1
|
Levkova M, Radanova M, Angelova L. Potential role of dynein-related genes in the etiology of male infertility: A systematic review and a meta-analysis. Andrology 2022; 10:1484-1499. [PMID: 36057791 DOI: 10.1111/andr.13287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The dynein-related genes may have a role in the etiology of male infertility, particularly in cases of impaired sperm motility. OBJECTIVES The goal of this review is to compile a list of the most important dynein-related candidate genes that may contribute to male factor infertility. MATERIALS AND METHODS Databases were searched using the keywords "dynein", "male", "infertility" and by applying strict inclusion criteria. A meta-analysis was also performed by using the eligible case-control studies. The odd ratios (OR), the Z-test score, and the level of significance were determined using a fixed model with a p value of 0.05. Funnel plots were used to check for publication bias. RESULTS There were 35 studies that met the inclusion criteria. There were a total of fifteen genes responsible for the production of dynein structural proteins, the production of dynein assembling factors, and potentially associated with male infertility. A total of five case-control studies were eligible for inclusion in the meta-analysis. Variants in the dynein-related genes were linked to an increased the risk of male infertility (OR = 21.52, 95% Confidence Interval (CI) 8.34 - 55.50, Z test = 6.35, p < 0.05). The percentage of heterogeneity, I2 , was 47.00%. The lack of variants in the dynein genes was an advantage and this was statistically significant. DISCUSSION The results from the present review illustrate that pathogenic variants in genes both for dynein synthesis and for dynein assembly factors could be associated with isolated cases of male infertility without any other symptoms. CONCLUSIONS The genes addressed in this study, which are involved in both the production and assembly of dynein, could be used as molecular targets for future research into the etiology of sperm motility problems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria.,Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University Varna, Tzar Osvoboditel Str 84b, Varna, 9000, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| |
Collapse
|
2
|
Liu Y, Wang G, Zhang F, Dai L. Correlation between serum levels of reproductive hormones and testicular spermatogenic function in men with azoospermia. Andrologia 2022; 54:e14546. [PMID: 36029109 DOI: 10.1111/and.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 07/20/2022] [Indexed: 11/01/2022] Open
Abstract
To investigate the serum levels of reproductive hormones in men with azoospermia and explore the correlation between abnormal reproductive hormones and the results of testicular biopsy and seminiferous extraction. The serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), and pituitary prolactin (PRL), were measured by Radio immunoassay. Testicular biopsy was used to determine whether patient's had spermatozoa. Spearman's correlation analysis was used to analyse the correlation between LH, FSH, testicular volume, and spermatogenic function. Receiver operator characteristic (ROC) curves were used to evaluate the efficacy and significance of LH and FSH for the detection of spermatozoa and copy number variation sequencing (CNV-seq). Compared with the control group, the serum levels of FSH and LH in the azoospermia group were significantly up-regulated (p < 0.001). Prolactin (PRL) and testosterone levels did not differ significantly between the two groups (p > 0.05). The serum levels of FSH and LH were negatively correlated with testicular spermatogenic function and testicular volume. The areas under the ROC curves for determining FSH and LH potency by testicular biopsy with or without spermatozoa were 0.640 and 0.622, respectively. The areas under the ROC curves for the potency of FSH and LH, as judged by CNV detection results, were 0.523 and 0.534, respectively. Serum levels of FSH and LH are associated with azoospermia and may be of predictive significance in the clinical setting for the acquisition of spermatozoa by testicular biopsy.
Collapse
Affiliation(s)
- Yongjie Liu
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, Ningxia Province, China
| | - Guoping Wang
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, Ningxia Province, China
| | - Fan Zhang
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, Ningxia Province, China
| | - Liang Dai
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, Ningxia Province, China
| |
Collapse
|
3
|
Distinct Roles of NANOS1 and NANOS3 in the Cell Cycle and NANOS3-PUM1-FOXM1 Axis to Control G2/M Phase in a Human Primordial Germ Cell Model. Int J Mol Sci 2022; 23:ijms23126592. [PMID: 35743036 PMCID: PMC9223905 DOI: 10.3390/ijms23126592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Nanos RNA-binding proteins are critical factors of germline development throughout the animal kingdom and their dysfunction causes infertility. During evolution, mammalian Nanos paralogues adopted divergent roles in germ cell biology. However, the molecular basis behind this divergence, such as their target mRNAs, remains poorly understood. Our RNA-sequencing analysis in a human primordial germ cell model-TCam-2 cell line revealed distinct pools of genes involved in the cell cycle process downregulated upon NANOS1 and NANOS3 overexpression. We show that NANOS1 and NANOS3 proteins influence different stages of the cell cycle. Namely, NANOS1 is involved in the G1/S and NANOS3 in the G2/M phase transition. Many of their cell cycle targets are known infertility and cancer-germ cell genes. Moreover, NANOS3 in complex with RNA-binding protein PUM1 causes 3′UTR-mediated repression of FOXM1 mRNA encoding a transcription factor crucial for G2/M phase transition. Interestingly, while NANOS3 and PUM1 act as post-transcriptional repressors of FOXM1, FOXM1 potentially acts as a transcriptional activator of NANOS3, PUM1, and itself. Finally, by utilizing publicly available RNA-sequencing datasets, we show that the balance between FOXM1-NANOS3 and FOXM1-PUM1 expression levels is disrupted in testis cancer, suggesting a potential role in this disease.
Collapse
|
4
|
A novel CCDC39 mutation causes multiple morphological abnormalities of the flagella in a primary ciliary dyskinesia patient. Reprod Biomed Online 2021; 43:920-930. [PMID: 34674941 DOI: 10.1016/j.rbmo.2021.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023]
Abstract
RESEARCH QUESTION Male infertility is a widespread symptom in patients with primary ciliary dyskinesia (PCD). PCD-related male infertility is often caused by asthenozoospermia, with barely normal sperm morphology. Multiple morphological abnormalities of the sperm flagella (MMAF) are a major cause of asthenozoospermia, characterized by various malformed morphologies of sperm flagella. To date, a limited number of genes have been suggested to be involved in the pathogenesis of both PCD and MMAF. What other genes associated with both PCD and MMAF are waiting to be discovered? DESIGN Whole-exome sequencing (WES) was performed to identify the pathogenic mutation associated with MMAF in a PCD patient. Peripheral venous blood and semen samples were collected from the PCD patient. Transmission electron microscopy (TEM), immunofluorescence staining and western blotting were conducted to confirm the pathogenicity of the identified mutation. RESULTS A novel homozygous mutation in CCDC39, c.983 T>C (p. Leu328Pro), was identified in two PCD-affected siblings of a consanguineous family showing a typical PCD phenotype, while the proband was infertile, which is associated with characterized MMAF. Furthermore, TEM revealed the abnormal ultrastructure of the patient's sperm flagella. Moreover, immunofluorescence staining revealed that CCDC39 was almost undetectable in the spermatozoa, which was further confirmed by western blotting. The outcome of intracytoplasmic sperm injection (ICSI) in the patient with the CCDC39 mutation was also favourable. CONCLUSION This study demonstrates that a novel loss-of-function mutation of CCDC39 is involved in the pathogenesis of PCD and MMAF and initially reported that ICSI treatment has a good outcome. Therefore, the novel variant of CCDC39 contributes to the genetic diagnosis, counselling and treatment of male infertility in PCD patients with MMAF phenotype.
Collapse
|
5
|
Akbarian F, Tavalaee M, Sherkat R, Shahrooei M, Nasr-Esfahani MH. A report of pregnancy following ICSI in one of two sisters with familiar primary ciliary dyskinesia. Andrologia 2021; 53:e14080. [PMID: 33966302 DOI: 10.1111/and.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/28/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a disorder of structure and function of motor ciliary and dyskinetic activity of ciliary in the fallopian tubes of affected women and could lead to infertility in some cases. In vitro fertilisation (IVF) is a choice of treatment in infertile women with PCD, which could conquer the tubal dysfunction. In this case study, we report a PCD affected woman with infertility who was treated by IVF and pregnancy was achieved but it failed due to the spontaneous abortion. We also performed whole-exome sequencing for this case and her PCD-affected sister, which did not reveal any genetic abnormality related to the PCD or infertility.
Collapse
Affiliation(s)
- Fahimeh Akbarian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium.,Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
6
|
Chen L, Ouyang J, Li X, Xiao X, Sun W, Li S, Zhou L, Liao Y, Zhang Q. DNAH17 is essential for rat spermatogenesis and fertility. J Genet 2021. [DOI: 10.1007/s12041-021-01264-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Abstract
Male factor infertility is a common problem. Evidence is emerging regarding the spectrum of systemic disease and illness harbored by infertile men who otherwise appear healthy. In this review, we present evidence that infertile men have poor overall health and increased morbidity and mortality, increased rates of both genitourinary and non-genitourinary malignancy, and greater risks of systemic disease. The review also highlights numerous genetic conditions associated with male infertility as well as emerging translational evidence of genitourinary birth defects and their impact on male infertility. Finally, parallels to the overall health of infertile women are presented. This review highlights the importance of a comprehensive health evaluation of men who present for an infertility assessment.
Collapse
Affiliation(s)
- Nahid Punjani
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Dolores J Lamb
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
8
|
Cannarella R, Maniscalchi ET, Condorelli RA, Scalia M, Guerri G, La Vignera S, Bertelli M, Calogero AE. Ultrastructural Sperm Flagellum Defects in a Patient With CCDC39 Compound Heterozygous Mutations and Primary Ciliary Dyskinesia/ Situs Viscerum Inversus. Front Genet 2020; 11:974. [PMID: 33005176 PMCID: PMC7483550 DOI: 10.3389/fgene.2020.00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disease characterized by structural or functional motile cilia abnormalities. Up to 40 different genes seem, at the moment, to be involved in the pathogenesis of PCD. A number of ultrastructural defects have also been reported in sperm flagella, but the sperm mitochondrial membrane potential (MMP) has never been described in these cases. Aim: The aim of this study was to report the sperm MMP and ultrastructural abnormalities of the sperm flagella found in a patient with PCD and situs inversus (Kartagener syndrome) and its characterization from the genetic point of view. Methods: Transmission electronic microscopy (TEM) analysis was used to evaluate flagella ultrastructure. The genetic testing was performed by next-generation sequencing. Sperm DNA fragmentation and MMP were also evaluated by flow cytometry. Results: We report here the case of an 18-year-old male patient with PCD and situs inversus and severe oligo-astheno-teratozoospermia. TEM analysis of his spermatozoa showed an abnormal connecting piece. The mid piece appeared abnormally thickened, with cytoplasmic residue, dysplasia of fibrous sheath, loss of the outer dynein arms (ODAs), truncated inner dynein arms, and supernumerary outer fibers. The percentage of spermatozoa with fragmented DNA was normal, whereas a high percentage of spermatozoa had low MMP, suggesting an altered mitochondrial function. The genetic analysis showed the presence of c.610-2A > G, p.Arg811Cys compound heterozygous mutations in the CCDC39 gene. Conclusion: The case herein reported suggests that the high percentage of sperm with low MMP may play a role in the pathogenesis of asthenozoospermia in patients with Kartagener syndrome. In addition, we report, for the first time, the missense variant p.Arg811Cys in the CCDC39 gene in a patient with Kartagener syndrome. Although in silico analysis predicts its damaging potential, its clinical meaning remains unclear.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | | | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Aldo Eugenio Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Kuroda S, Usui K, Sanjo H, Takeshima T, Kawahara T, Uemura H, Yumura Y. Genetic disorders and male infertility. Reprod Med Biol 2020; 19:314-322. [PMID: 33071633 PMCID: PMC7542010 DOI: 10.1002/rmb2.12336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND At present, one out of six couples is infertile, and in 50% of cases, infertility is attributed to male infertility factors. Genetic abnormalities are found in 10%-20% of patients showing severe spermatogenesis disorders, including non-obstructive azoospermia. METHODS Literatures covering the relationship between male infertility and genetic disorders or chromosomal abnormalities were studied and summarized. MAIN FINDINGS RESULTS Genetic disorders, including Klinefelter syndrome, balanced reciprocal translocation, Robertsonian translocation, structural abnormalities in Y chromosome, XX male, azoospermic factor (AZF) deletions, and congenital bilateral absence of vas deferens were summarized and discussed from a practical point of view. Among them, understanding on AZF deletions significantly changed owing to advanced elucidation of their pathogenesis. Due to its technical progress, AZF deletion test can reveal their delicate variations and predict the condition of spermatogenesis. Thirty-nine candidate genes possibly responsible for azoospermia have been identified in the last 10 years owing to the advances in genome sequencing technologies. CONCLUSION Genetic testing for chromosomes and AZF deletions should be examined in cases of severe oligozoospermia and azoospermia. Genetic counseling should be offered before and after genetic testing.
Collapse
Affiliation(s)
- Shinnosuke Kuroda
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
- Department of Medical GeneticsYokohama City University Medical CentreKanagawaJapan
| | - Kimitsugu Usui
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
| | - Hiroyuki Sanjo
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
| | - Teppei Takeshima
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
| | - Takashi Kawahara
- Department of Urology and Renal TransplantationYokohama City University Medical CentreKanagawaJapan
| | - Hiroji Uemura
- Department of Urology and Renal TransplantationYokohama City University Medical CentreKanagawaJapan
| | - Yasushi Yumura
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
| |
Collapse
|
10
|
Zhang B, Ma H, Khan T, Ma A, Li T, Zhang H, Gao J, Zhou J, Li Y, Yu C, Bao J, Ali A, Murtaza G, Yin H, Gao Q, Jiang X, Zhang F, Liu C, Khan I, Zubair M, Hussain HMJ, Khan R, Yousaf A, Yuan L, Lu Y, Xu X, Wang Y, Tao Q, Hao Q, Fang H, Cheng H, Zhang Y, Shi Q. A DNAH17 missense variant causes flagella destabilization and asthenozoospermia. J Exp Med 2020; 217:jem.20182365. [PMID: 31658987 PMCID: PMC7041708 DOI: 10.1084/jem.20182365] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/10/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Using mice modelling patients’ variant, this study demonstrates that a homozygous DNAH17 missense variant causes asthenozoospermia and specifically destabilizes microtubule doublets 4–7 in flagella, which could be largely due to the storage of sperm in epididymis. Asthenozoospermia is a common cause of male infertility, but its etiology remains incompletely understood. We recruited three Pakistani infertile brothers, born to first-cousin parents, displaying idiopathic asthenozoospermia but no ciliary-related symptoms. Whole-exome sequencing identified a missense variant (c.G5408A, p.C1803Y) in DNAH17, a functionally uncharacterized gene, recessively cosegregating with asthenozoospermia in the family. DNAH17, specifically expressed in testes, was localized to sperm flagella, and the mutation did not alter its localization. However, spermatozoa of all three patients showed higher frequencies of microtubule doublet(s) 4–7 missing at principal piece and end piece than in controls. Mice carrying a homozygous mutation (Dnah17M/M) equivalent to that in patients recapitulated the defects in patients’ sperm tails. Further examinations revealed that the doublets 4–7 were destabilized largely due to the storage of sperm in epididymis. Altogether, we first report that a homozygous DNAH17 missense variant specifically induces doublets 4–7 destabilization and consequently causes asthenozoospermia, providing a novel marker for genetic counseling and diagnosis of male infertility.
Collapse
Affiliation(s)
- Beibei Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Hui Ma
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Teka Khan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Ao Ma
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Tao Li
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Jianing Gao
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Jianteng Zhou
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Yang Li
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Changping Yu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Jianqiang Bao
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Asim Ali
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Ghulam Murtaza
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Hao Yin
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Qian Gao
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Xiaohua Jiang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ihsan Khan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Muhammad Zubair
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Hafiz Muhammad Jafar Hussain
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Ranjha Khan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Ayesha Yousaf
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Limin Yuan
- Analysis and test center, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yan Lu
- Analysis and test center, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaoling Xu
- Department of Respiration, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun Wang
- Department of Respiration, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qizhao Tao
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Qiaomei Hao
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Hui Fang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Hongtao Cheng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Yuanwei Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China-Shenyang Jinghua Hospital Joint Center for Human Reproduction and Genetics, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Miyata H, Morohoshi A, Ikawa M. Analysis of the sperm flagellar axoneme using gene-modified mice. Exp Anim 2020; 69:374-381. [PMID: 32554934 PMCID: PMC7677079 DOI: 10.1538/expanim.20-0064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infertility is a global health issue that affects 1 in 6 couples, with male factors contributing to 50% of cases. The flagellar axoneme is a motility apparatus of spermatozoa, and disruption of its structure or function could lead to male infertility. The axoneme consists of a "9+2" structure that contains a central pair of two singlet microtubules surrounded by nine doublet microtubules, in addition to several macromolecular complexes such as dynein arms, radial spokes, and nexin-dynein regulatory complexes. Molecular components of the flagellar axoneme are evolutionally conserved from unicellular flagellates to mammals, including mice. Although knockout (KO) mice have been generated to understand their function in the formation and motility regulation of sperm flagella, the majority of KO mice die before sexual maturation due to impaired ciliary motility, which makes it challenging to analyze mature spermatozoa. In this review, we introduce methods that have been used to overcome premature lethality, focusing on KO mouse lines of central pair components.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
12
|
Biallelic mutations of CFAP74 may cause human primary ciliary dyskinesia and MMAF phenotype. J Hum Genet 2020; 65:961-969. [PMID: 32555313 DOI: 10.1038/s10038-020-0790-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by recurrent respiratory infections, nasosinusitis, tympanitis, and/or male infertility, all of which can severely impair the patient's quality of life. Multiple morphological abnormalities of the sperm flagella (MMAF) is one type of severe teratozoospermia and results from a variety of flagellar defects. In this study, we conducted whole-exome sequencing to identify and evaluate the genetic lesions in two patients with potential PCD and MMAF. Biallelic mutations in exon 10, c.983G>A; p.(Gly328Asp), and exon 29, c.3532G>A; p.(Asp1178Asn), of the CFAP74 (NM_001304360) gene were identified in patient 1 (P1), and biallelic mutations in exon 7, c.652C>T; p.(Arg218Trp), and exon 35, c. 4331G>C; p.(Ser1444Thr), of the same gene were identified in patient 2 (P2). Bioinformatic analysis suggested that these variants may be disease causing. Immunofluorescence confirmed that CFAP74 was absent in these patients' sperm samples. Intracytoplasmic sperm injection (ICSI) was carried out for P1, and his wife became pregnant after embryo transfer and gave birth to a healthy baby. To the best of our knowledge, this study is the first to identify the importance of CFAP74 in potential PCD and MMAF, contributing to the genetic diagnosis of these disorders and helping to predict pregnancy outcomes relevant in in vitro fertilization.
Collapse
|
13
|
Precone V, Cannarella R, Paolacci S, Busetto GM, Beccari T, Stuppia L, Tonini G, Zulian A, Marceddu G, Calogero AE, Bertelli M. Male Infertility Diagnosis: Improvement of Genetic Analysis Performance by the Introduction of Pre-Diagnostic Genes in a Next-Generation Sequencing Custom-Made Panel. Front Endocrinol (Lausanne) 2020; 11:605237. [PMID: 33574797 PMCID: PMC7872015 DOI: 10.3389/fendo.2020.605237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Infertility affects about 7% of the general male population. The underlying cause of male infertility is undefined in about 50% of cases (idiopathic infertility). The number of genes involved in human spermatogenesis is over two thousand. Therefore, it is essential to analyze a large number of genes that may be involved in male infertility. This study aimed to test idiopathic male infertile patients negative for a validated panel of "diagnostic" genes, for a wide panel of genes that we have defined as "pre-diagnostic." METHODS We developed a next-generation sequencing (NGS) gene panel including 65 pre-diagnostic genes that were used in 12 patients who were negative to a diagnostic genetic test for male infertility disorders, including primary spermatogenic failure and central hypogonadism, consisting of 110 genes. RESULTS After NGS sequencing, variants in pre-diagnostic genes were identified in 10/12 patients who were negative to a diagnostic test for primary spermatogenic failure (n = 9) or central hypogonadism (n = 1) due to mutations of single genes. Two pathogenic variants of DNAH5 and CFTR genes and three uncertain significance variants of DNAI1, DNAH11, and CCDC40 genes were found. Moreover, three variants with high impact were found in AMELY, CATSPER 2, and ADCY10 genes. CONCLUSION This study suggests that searching for pre-diagnostic genes may be of relevance to find the cause of infertility in patients with apparently idiopathic primary spermatogenic failure due to mutations of single genes and central hypogonadism.
Collapse
Affiliation(s)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Gian Maria Busetto
- Department of Urology, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Gerolamo Tonini
- Department of Surgery, Fondazione Poliambulanza, Brescia, Italy
| | | | | | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto, Italy
- EBTNA-LAB, Rovereto, Italy
| |
Collapse
|
14
|
Wang W, Tu C, Nie H, Meng L, Li Y, Yuan S, Zhang Q, Du J, Wang J, Gong F, Fan L, Lu GX, Lin G, Tan YQ. Biallelic mutations in CFAP65 lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations. J Med Genet 2019; 56:750-757. [PMID: 31413122 PMCID: PMC6860412 DOI: 10.1136/jmedgenet-2019-106031] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 12/31/2022]
Abstract
Background The genetic causes for most male infertility due to severe asthenozoospermia remain unclear. Objective Our objective was to identify unknown genetic factors in 47 patients with severe asthenozoospermia from 45 unrelated Chinese families. Methods We performed whole exome sequencing of 47 individuals with severe asthenozoospermia from 45 unrelated families. Mutation screening was performed in a control cohort of 637 individuals, including 219 with oligoasthenospermia, 195 with non-obstructive azoospermia and 223 fertile controls. Ultrastructural and immunostaining analyses of patients’ spermatozoa were performed to characterise the effect of variants. Results One homozygous non-sense mutation (NM_194302, c.G5341T:p.E1781X), two compound heterozygous mutations (c.C2284T:p.R762X and c.1751delC:p.P584fs) and two compound heterozygous mutations (c.5714_5721del:p.L1905fs and c.C3021A:p.N1007K) were identified in CFAP65 of three individuals with completely immotile spermatozoa, respectively. No biallelic deleterious variants of CFAP65 were detected in the control cohort of 637 individuals. Ultrastructural and immunostaining analyses of spermatozoa from two patients showed highly aberrant sperm morphology with severe defects such as acrosome hypoplasia, disruption of the mitochondrial sheath and absence of the central pair complex. Conclusion To the best of our knowledge, we are the first to report that CFAP65 mutations may cause spermatozoa to be completely immotile.
Collapse
Affiliation(s)
- Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lanlan Meng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Shimin Yuan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Junpu Wang
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guang-Xiu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
15
|
Thirumavalavan N, Gabrielsen JS, Lamb DJ. Where are we going with gene screening for male infertility? Fertil Steril 2019; 111:842-850. [PMID: 31029238 DOI: 10.1016/j.fertnstert.2019.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/11/2023]
Abstract
Male infertility is a heterogenous disease process requiring the proper functioning and interaction of thousands of genes. Given the number of genes involved, it is thought that genetic causes contribute to most cases of infertility. Identifying these causes, however, is challenging. Infertility is associated with negative health outcomes, such as cancer, highlighting the need to further understand the genetic underpinnings of this condition. This paper describes the genetic and genomic tests currently available to identify the etiology of male infertility and then will discuss emerging technologies that may facilitate diagnosis and treatment of in the future.
Collapse
Affiliation(s)
| | | | - Dolores J Lamb
- Department of Urology, Center for Reproductive Genomics and Caryle and Israel Englander, Institute for Precision Medicine, Weill Cornell School of Medicine, New York, New York.
| |
Collapse
|
16
|
New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet 2019; 138:125-140. [PMID: 30656449 DOI: 10.1007/s00439-019-01974-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Genetic anomalies are known to affect about 15% of infertile patients with azoospermia or severe oligozoospermia. Despite a throughout diagnostic work-up, in up to the 72% of the male partners of infertile couples, no etiological factor can be found; hence, the cause of infertility remains unclear. Recently, several novel genetic causes of spermatogenic failure (SPGF) have been described. The aim of this review was to collect all the available evidence of SPGF genetics, matching data from in-vitro and animal models with those in human beings to provide a comprehensive and updated overview of the genes capable of affecting spermatogenesis. By reviewing the literature, we provided a list of 60 candidate genes for SPGF. Their investigation by Next Generation Sequencing in large cohorts of patients with apparently idiopathic infertility would provide new interesting data about their racial- and ethnic-related prevalence in infertile patients, likely raising the diagnostic yields. We propose a phenotype-based approach to identify the genes to look for.
Collapse
|
17
|
Pacey A. Studying the nuts and bolts of spermatozoa. ACTA ACUST UNITED AC 2018; 24:565-566. [DOI: 10.1093/molehr/gay047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Allan Pacey
- Department of Oncology and Metabolism, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield, UK
| |
Collapse
|
18
|
Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, Joumah A, Agarwal A. Microtubular Dysfunction and Male Infertility. World J Mens Health 2018; 38:9-23. [PMID: 30350487 PMCID: PMC6920067 DOI: 10.5534/wjmh.180066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
Microtubules are the prime component of the cytoskeleton along with microfilaments. Being vital for organelle transport and cellular divisions during spermatogenesis and sperm motility process, microtubules ascertain functional capacity of sperm. Also, microtubule based structures such as axoneme and manchette are crucial for sperm head and tail formation. This review (a) presents a concise, yet detailed structural overview of the microtubules, (b) analyses the role of microtubule structures in various male reproductive functions, and (c) presents the association of microtubular dysfunctions with male infertility. Considering the immense importance of microtubule structures in the formation and maintenance of physiological functions of sperm cells, this review serves as a scientific trigger in stimulating further male infertility research in this direction.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Aabed Alguraigari
- Batterjee Medical College, Jeddah, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Mariana Marques Sinigaglia
- University of Sao Paulo, Sao Paulo, Brazil.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Malik Kayal
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Joumah
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Tang WH, Zhuang XJ, Song SD, Wu H, Zhang Z, Yang YZ, Zhang HL, Mao JM, Liu DF, Zhao LM, Lin HC, Hong K, Ma LL, Qiao J, Qin W, Tang Y, Jiang H. Ran-binding protein M is associated with human spermatogenesis and oogenesis. Mol Med Rep 2017; 17:2257-2262. [PMID: 29207172 PMCID: PMC5783472 DOI: 10.3892/mmr.2017.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/06/2017] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to explore the underlying mechanism and diagnostic potential of Ran-binding protein M (RanBPM) in human spermatogenesis and oogenesis. RanBPM expression in human testis and ovaries was analysed using polymerase chain reaction (PCR) and western blotting, and immunofluorescence was performed on testis and ovary tissue sections during different developmental stages of spermatogenesis and oogenesis using RanBPM antibodies. Interactions with a variety of functional proteins were also investigated. RanBPM mRNA and protein expression levels were determined by PCR and western blotting in the tissue sections. Results revealed that the mRNA expression levels were highest in the testis followed by the ovary. The RanBPM protein was predominantly localized in the nucleus of germ cells, and the expression levels were highest in pachytene spermatocytes and cells surrounding spermatids in testis tissue. In ovary cells, RanBPM was localized in the nucleus and cytoplasm. In conclusion, the results suggested that RanBPM may have multiple roles in the regulation of germ cell proliferation during human spermatogenesis and oogenesis. This research may provide a novel insight into the underlying molecular mechanism of RanBPM and may have implications for the clinical diagnosis and treatment of human infertility.
Collapse
Affiliation(s)
- Wen-Hao Tang
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Xin-Jie Zhuang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Shi-De Song
- Department of Urology, Rizhao People's Hospital, Rizhao, Shandong 276500, P.R. China
| | - Han Wu
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Zhe Zhang
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Yu-Zhuo Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Hong-Liang Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jia-Ming Mao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - De-Feng Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lian-Ming Zhao
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Hao-Cheng Lin
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Kai Hong
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Lu-Lin Ma
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Weibing Qin
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Family Planning Research Institute of Guangdong Province, Guangzhou, Guangdong 510600, P.R. China
| | - Yunge Tang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Family Planning Research Institute of Guangdong Province, Guangzhou, Guangdong 510600, P.R. China
| | - Hui Jiang
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| |
Collapse
|
20
|
Ma X, Kuete M, Gu X, Zhou H, Xiong C, Li H. Recurrent deletions of the X chromosome linked CNV64, CNV67, and CNV69 shows geographic differences across China and no association with idiopathic infertility in men. PLoS One 2017; 12:e0185084. [PMID: 28934280 PMCID: PMC5608304 DOI: 10.1371/journal.pone.0185084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022] Open
Abstract
A recent study found that three recurrent deletions of X chromosome linked copy number variations (CNVs), CNV64, CNV67 and CNV69 were associated with idiopathic male infertility in Spanish and Italian populations, especially CNV67 resembling the azoospermia factor deletions. That merits further investigations among different populations. This study was conducted to examine the prevalence of the three CNVs deletions and their associations with idiopathic male infertility in Chinese Han population. The present study included a large population of 1550 Chinese Han subjects recruited between 2014 and 2016. In total, 714 infertile participants were diagnosed as idiopathic infertility with different conditions (288 with non-obstructive azoospermia, 210 oligozoospermia and 216 asthenospermia) and 836 fertile participants (vasectomized men). The fertile participants were recruited from the representative areas: the north (Hebei and Shanxi), center (Hubei and Jiangsu), and south (Guangdong) of China. All patients were recruited from Hubei province. A multiplex PCR system was established to screen the deletion of the three CNVs, and deletion was confirmed by general PCR. Similar rates of these deletions were observed in infertile men and fertile participants (Hubei), and among the different conditions of infertility. Moreover, CNV64 and CNV67 map distribution geographically differed across China. The three CNVs in fertile groups of other regions were similar, except for Guangdong. No association between the three CNVs deletions and idiopathic male infertility was observed. CNV67 is rare in central China, albeit large sample size study for confirmation is warranted. It seems that the association between these CNVs deletions and idiopathic male infertility is ethnic dependent. There is still need to screen the CNVs deletions in other ethnicities. We suggested to consider the stratification patterns and geographic differences when prescribing CNVs deletions screening as a test in male infertility.
Collapse
Affiliation(s)
- Xiulan Ma
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Martin Kuete
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- University of Montagnes, Faculty of Health Sciences, Bangante, Cameroon
| | - Xiuli Gu
- Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Hui Zhou
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Chengliang Xiong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Honggang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Tongji Reproductive Medicine Hospital, Wuhan, China
- * E-mail:
| |
Collapse
|