634494 PMCID: PMC9136010 DOI: 10.3389/fendo.2022.896507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Male reproductive function depends on the formation of spermatogonial stem cells from their neonatal precursors, the gonocytes. Previously, we identified several UPS enzymes dynamically altered during gonocyte differentiation. The present work focuses on understanding the role of the RING finger protein 149 (RNF149), an E3 ligase that we found to be strongly expressed in gonocytes and downregulated in spermatogonia. The quantification of RNF149 mRNA from postnatal day (PND) 2 to 35 (puberty) in rat testis, brain, liver, kidney, and heart indicated that its highest levels are found in the testis. RNF149 knock-down in PND3 rat gonocytes was performed to better understand its role in gonocyte development. While a proliferative cocktail of PDGF-BB and 17β-estradiol (P+E) increased both the expression levels of the cell proliferation marker PCNA and RNF149 in mock cells, the effects of P+E on both genes were reduced in cells treated with RNF149 siRNA, suggesting that RNF149 expression is regulated during gonocyte proliferation and that there might be a functional link between RNF149 and PCNA. To examine RNF149 subcellular localization, EGFP-tagged RNF149 vectors were constructed, after determining the rat testis RNF149 mRNA sequence. Surprisingly, two variant transcripts were expressed in rat tissues, predicting truncated proteins, one containing the PA and the other the RING functional domains. Transfection in mouse F9 embryonal carcinoma cells and C18-4 spermatogonial cell lines showed differential subcellular profiles of the two truncated proteins. Overall, the results of this study support a role for RNF149 in gonocyte proliferation and suggest its transcription to variant mRNAs resulting in two proteins with different functional domains. Future studies will examine the respective roles of these variant proteins in the cell lines and isolated gonocytes.
Collapse
Affiliation(s)
- Gurpreet Manku
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- The Departments of Medicine and Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Chi-Chon Kong
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- The Departments of Medicine and Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- The Departments of Medicine and Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Martine Culty,
| |
Collapse
|
4
|
Wang H, Huang Z, Zhao X, Guo B, Ji Z. miR-4270 regulates cell proliferation and apoptosis in patients with Sertoli cell-only syndrome by targeting GADD45A and inactivating the NOTCH signaling pathway. Am J Transl Res 2020; 12:5730-5740. [PMID: 33042452 PMCID: PMC7540124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
In recent decades, growing data has suggested that microRNAs (miRNAs, miRs) play a critical role in the development of Sertoli cells (SC), including regulating SC maturation, synthesis, proliferation, and apoptosis. Previous reports of miRNA microarray have identified aberrant miR-4270 expression in patients with Sertoli-cell-only syndrome (SCOS). However, it is not known whether miR-4270 is associated with the pathogenesis of SCOS. In this study, we aimed to further investigate the roles and potential mechanisms of miR-4270 on SC proliferation and apoptosis. Our data confirmed that miR-4270 was significantly upregulated in SC of SCOS patients compared with healthy controls. EdU and CCK-8 assays showed silencing of miR-4270 by specific inhibitor significantly enhanced human SC and TM4 cells proliferation. ELISA and flow cytometry assays indicated that miR-4270 knockdown prominently suppressed the apoptosis of human SC and TM4 cells. Furthermore, expression of cell cycle genes, including CCNE1 (cyclin E1), CCND1 (cyclin D1) and CDK4 (cyclin dependent kinase 4), were obviously upregulated in human SC and TM4 cells by qRT-PCR assay after knockdown of miR-4270, while expression of cell apoptotic factors, including CASP3 (caspase 3), CASP6 (caspase 6) and CASP7 (caspase 7), were all markedly decreased. Notably, GADD45A (growth arrest and DNA damage inducible alpha) mRNA was downregulated in SC of SCOS patients, and negatively corrected with miR-4270 expression. Moreover, bioinformatics tools and dual-luciferase reporter assay identified that miR-4270 directly bound the 3'-UTR of GADD45A mRNA to inhibit GADD45A expression. Meanwhile, Western blots analysis validated that the protein expression levels of NOTCH1 (notch receptor 1) and HES1 (hes family bHLH transcription factor 1) were significantly increased in SC and TM4 cells after miR-4270 silencing or GADD45A overexpression. Taken together, our data demonstrated that miR-4270 regulates proliferation and apoptosis in SC of SCOS patients by inactivating NOTCH signaling pathway via GADD45A gene, which may offer a new insight into the development of human SC and provide a promising biomarker for the treatment of SCOS.
Collapse
Affiliation(s)
- Hai Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijing 100730, P. R. China
| | - Zhongming Huang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijing 100730, P. R. China
| | - Xin Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijing 100730, P. R. China
| | - Boda Guo
- Department of Urology, Beijing Hospital, National Center of GerontologyBeijing 100730, P. R. China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijing 100730, P. R. China
| |
Collapse
|
5
|
Bejarano I, Rodríguez AB, Pariente JA. Apoptosis Is a Demanding Selective Tool During the Development of Fetal Male Germ Cells. Front Cell Dev Biol 2018; 6:65. [PMID: 30003081 PMCID: PMC6031705 DOI: 10.3389/fcell.2018.00065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is widely known to play a major role on diseases related to male infertility. Diseases of the male genital tract as defective spermatogenesis, decreased sperm motility, sperm DNA fragmentation, testicular torsion, varicocele and immunological infertility are strongly related to apoptotic cell death. Apoptosis must not be considered only as a fail on germ cell physiology or a secondary effect of certain pathologies and exogenous hazardous agents. Apoptosis orchestrates correct function and development of the male germ cell from the early embryonic stages of gonadal differentiation to the fertilization. In this review we have tried to address a reading frame of the main knowledge about apoptosis in male germ cell development. Focussing on mechanisms concerning cellular apoptosis, which are independent of exogenous stimuli, we aimed to highlight that apoptosis is a selective instrument that guarantees the delivery of genetic message to offspring.
Collapse
Affiliation(s)
| | | | - José A. Pariente
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
6
|
Abstract
DNA damage, largely owing to oxidative stress, is a leading cause of defective sperm function. High levels of oxidative stress result in damage to sperm DNA, RNA transcripts, and telomeres and, therefore might provide a common underlying aetiology of male infertility and recurrent pregnancy loss, in addition to congenital malformations, complex neuropsychiatric disorders, and childhood cancers in children fathered by men with defective sperm cells. Spermatozoa are highly vulnerable to oxidative stress owing to limited levels of antioxidant defence and a single, limited DNA-damage detection and repair mechanism. Oxidative stress is predominantly caused by a host of lifestyle-related factors, the majority of which are modifiable. Antioxidant regimens and lifestyle modifications could both be plausible therapeutic approaches that enable the burden of oxidative-stress-induced male factor infertility to be overcome. Lifestyle interventions including yoga and meditation can substantially improve the integrity of sperm DNA by reducing levels of oxidative DNA damage, regulating oxidative stress and by increasing the expression of genes responsible for DNA repair, cell-cycle control and anti-inflammatory effects. Oxidative stress is caused by various modifiable factors, and the use of simple interventions can decrease levels of oxidative stress, and therefore reduce the incidence of both infertility and complex diseases in the resultant offspring.
Collapse
Affiliation(s)
- Shilpa Bisht
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Muneeb Faiq
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Madhuri Tolahunase
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
7
|
Regulation of Translocator Protein 18 kDa (TSPO) Expression in Rat and Human Male Germ Cells. Int J Mol Sci 2016; 17:ijms17091486. [PMID: 27608010 PMCID: PMC5037764 DOI: 10.3390/ijms17091486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/02/2023] Open
Abstract
Translocator protein 18 kDa (TSPO) is a high affinity cholesterol- and drug-binding protein highly expressed in steroidogenic cells, such as Leydig cells, where it plays a role in cholesterol mitochondrial transport. We have previously shown that TSPO is expressed in postnatal day 3 rat gonocytes, precursors of spermatogonial stem cells. Gonocytes undergo regulated phases of proliferation and migration, followed by retinoic acid (RA)-induced differentiation. Understanding these processes is important since their disruption may lead to the formation of carcinoma in situ, a precursor of testicular germ cell tumors (TGCTs). Previously, we showed that TSPO ligands do not regulate gonocyte proliferation. In the present study, we found that TSPO expression is downregulated in differentiating gonocytes. Similarly, in F9 embryonal carcinoma cells, a mouse TGCT cell line with embryonic stem cell properties, there is a significant decrease in TSPO expression during RA-induced differentiation. Silencing TSPO expression in gonocytes increased the stimulatory effect of RA on the expression of the differentiation marker Stra8, suggesting that TSPO exerts a repressive role on differentiation. Furthermore, in normal human testes, TSPO was located not only in Leydig cells, but also in discrete spermatogenic phases such as the forming acrosome of round spermatids. By contrast, seminomas, the most common type of TGCT, presented high levels of TSPO mRNA. TSPO protein was expressed in the cytoplasmic compartment of seminoma cells, identified by their nuclear expression of the transcription factors OCT4 and AP2G. Thus, TSPO appears to be tightly regulated during germ cell differentiation, and to be deregulated in seminomas, suggesting a role in germ cell development and pathology.
Collapse
|