1
|
Li Y, Cheng JX, Yang HH, Chen LP, Liu FJ, Wu Y, Fan M, Wu HT. Transferrin receptor 1 plays an important role in muscle development and denervation-induced muscular atrophy. Neural Regen Res 2021; 16:1308-1316. [PMID: 33318410 PMCID: PMC8284266 DOI: 10.4103/1673-5374.301024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies demonstrate an accumulation of transferrin and transferrin receptor 1 (TfR1) in regenerating peripheral nerves. However, the expression and function of transferrin and TfR1 in the denervated skeletal muscle remain poorly understood. In this study, a mouse model of denervation was produced by complete tear of the left brachial plexus nerve. RNA-sequencing revealed that transferrin expression in the denervated skeletal muscle was upregulated, while TfR1 expression was downregulated. We also investigated the function of TfR1 during development and in adult skeletal muscles in mice with inducible deletion or loss of TfR1. The ablation of TfR1 in skeletal muscle in early development caused severe muscular atrophy and early death. In comparison, deletion of TfR1 in adult skeletal muscles did not affect survival or glucose metabolism, but caused skeletal muscle atrophy and motor functional impairment, similar to the muscular atrophy phenotype observed after denervation. These findings suggest that TfR1 plays an important role in muscle development and denervation-induced muscular atrophy. This study was approved by the Institutional Animal Care and Use Committee of Beijing Institute of Basic Medical Sciences, China (approval No. SYXK 2017-C023) on June 1, 2018.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Juan-Xian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hai-Hong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing; Department of Anesthesiology, the General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Li-Ping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Feng-Jiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences; Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Hai-Tao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences; Chinese Institute for Brain Research (CIBR), Beijing; Key Laboratory of Neuroregeneration, Coinnovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Gong L, Gu Y, Dong Q, Zhang X, Wang H, Zhao Y, Liu X. A Direct Correlation between Red Blood Cell Indices and Cognitive Impairment After Aneurysmal Subarachnoid Hemorrhage (aSAH). Curr Neurovasc Res 2020; 16:142-147. [PMID: 30977449 DOI: 10.2174/1567202616666190412142718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cognitive impairment can occur after aneurysmal subarachnoid hemorrhage (aSAH) though it commonly tends to be neglected. Red blood cell (RBC) indices are associated with long-term functional outcomes, while it is unclear whether RBC indices could be a potential predictor of cognitive decline after aSAH. We aimed to investigate the association between RBC indices and post-aSAH cognitive impairment at 1 year. METHODS Patients with aSAH received neuropsychological test by the Montreal Cognitive Assessment (MoCA) and underwent serum and cerebrospinal fluid (CSF) samples test. To determine the association between RBC indices and cognitive impairment after acute aSAH, we adjusted for demographic and vascular risk factors using multivariate logistic regression analysis. RESULTS Of the 126 patients included in this study, 33% (42/126) of them were diagnosed with cognitive impairment (MoCA<26). After adjustment for potential confounders, increased mean corpuscular volume (MCV) (OR: 1.36, 95%CI: 1.19-1.55) and mean corpuscular hemoglobin (MCH) (OR: 1.61, 95%CI: 1.25-2.08), reflecting systemic iron status, are more likely to be associated with cognitive impairment after aSAH. CONCLUSION In this aSAH population, our data shows the positive association between MCH and MCV and cognitive impairment at 1 year.
Collapse
Affiliation(s)
- Li Gong
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Yongzhe Gu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Qiong Dong
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Xiang Zhang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Haichao Wang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| |
Collapse
|
3
|
Wan W, Cao L, Kalionis B, Murthi P, Xia S, Guan Y. Iron Deposition Leads to Hyperphosphorylation of Tau and Disruption of Insulin Signaling. Front Neurol 2019; 10:607. [PMID: 31275224 PMCID: PMC6593079 DOI: 10.3389/fneur.2019.00607] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Iron deposition in the brain is an early issue in Alzheimer's disease (AD). However, the pathogenesis of iron-induced pathological changes in AD remains elusive. Insulin resistance in brains is an essential feature of AD. Previous studies determined that insulin resistance is involved in the development of pathologies in AD. Tau pathology is one of most important hallmarks in AD and is associated with the impairment of cognition and clinical grades of the disease. In the present study, we observed that ferrous (Fe2+) chloride led to aberrant phosphorylation of tau, and decreased tyrosine phosphorylation levels of insulin receptor β (IRβ), insulin signal substrate 1 (IRS-1) and phosphoinositide 3-kinase p85α (PI3K p85α), in primary cultured neurons. In the in vivo studies using mice with supplemented dietary iron, learning and memory was impaired. As well, hyperphosphorylation of tau and disrupted insulin signaling in the brain was induced in iron-overloaded mice. Furthermore, in our in vitro work we identified the activation of insulin signaling following exogenous supplementation of insulin. This was further attenuated by iron-induced hyperphosphorylation of tau in primary neurons. Together, these data suggest that dysfunctional insulin signaling participates in iron-induced abnormal phosphorylation of tau in AD. Our study highlights the promising role of insulin signaling in pathological lesions induced by iron overloading.
Collapse
Affiliation(s)
- Wenbin Wan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Obstetrics and Gynecology, Royal Women's Hospital, Parkville, VIC, Australia
| | - Padma Murthi
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Wang Y, Wu Y, Li T, Wang X, Zhu C. Iron Metabolism and Brain Development in Premature Infants. Front Physiol 2019; 10:463. [PMID: 31105583 PMCID: PMC6494966 DOI: 10.3389/fphys.2019.00463] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is important for a remarkable array of essential functions during brain development, and it needs to be provided in adequate amounts, especially to preterm infants. In this review article, we provide an overview of iron metabolism and homeostasis at the cellular level, as well as its regulation at the mRNA translation level, and we emphasize the importance of iron for brain development in fetal and early life in preterm infants. We also review the risk factors for disrupted iron metabolism that lead to high risk of developing iron deficiency and subsequent adverse effects on neurodevelopment in preterm infants. At the other extreme, iron overload, which is usually caused by excess iron supplementation in iron-replete preterm infants, might negatively impact brain development or even induce brain injury. Maintaining the balance of iron during the fetal and neonatal periods is important, and thus iron status should be monitored routinely and evaluated thoroughly during the neonatal period or before discharge of preterm infants so that iron supplementation can be individualized.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Neonatology (NICU), Children’s Hospital Affiliated Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yanan Wu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Department of Neonatology (NICU), Children’s Hospital Affiliated Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Physiology, Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Viktorinova A. Iron-mediated oxidative cell death is a potential contributor to neuronal dysfunction induced by neonatal hemolytic hyperbilirubinemia. Arch Biochem Biophys 2018; 654:185-193. [PMID: 30059654 DOI: 10.1016/j.abb.2018.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
The review article discusses current knowledge of iron-mediated oxidative cell death (ferroptosis) and its potential role in the pathogenesis of neuronal dysfunction induced by neonatal hemolytic hyperbilirubinemia. The connection between metabolic conditions related to hemolysis (iron and bilirubin overload) and iron-induced lipid peroxidation is highlighted. Neurotoxicity of iron and bilirubin is associated with their release from destructed erythrocytes in response to hemolytic disease. Iron overload initiates lipid peroxidation through the reactive oxygen species production resulting to oxidative damage to cells. Excessive loading of immature brain cells by iron-induced formation of reactive oxygen species contributes to the development of various neurodevelopmental disorders. The causal relationship between iron overload and susceptibility of brain cells to oxidative damage by ferroptosis appears to be associated not only with the amount of redox-active iron involved in oxidative cell damage but also with the degree of maturity of the neonatal brain. Neuronal dysfunction induced by neonatal hemolytic disease can represent a specific model of ferroptosis. The mechanism by which iron overload triggers ferroptosis is not completely explained. However, hemolysis of neonatal red blood cells appears to be a determining factor. Potential therapeutic strategy with iron-chelating agents to inhibit ferroptosis has a promising future in postnatal care.
Collapse
Affiliation(s)
- Alena Viktorinova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| |
Collapse
|
6
|
Li P, Hao L, Guo YY, Yang GL, Mei H, Li XH, Zhai QX. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons. Life Sci 2018; 202:70-77. [DOI: 10.1016/j.lfs.2018.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 01/28/2023]
|
7
|
Zhang Y, Kong WN, Chai XQ. Compound of icariin, astragalus, and puerarin mitigates iron overload in the cerebral cortex of Alzheimer's disease mice. Neural Regen Res 2018; 13:731-736. [PMID: 29722328 PMCID: PMC5950686 DOI: 10.4103/1673-5374.230302] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that disruption of normal iron homeostasis may contribute to pathological development of Alzheimer's disease. Icariin, astragalus, and puerarin have been shown to suppress iron overload in the cerebral cortex and improve spatial learning and memory disorders in Alzheimer's disease mice, although the underlying mechanism remains unclear. In the present study, APPswe/PS1ΔE9 transgenic mice were administered icariin, astragalus, and puerarin (120, 80, and 80 mg/kg, respectively, once a day, for 3 months). Iron levels were detected by flame atomic absorption spectroscopy. Interleukin-1β, interleukin-6, and tumor necrosis factor-α levels were measured in the cerebral cortex by enzyme linked immunosorbent assay. Glutathione peroxidase and superoxide dismutase activity and malondialdehyde content were determined by colorimetry. Our results demonstrate that after treatment, iron levels and malondialdehyde content are decreased, while glutathione peroxidase and superoxide dismutase activities are increased. Further, interleukin-1β, interleukin-6, and tumor necrosis factor-α levels were reduced. These results confirm that compounds of icariin, astragalus, and puerarin may alleviate iron overload by reducing oxidative stress and the inflammatory response.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei-Na Kong
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, China
| | - Xi-Qing Chai
- Department of Neurology, the First Hospital of Hebei Medical University; Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, China
| |
Collapse
|
8
|
Current insights on the role of iron and copper dyshomeostasis in the pathogenesis of bilirubin neurotoxicity. Life Sci 2017; 191:34-45. [PMID: 29030087 DOI: 10.1016/j.lfs.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023]
|
9
|
Qu TT, Deng JX, Li RL, Cui ZJ, Wang XQ, Wang L, Deng JB. Stress injuries and autophagy in mouse hippocampus after chronic cold exposure. Neural Regen Res 2017; 12:440-446. [PMID: 28469659 PMCID: PMC5399722 DOI: 10.4103/1673-5374.202932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cold exposure is an external stress factor that causes skin frostbite as well as a variety of diseases. Estrogen might participate in neuroprotection after cold exposure, but its precise mechanism remains unclear. In this study, mice were exposed to 10°C for 7 days and 0-4°C for 30 days to induce a model of chronic cold exposure. Results showed that oxidative stress-related c-fos and cyclooxygenase 2 expressions, MAP1LC3-labeled autophagic cells, Iba1-labeled activated microglia, and interleukin-1β-positive pyramidal cells were increased in the hippocampal CA1 area. Chronic cold exposure markedly elevated the levels of estrogen in the blood and the estrogen receptor, G protein-coupled receptor 30. These results indicate that neuroimmunoreactivity is involved in chronic cold exposure-induced pathological alterations, including oxidative stress, neuronal autophagy, and neuroimmunoreactivity. Moreover, estrogen exerts a neuroprotective effect on cold exposure.
Collapse
Affiliation(s)
- Ting-Ting Qu
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China.,Nursing College, Henan Vocational College of Applied Technology, Zhengzhou, Henan Province, China
| | - Jie-Xin Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Rui-Ling Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Zhan-Jun Cui
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Xiao-Qing Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Lai Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jin-Bo Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|