1
|
Ding L, Hu DX, Yang L, Zhang WJ. Application of olfactory ensheathing cells in peripheral nerve injury and its complication with pathological pain. Neuroscience 2024; 560:120-129. [PMID: 39307415 DOI: 10.1016/j.neuroscience.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Direct or indirect injury of peripheral nerve can lead to sensory and motor dysfunction, which can lead to pathological pain and seriously affect the quality of life and psychosomatic health of patients. While the internal repair function of the body after peripheral nerve injury is limited. Nerve regeneration is the key factor hindering the recovery of nerve function. At present, there is no effective treatment. Therefore, more and more attention have been paid to the development of foreground treatment to achieve functional recovery after peripheral nerve injury, including relief of pathological pain. Cell transplantation strategy is a therapeutic method with development potential in recent years, which can exert endogenous alternative repair by transplanting exogenous functional bioactive cells to the site of nerve injury. Olfactory ensheathing cells (OECs) are a special kind of glial cells, which have the characteristics of continuous renewal and survival. The mechanisms of promoting nerve regeneration and functional repair and relieving pathological pain by transplantation of OECs to peripheral nerve injury include secretion of a variety of neurotrophic factors, axonal regeneration and myelination, immune regulation, anti-inflammation, neuroprotection, promotion of vascular growth and improvement of inflammatory microenvironment around nerve injury. Different studies have shown that OECs combined with biomaterials have made some progress in the treatment of peripheral nerve injury and pathological pain. These biomaterials enhance the therapeutic effect of OECs. Therefore, the functional role of OECs in peripheral nerve injury and pathological pain was discussed in this paper.Although OECs are in the primary stage of exploration in the repair of peripheral nerve injury and the application of pain, but OECs transplantation may become a prospective therapeutic strategy for the treatment of peripheral nerve injury and pathological pain.
Collapse
Affiliation(s)
- Lin Ding
- The Second Affiliated Hospital, Nanchang University, Jiangxi Medical College, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Liu Yang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
2
|
Deng K, Hu DX, Zhang WJ. Application of cell transplantation in the treatment of neuropathic pain. Neuroscience 2024; 554:43-51. [PMID: 38986736 DOI: 10.1016/j.neuroscience.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Nerve injury can not only lead to sensory and motor dysfunction, but also be complicated with neuropathic pain (NPP), which brings great psychosomatic injury to patients. At present, there is no effective treatment for NPP. Based on the functional characteristics of cell transplantation in nerve regeneration and injury repair, cell therapy has been used in the exploratory treatment of NPP and has become a promising treatment of NPP. In this article, we discuss the current mainstream cell types for the treatment of NPP, including Schwann cells, olfactory ensheathing cells, neural stem cells and mesenchymal stem cells in the treatment of NPP. These bioactive cells transplanted into the host have pharmacological properties of decreasing pain threshold and relieving NPP by exerting nutritional support, neuroprotection, immune regulation, promoting axonal regeneration, and remyelination. Cell transplantation can also change the microenvironment around the nerve injury, which is conducive to the survival of neurons. It can effectively relieve pain by repairing the injured nerve and rebuilding the nerve function. At present, some preclinical and clinical studies have shown that some encouraging results have been achieved in NPP treatment based on cell transplantation. Therefore, we discussed the feasible strategy of cell transplantation as a treatment of NPP and the problems and challenges that need to be solved in the current application of cell transplantation in NPP therapy.
Collapse
Affiliation(s)
- Kan Deng
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Ji an College, Ji an City, Jiangxi Province, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
3
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Huang HY, Xiong MJ, Pu FQ, Liao JX, Zhu FQ, Zhang WJ. Application and challenges of olfactory ensheathing cells in clinical trials of spinal cord injury. Eur J Pharmacol 2024; 963:176238. [PMID: 38072039 DOI: 10.1016/j.ejphar.2023.176238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Spinal cord injury (SCI) can lead to severe motor, sensory and autonomic nervous dysfunction, cause serious psychosomatic injury to patients. There is no effective treatment for SCI at present. In recent years, exciting evidence has been obtained in the application of cell-based therapy in basic research. These studies have revealed the fact that cells transplanted into the host can exert the pharmacological properties of treating and repairing SCI. Olfactory ensheathing cells (OECs) are a kind of special glial cells. The application value of OECs in the study of SCI lies in their unique biological characteristics, that is, they can survive and renew for life, give full play to neuroprotection, immune regulation, promoting axonal regeneration and myelination formation. The function of producing secretory group and improving microenvironment. This provides an irreplaceable treatment strategy for the repair of SCI. At present, some researchers have explored the possibility of treatment of OECs in clinical trials of SCI. Although OECs transplantation shows excellent safety and effectiveness in animal models, there is still lack of sufficient evidence to prove the effectiveness of their clinical application in clinical trials. There has been an obvious stagnation in the transformation of OECs transplantation into routine clinical practice, and clinical trials of cell therapy in this field are still facing major challenges and many problems that need to be solved. Therefore, this paper summarized and analyzed the clinical trials of OECs transplantation in the treatment of SCI, and discussed the problems and challenges of OECs transplantation in clinical trials.
Collapse
Affiliation(s)
- Hao-Yu Huang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Mei-Juan Xiong
- Department of Pharmacy, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fan-Qing Pu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
5
|
Hu JL, Luo HL, Liu JP, Zuo C, Xu YS, Feng X, Zhang WJ. Chitosan biomaterial enhances the effect of OECs on the inhibition of sciatic nerve injury-induced neuropathic pain. J Chem Neuroanat 2023; 133:102327. [PMID: 37634701 DOI: 10.1016/j.jchemneu.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Neuropathic pain is a common symptom experienced by most clinical diseases at different levels, and its treatment has always been a clinical difficulty. Therefore, it is particularly important to explore new and effective treatment methods. The role of olfactory ensheathing cells (OECs) in nerve injury and pain is recognized by different studies. Our previous study found that transplantation of OECs alleviated hyperalgesia in rats. However, single-cell transplantation lacks medium adhesion and support, and exerts limited analgesic effect. Therefore, on the basis of the previous study, this study investigated the effect of pain relief by co-transplanting OECs with chitosan (CS) (a biological tissue engineering material, as OECs were transplanted into the host medium) to the injured sciatic nerve. The results showed that the pain threshold of sciatic nerve injury of rats was significantly reduced, and the expression level of P2×4 receptor in the spinal cord was significantly increased. While olfactory ensheathing cells combined with chitosan (OECs+CS) transplantation could significantly relieve pain, and the analgesic effect was stronger than that of OECs transplantation alone. OECs+CS transplantation promoted the formation of sciatic nerve remyelination, improved the changes of demyelination, and promoted the repair of sciatic nerve injury more significantly. In addition, the effect of OECs+CS to down-regulate the expression of P2×4 receptor was significantly stronger than that of OECs transplantation, and exerted a better analgesic effect. These data reveal that OECs+CS have a better analgesic effect in relieving neuropathic pain induced by sciatic nerve injury, and provide a new therapeutic strategy for pain treatment.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Emergency Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Hong-Liang Luo
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Ji-Peng Liu
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Cheng Zuo
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Yong-Sheng Xu
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China.
| |
Collapse
|
6
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
7
|
Liu JP, Wang JL, Hu BE, Zou FL, Wu CL, Shen J, Zhang WJ. Olfactory ensheathing cells and neuropathic pain. Front Cell Dev Biol 2023; 11:1147242. [PMID: 37223000 PMCID: PMC10201020 DOI: 10.3389/fcell.2023.1147242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023] Open
Abstract
Damage to the nervous system can lead to functional impairment, including sensory and motor functions. Importantly, neuropathic pain (NPP) can be induced after nerve injury, which seriously affects the quality of life of patients. Therefore, the repair of nerve damage and the treatment of pain are particularly important. However, the current treatment of NPP is very weak, which promotes researchers to find new methods and directions for treatment. Recently, cell transplantation technology has received great attention and has become a hot spot for the treatment of nerve injury and pain. Olfactory ensheathing cells (OECs) are a kind of glial cells with the characteristics of lifelong survival in the nervous system and continuous division and renewal. They also secrete a variety of neurotrophic factors, bridge the fibers at both ends of the injured nerve, change the local injury microenvironment, and promote axon regeneration and other biological functions. Different studies have revealed that the transplantation of OECs can repair damaged nerves and exert analgesic effect. Some progress has been made in the effect of OECs transplantation in inhibiting NPP. Therefore, in this paper, we provided a comprehensive overview of the biology of OECs, described the possible pathogenesis of NPP. Moreover, we discussed on the therapeutic effect of OECs transplantation on central nervous system injury and NPP, and prospected some possible problems of OECs transplantation as pain treatment. To provide some valuable information for the treatment of pain by OECs transplantation in the future.
Collapse
Affiliation(s)
- Ji-peng Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jia-ling Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Bai-er Hu
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fei-long Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chang-lei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Yin Q, Zou T, Sun S, Yang D. Cell therapy for neuropathic pain. Front Mol Neurosci 2023; 16:1119223. [PMID: 36923653 PMCID: PMC10008860 DOI: 10.3389/fnmol.2023.1119223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or a condition that affects the somatosensory system. Pathophysiologically, NP can be ascribed to peripheral and central sensitization, implicating a wide range of molecular pathways. Current pharmacological and non-pharmacological approaches are not very efficacious, with over half of NP patients failing to attain adequate pain relief. So far, pharmacological and surgical treatments have focused primarily on symptomatic relief by modulating pain transduction and transmission, without treating the underlying pathophysiology. Currently, researchers are trying to use cell therapy as a therapeutic alternative for the treatment of NP. In fact, mounting pre-clinical and clinical studies showed that the cell transplantation-based therapy for NP yielded some encouraging results. In this review, we summarized the use of cell grafts for the treatment of NP caused by nerve injury, synthesized the latest advances and adverse effects, discussed the possible mechanisms to inform pain physicians and neurologists who are endeavoring to develop cell transplant-based therapies for NP and put them into clinical practice.
Collapse
Affiliation(s)
- QingHua Yin
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - TianHao Zou
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShuJun Sun
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Dong CR, Zhang WJ, Luo HL. Association between P2X3 receptors and neuropathic pain: As a potential therapeutic target for therapy. Biomed Pharmacother 2022; 150:113029. [PMID: 35489283 DOI: 10.1016/j.biopha.2022.113029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Neuropathic pain is a common clinical symptom of various diseases, and it seriously affects the physical and mental health of patients. Owing to the complex pathological mechanism of neuropathic pain, clinical treatment of pain is challenging. Therefore, there is growing interest among researchers to explore potential therapeutic strategies for neuropathic pain. A large number of studies have shown that development of neuropathic pain is related to nerve conduction and related signaling molecules. P2X3 receptors (P2X3R) are ATP-dependent ion channels that participate in the transmission of neural information and related signaling pathways, sensitize the central nervous system, and play a key role in the development of neuropathic pain. In this paper, we summarized the structure and biological characteristics of the P2X3R gene and discussed the role of P2X3R in the nervous system. Moreover, we outlined the related pathological mechanisms of pain and described the relationship between P2X3R and chronic pain to provide valuable information for development of novel treatment strategies for pain.
Collapse
Affiliation(s)
- Cai-Rong Dong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| | - Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China.
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| |
Collapse
|
10
|
Murtaza M, Mohanty L, Ekberg JAK, St John JA. Designing Olfactory Ensheathing Cell Transplantation Therapies: Influence of Cell Microenvironment. Cell Transplant 2022; 31:9636897221125685. [PMID: 36124646 PMCID: PMC9490465 DOI: 10.1177/09636897221125685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Olfactory ensheathing cell (OEC) transplantation is emerging as a promising treatment option for injuries of the nervous system. OECs can be obtained relatively easily from nasal biopsies, and exhibit several properties such as secretion of trophic factors, and phagocytosis of debris that facilitate neural regeneration and repair. But a major limitation of OEC-based cell therapies is the poor survival of transplanted cells which subsequently limit their therapeutic efficacy. There is an unmet need for approaches that enable the in vitro production of OECs in a state that will optimize their survival and integration after transplantation into the hostile injury site. Here, we present an overview of the strategies to modulate OECs focusing on oxygen levels, stimulating migratory, phagocytic, and secretory properties, and on bioengineering a suitable environment in vitro.
Collapse
Affiliation(s)
- Mariyam Murtaza
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lipsa Mohanty
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Transplantation of microencapsulated neural stem cells inhibits neuropathic pain mediated by P2X7 receptor overexpression. Biochem Biophys Res Commun 2020; 533:1219-1225. [PMID: 33070968 DOI: 10.1016/j.bbrc.2020.09.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuropathic pain (NPP) is a common clinical symptom, its pathological mechanism is complex, and there is currently no good treatment method. Therefore, exploring the treatment method of NPP is a critical issue that needs to be urgently solved. METHODS Neural stem cells (NSC) and microencapsulated neural stem cells (MC-NSC) were transplanted into the site of sciatic nerve injury, and behavioral methods were used to detect changes in pain. Expression levels of P2X7R were detected in the dorsal root ganglion (DRG) by molecular biological methods. RESULTS After sciatic nerve injury, mechanical withdrawal thresholds (MWT) and thermal withdrawal latency (TWL) of rats were significantly reduced, the expression levels of P2X7R in the DRG were significantly increased. After transplantation of NSC and MC-NSC, it was found that expression levels of P2X7R were significantly reduced and pain was significantly suppressed. Importantly, compared with NSC transplantation, MC-NSC could better reduce the expression levels of P2X7R and inhibit pain. CONCLUSION MC-NSC can better decrease the expression levels of P2X7R and relieve NPP. Our results provide a novel method and data support for the treatment of NPP.
Collapse
|
12
|
Zhang WJ, Xu J, Xiong MJ, Liu ZX, Zhu ZM. Transplantation of microencapsulated olfactory ensheathing cells inhibits the P2X2 receptor over-expressionmediated neuropathic pain in the L4-5 spinal cord segment. Int J Neurosci 2020; 130:976-982. [PMID: 31914345 DOI: 10.1080/00207454.2020.1713775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the effect of microencapsulated olfactory ensheathing cells (MC-OECs) transplantation on neuropathic pain (NPP) caused by sciatic nerve injury in rats, and its relationship with the expression levels of P2X2 receptor (P2X2R) in the L4-5 spinal cord segment. METHODS Olfactory bulb tissue was removed from a healthy Sprague-Dawley (SD) rat for culturing olfactory ensheathing cells (OECs). Forty-eight SD rats were randomly divided into four groups (12 per group): the sham, chronic constriction injury (CCI), olfactory ensheathing cells (OECs), and MC-OECs groups. On days 7 and 14 after surgery, the mechanical withdrawal thresholds (MWT) were measured by using behavioral method. The expression levels of P2X2R in the L4-5 spinal cord segment were detected by in situ hybridization and Western blotting. RESULTS On days 7 and 14 post-surgical, the MWT of rats from high to low were the sham, MC-OECs, OECs, and CCI groups, the MWT of rats in the MC-OECs groups were higher than that in OECs groups. The expression levels of P2X2R in the L4-5 spinal cord segment from high to low were the CCI, OECs, MC-OECs, and sham groups, the expression levels of P2X2R were lower than that in OECs groups. All differences between groups were statistically significant (p value <.05). CONCLUSIONS OECs and MC-OECs transplantation can reduce the expression levels of P2X2R genes in the L4-5 spinal cord segment, and relieve NPP. The therapeutic efficacy of MC-OECs transplantation was better than the transplantation of OECs.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jian Xu
- Ultrasound Department of Affiliated Hospital of Maternal, Child Health Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Mei-Juan Xiong
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zeng-Xu Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
13
|
Microencapsulated olfactory ensheathing cell transplantation reduces P2X4 receptor overexpression and inhibits neuropathic pain in rats. Brain Res 2019; 1724:146465. [DOI: 10.1016/j.brainres.2019.146465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/10/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
|
14
|
Zhang W, Liu Y, Sun Y, Liu Z. Effects of microencapsulated olfactory ensheathing cell transplantation on neuropathic pain and P2X7 receptor expression in the L4-5 spinal cord segment. Neurosci Lett 2019; 701:48-53. [DOI: 10.1016/j.neulet.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 11/26/2022]
|
15
|
Microencapsulated olfactory ensheathing-cell transplantation reduces pain in rats by inhibiting P2X4 receptor overexpression in the dorsal root ganglion. Neuroreport 2019; 30:120-126. [PMID: 30507759 DOI: 10.1097/wnr.0000000000001170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to determine the role of microencapsulated olfactory ensheathing-cell transplantation (MC-OEC) in rats in which pain was induced by sciatic nerve injury, and its relationship with the expression level of the P2X4 receptor in the dorsal root ganglion. Olfactory bulb tissues of healthy Sprague-Dawley rats were collected to culture olfactory ensheathing cells using differential attachment methods. Ninety-six healthy Sprague-Dawley rats were randomly assigned to the sham, chronic constriction injury (CCI), olfactory ensheathing cell (OEC), and MC-OEC groups. Mechanical paw withdrawal thresholds were measured 7 and 14 days after surgery. The expression of P2X4 receptor genes in the L4-5 dorsal root ganglion was detected by reverse transcriptase polymerase chain reaction, fluorescence in-situ hybridization, and western blotting. Seven and 14 days after the surgery, the mechanical paw withdrawal thresholds of rats in the MC-OEC, OEC, and CCI groups were decreased compared with the sham group. The expression level of the P2X4 receptor in the L4-5 dorsal root ganglion in CCI, OEC, and MC-OEC groups was increased compared with the sham group. All differences between groups were statistically significant. Transplantation of OEC and MC-OEC can reduce neuropathic pain and inhibit the overexpression of the P2X4 receptor in the L4-5 dorsal root ganglion. The transplantation of MC-OEC was more effective in the MC-OEC group than in the OEC group.
Collapse
|
16
|
1,8-cineole decreases neuropathic pain probably via a mechanism mediating P2X3 receptor in the dorsal root ganglion. Neurochem Int 2018; 121:69-74. [PMID: 30248433 DOI: 10.1016/j.neuint.2018.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
1,8-cineole is a natural monoterpene cyclic ether present in eucalyptus and has been reported to exhibit anti-inflammatory and antioxidant effects. The therapeutic effects of 1,8-cineole on neuropathic pain and the molecular mechanisms of its pharmacological actions remain largely unknown. In the present study, we investigated the analgesic mechanisms of orally administered 1,8-cineole in a rat model of chronic constriction injury (CCI) and examined the drug-induced modulation of P2X3 receptor expression in dorsal root ganglia. The mechanical withdrawal threshold and thermal withdrawal latency were measured in rats to assess behavioural changes 7 and 14 days after CCI surgery. Changes in P2X3 receptor mRNA expression of L4-5 dorsal root ganglia were analysed using quantitative real-time polymerase chain reaction at the 7th and 14th postoperative day. Additionally, we examined the expression of P2X3 receptor protein in L4-5 dorsal root ganglia 7 and 14 days after surgery using immunohistochemistry and western blots. We found that 1,8-cineole can alleviate pathological pain caused by P2X3 receptor stimulation and explored new methods for the prevention and treatment of neuropathic pain.
Collapse
|
17
|
Zhang YL, Liu YG, Chen DJ, Yang BL, Liu TT, Li JJ, Wang XQ, Li HTR, Liu ZX. Microencapsulated Schwann cell transplantation inhibits P2X2/3 receptors overexpression in a sciatic nerve injury rat model with neuropathic pain. Neurosci Lett 2018; 676:51-57. [PMID: 29608947 DOI: 10.1016/j.neulet.2018.03.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022]
Abstract
Transplantation of Schwann cells (SCs) can promote axonal regeneration and formation of the myelin sheath, reduce inflammation, and promote repair to the damaged nerve. Our previous studies have shown that transplantation of free or micro-encapsulated olfactory ensheathing cells can relieve neuropathic pain. There are no related reports regarding whether the transplantation of micro-encapsulated SCs can alleviate neuropathic pain mediated by P2X2/3 receptors. In the present study, we micro-encapsulated SCs in alginic acid and transplanted them into the region surrounding the injured sciatic nerve in the rat model of chronic constriction injury (CCI). The mechanical withdrawal threshold and thermal withdrawal latency were measured to assess changes in behavior 14 days after the surgery in CCI model rats. Ultrastructural changes in the injured sciatic nerve were assessed using transmission electron microscopy. Co-expression of P2X2/3 receptors with other markers in neurons in the L4-5 dorsal root ganglia (DRG) were assessed using double-label immunofluorescence 14 days after surgery. We determined P2X2/3 mRNA expression and protein level changes in the DRG using quantitative real-time polymerase change reaction technology and Western blotting analysis. We have investigated that the transplantation of micro-encapsulated SCs can alleviate pathological pain caused by P2X2/3 receptor stimulation and explored new methods for the prevention and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ya-Ling Zhang
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Yi-Guo Liu
- Grade 2013, Medical School of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - De-Jian Chen
- The First Affiliated Hospital of Nanchang University, No.17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, People's Republic of China
| | - Bao-Lin Yang
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Tao-Tao Liu
- The Fourth Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jia-Juan Li
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xiu-Qi Wang
- Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Hao-Tian Rose Li
- Alexander Mackenzie High School, Richmond Hill, Ontario L4C 3S3, Canada
| | - Zeng-Xu Liu
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.
| |
Collapse
|
18
|
Zhang YL, Chen DJ, Yang BL, Liu TT, Li JJ, Wang XQ, Xue GY, Liu ZX. Microencapsulated Schwann cell transplantation inhibits P2X3 receptor expression in dorsal root ganglia and neuropathic pain. Neural Regen Res 2018; 13:1961-1967. [PMID: 30233070 PMCID: PMC6183027 DOI: 10.4103/1673-5374.238715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Schwann cell transplantation is a promising method to promote neural repair, and can be used for peripheral nerve protection and myelination. Microcapsule technology largely mitigates immune rejection of transplanted cells. We previously showed that microencapsulated olfactory ensheathing cells can reduce neuropathic pain and we hypothesized that microencapsulated Schwann cells can also inhibit neuropathic pain. Rat Schwann cells were cultured by subculture and then microencapsulated and were tested using a rat chronic constriction injury (CCI) neuropathic pain model. CCI rats were treated with Schwann cells or microencapsulated Schwann cells and were compared with sham and CCI groups. Mechanical withdrawal threshold and thermal withdrawal latency were assessed preoperatively and at 1, 3, 5, 7, 9, 11 and 14 days postoperatively. The expression of P2X3 receptors in L4-5 dorsal root ganglia of the different groups was detected by double-label immunofluorescence on day 14 after surgery. Compared with the chronic constriction injury group, mechanical withdrawal threshold and thermal withdrawal latency were higher, but the expression of P2X3 receptors was remarkably decreased in rats treated with Schwann cells and microencapsulated Schwann cells, especially in the rats transplanted with microencapsulated Schwann cells. The above data show that microencapsulated Schwann cell transplantation inhibits P2X3 receptor expression in L4-5 dorsal root ganglia and neuropathic pain.
Collapse
Affiliation(s)
- Ya-Ling Zhang
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, Jiangxi Province, China
| | - De-Jian Chen
- First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Bao-Lin Yang
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, Jiangxi Province, China
| | - Tao-Tao Liu
- Fourth Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jia-Juan Li
- Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiu-Qi Wang
- Queen Mary College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Guo-Yong Xue
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zeng-Xu Liu
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
19
|
Olfactory ensheathing glia cell therapy and tubular conduit enhance nerve regeneration after mouse sciatic nerve transection. Brain Res 2016; 1650:243-251. [PMID: 27641994 DOI: 10.1016/j.brainres.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
The regenerative potential of the peripheral nervous system (PNS) is widely known, but functional recovery, particularly in humans, is seldom complete. Therefore, it is necessary to resort to strategies that induce or potentiate the PNS regeneration. Our main objective was to test the effectiveness of Olfactory Ensheathing Cells (OEC) transplantation into a biodegradable conduit as a therapeutic strategy to improve the repair outcome after nerve injury. Sciatic nerve transection was performed in C57BL/6 mice; proximal and distal stumps of the nerve were sutured into the collagen conduit. Two groups were analyzed: DMEM (acellular grafts) and OEC (1×105/2μL). Locomotor function was assessed weekly by Sciatic Function Index (SFI) and Global Mobility Test (GMT). After eight weeks the sciatic nerve was dissected for morphological analysis. Our results showed that the OEC group exhibited many clusters of regenerated nerve fibers, a higher number of myelinated fibers and myelin area compared to DMEM group. The G-ratio analysis of the OEC group showed significantly more fibers on the most suitable sciatic nerve G-ratio index. Motor recovery was accelerated in the OEC group. These data provide evidence that the OEC therapy can improve sciatic nerve functional and morphological recovery and can be potentially translated to the clinical setting.
Collapse
|