1
|
Hu J, Yang F, Yang G, Pan J, Tan Y, Tang Y, Liu Y, Zhang H, Wang J. Integrating transcriptomics and metabolomics to reveal the protective effect and mechanism of Bushen Kangshuai Granules on the elderly people. Front Pharmacol 2024; 15:1361284. [PMID: 39135783 PMCID: PMC11317404 DOI: 10.3389/fphar.2024.1361284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Background: Aging is characterized by a decline in the adaptability and resistance of the body. In this study, Bushen Kangshuai Granules (BKG), as a kind of Chinese herbal formula, was developed and shown to alleviate aging-related symptoms. Methods: Self-controlled study combined with RNA-seq and metabonomics were used to expound the efficacy and safety of BKG and revealed the regulation mechanism of BKG treating aging. In vitro experiments were used to confirm the analytical results. The aging cell model of AC16 cells were treated with D-galactose. The RT-qPCR was used to detect the impact of BKG on telomere length. The DCFH-DA staining was used for detecting intracellular ROS. The targeted signaling pathway was selected and verified using Western blot. Results: After 8 weeks of treatment, BKG significantly reduced SOD level (p = 0.046), TCM aging symptoms (p < 0.001) and TNF-α level (p = 0.044) in the elderly participants. High-throughput sequencing showed that BKG reversed the expression of 70 and 79 age-related genes and metabolites, respectively. Further enrichment analysis indicated that BKG downregulated the PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, and Rap1 signaling pathway, while up-regulating sphingolipid metabolism. The results of in vitro experiments show that, after D-gal treatment, the viability and telomere length of AC16 cells significantly decreased (p < 0.05), while the expression of ROS increased (p < 0.05), BKG significantly increased the telomere length of AC16 cells and reduced the level of ROS expression (p < 0.05). In addition, BKG decreased the expression of THBS1, PDGFRA, and EPS8L1(p < 0.05), consistent with the RNA-seq results. Our results also showed that BKG affects PI3K-AKT signaling pathway. Conclusion: BKG can significantly improve aging-related symptoms and increase SOD levels, which may be associated with the reversal of the expression of various aging-related genes. The PI3K-AKT signaling pathway and sphingolipid metabolism may be potential mechanisms underlying BKG anti-aging effects.
Collapse
Affiliation(s)
- Jun Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guang Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Lee B, Hong S, Kim M, Kim EY, Park HJ, Jung HS, Kim JH, Sohn Y. Lycii radicis cortex inhibits glucocorticoid‑induced bone loss by downregulating Runx2 and BMP‑2 expression. Int J Mol Med 2021; 48:155. [PMID: 34165156 PMCID: PMC8249051 DOI: 10.3892/ijmm.2021.4988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Lycii radicis cortex (LRC) has been used to regulate high blood pressure, body temperature, pain and bone disorders in East Asia. Glucocorticoids (GCs), also known as steroids, are potent immunity regulators widely used in the treatment of inflammatory diseases. However, despite their effectiveness, GC usage is strictly controlled due to severe side‑effects, such as osteoporosis. However, further research is required as to date, at least to the best of our knowledge, there is no appropriate model to overcome secondary osteoporosis as a side‑effect of GC use. Thus, the aim of the present study was to establish an experimental model of osteoporosis induced by GC. Furthermore, the present study aimed to establish the research methodology for medical evaluations of the effectiveness and side‑effects of GCs. A secondary osteoporosis animal model was established, and the animals were divided into two groups as follows: The allergic contact dermatitis (ACD)‑induced group and the non‑ACD‑induced group. In the ACD‑induced group, a GC topical application group was compared with a GC subcutaneous injection group. The results revealed that the presence of ACD affected the induction of GC‑mediated osteoporosis. Therefore, the group exhibiting induced ACD that was treated with a topical application of GC was selected for examining the side‑effects of GCs. The effects of LRC on secondary osteoporosis were confirmed in vivo and in vitro. The results indicated that LRC regulated dexamethasone‑induced osteoblast apoptotic markers, including caspase‑6, caspase‑9, X‑linked inhibitor of apoptosis, apoptosis inhibitor 1 and apoptosis inhibitor 2, and increased the expression of osteoblast differentiation‑related genes, such as Runt‑related transcription factor 2 and bone morphogenetic protein 2 in the MC3T3E‑1 cell line. LRC also significantly reduced GC‑induced osteoporosis and exerted anti‑inflammatory effects in vivo. In addition, LRC inhibited the reduction of calbindin‑D28k in the kidney. Overall, the results of the present study suggest that the use of LRC alleviates GC‑induced secondary osteoporosis.
Collapse
Affiliation(s)
- Bina Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| |
Collapse
|
3
|
Chen R, Wang J, Zhan R, Zhang L, Wang X. Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112139. [PMID: 31401318 DOI: 10.1016/j.jep.2019.112139] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/20/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A myriad of evidence have shown that kidney-yang deficiency syndrome (KYDS) is associated with metabolic disorders of the intestinal microbiota, while TCMs can treat KYDS by regulating gut microbiota metabolism. However, the specific interplay between KYDS and intestinal microbiota, and the intrinsic regulation mechanism of You-gui pill (YGP) on KYDS' gut microbiota remains largely unknown so far. MATERIALS AND METHODS In the present study, fecal metabonomics combined with 16S rRNA gene sequencing analysis were used to explore the mutual effect between KYDS and intestinal flora, and the intrinsic regulation mechanism of YGP on KYDS's gut microbiota. Rats' feces from control (CON) group, KYDS group and YGP group were collected, and metabolomic analysis was performed using 1H NMR technique combined with multivariate statistical analysis to obtain differential metabolites. Simultaneously, 16S rRNA gene sequencing analysis based on the Illumina HiSeq sequencing platform and ANOVA analysis were used to analyze the composition of the intestinal microbiota in the stool samples and to screen for the significant altered microbiota at the genus level. After that, MetaboAnalyst database and PICRUSt software were apply to conduct metabolic pathway analysis and functional prediction analysis of the screened differential metabolites and intestinal microbiota, respectively. What's more, Pearson correlation analysis was performed on these differential metabolites and gut microbiota. RESULTS Using fecal metabonomics, KYDS was found to be associated with 21 differential metabolites and seven potential metabolic pathways. These metabolites and metabolic pathways were mainly involved in amino acid metabolism, energy metabolism, methylamine metabolism, bile acid metabolism and urea cycle, and short-chain fatty acid metabolism. Through 16S rRNA gene sequencing analysis, we found that KYDS was related to eleven different intestinal microbiotas. These gut microbiota were mostly involved in amino acid metabolism, energy metabolism, nervous, endocrine, immune and digestive system, lipid metabolism, and carbohydrate metabolism. Combined fecal metabonomics and 16S rRNA gene sequencing analysis, we further discovered that KYDS was primarily linked to three gut microbiotas (i.e. Bacteroides, Desulfovibrio and [Eubacterium]_coprostanoligenes_group) and eleven related metabolites (i.e. deoxycholate, n-butyrate, valine, isoleucine, acetate, taurine, glycine, α-gluconse, β-glucose, glycerol and tryptophan) mediated various metabolic disorders (amino acid metabolism, energy metabolism, especially methylamine metabolism, bile acid metabolism and urea cycle, short-chain fatty acid metabolism. nervous, endocrine, immune and digestive system, lipid metabolism, and carbohydrate metabolism). YGP, however, had the ability to mediate four kinds of microbes (i.e. Ruminiclostridium_9, Ruminococcaceae_UCG-007, Ruminococcaceae_UCG-010, and uncultured_bacterium_f_Bacteroidales_S24-7_group) and ten related metabolites (i.e. deoxycholate, valine, isoleucine, alanine, citrulline, acetate, DMA, TMA, phenylalanine and tryptophan) mediated amino acid metabolism, especially methylamine metabolism, bile acid metabolism and urea cycle, short-chain fatty acid metabolism, endocrine, immune and digestive system, and lipid metabolism, thereby exerting a therapeutic effect on KYDS rats. CONCLUSION Overall, our findings have preliminary confirmed that KYDS is closely related to metabolic and microbial dysbiosis, whereas YGP can improve the metabolic disorder of KYDS by acting on intestinal microbiota. Meanwhile, this will lay the foundation for the further KYDS's metagenomic research and the use of intestinal microbiotas as drug targets to treat KYDS.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Jia Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Runhua Zhan
- Shool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Lei Zhang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xiufeng Wang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Li N, Zhan X. Mitochondrial Dysfunction Pathway Networks and Mitochondrial Dynamics in the Pathogenesis of Pituitary Adenomas. Front Endocrinol (Lausanne) 2019; 10:690. [PMID: 31649621 PMCID: PMC6794370 DOI: 10.3389/fendo.2019.00690] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondrion is a multi-functional organelle, which is associated with various signaling pathway networks, including energy metabolism, oxidative stress, cell apoptosis, cell cycles, autophagy, and immunity process. Mitochondrial proteins have been discovered to modulate these signaling pathway networks, and multiple biological behaviors to adapt to various internal environments or signaling events of human pathogenesis. Accordingly, mitochondrial dysfunction that alters the bioenergetic and biosynthetic state might contribute to multiple diseases, including cell transformation and tumor. Multiomics studies have revealed that mitochondrial dysfunction, oxidative stress, and cell cycle dysregulation signaling pathways operate in human pituitary adenomas, which suggest mitochondria play critical roles in pituitary adenomas. Some drugs targeting mitochondria are found as a therapeutic strategy for pituitary adenomas, including melatonin, melatonin inhibitors, temozolomide, pyrimethamine, 18 beta-glycyrrhetinic acid, gossypol acetate, Yougui pill, T-2 toxin, grifolic acid, cyclosporine A, dopamine agonists, and paeoniflorin. This article reviews the latest experimental evidence and potential biological roles of mitochondrial dysfunction and mitochondrial dynamics in pituitary adenoma progression, potential molecular mechanisms between mitochondria and pituitary adenoma progression, and current status and perspectives of mitochondria-based biomarkers and targeted drugs for effective management of pituitary adenomas.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Chen R, Wang J, Zhan R, Zhang L, Wang X. Integrated Systems Pharmacology, Urinary Metabonomics, and Quantitative Real-Time PCR Analysis to Uncover Targets and Metabolic Pathways of the You-Gui Pill in Treating Kidney-Yang Deficiency Syndrome. Int J Mol Sci 2019; 20:E3655. [PMID: 31357410 PMCID: PMC6696241 DOI: 10.3390/ijms20153655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Kidney-yang deficiency syndrome (KYDS) is a metabolic disease caused by a neuro-endocrine disorder. The You-gui pill (YGP) is a classic traditional Chinese medicine (TCM) formula for the treatment of KYDS and has been widely used to warm and recuperate KYDS clinically for hundreds of years in China. However, it is unknown whetherthe corresponding targets and metabolic pathways can also be found via using metabonomics based on one platform (e.g., 1H NMR) to study different biological samples of KYDS. At the same time, relevant reports on further molecular verification (e.g., RT-qPCR analysis) of these targets associated with biomarkers and metabolic pathways have not yet, to our knowledge, been seen in KYDS's research. In the present study, a comprehensive strategy integrating systems pharmacology and 1H NMR-based urinary metabonomics analysis was proposed to identify the target proteins and metabolic pathways that YGP acts on KYDS. Thereafter, further validation of target proteins in kidney tissue was performed through quantitative real-time PCR analysis (RT-qPCR). Furthermore, biochemical parameters and histopathological analysis were studied. As a result, seven target proteins (L-serine dehydratase; phosphoenolpyruvate carboxykinase; spermidine synthase; tyrosyl-tRNA synthetase, glutamine synthetase; 3-hydroxyacyl-CoA dehydrogenase; glycine amidinotransferase) in YGP were discovered to play a therapeutic role in KYDS via affecting eight metabolic pathways (glycine, serine and threonine metabolism; butanoate metabolism; TCA cycle, etc.). Importantly, three target proteins (i.e., 3-hydroxyacyl-CoA dehydrogenase; glutamine synthetase; and glycine amidinotransferase) and two metabolic pathways (butanoate metabolism and dicarboxylate metabolism) related to KYDS, to our knowledge, had been newly discovered in our study. The mechanism of action mainly involved energy metabolism, oxidative stress, ammonia metabolism, amino acid metabolism, and fatty acid metabolism. In short, our study demonstrated that targets and metabolic pathways for the treatment of KYDS by YGP can be effectively found via combining with systems pharmacology and urinary metabonomics. In addition to this, common and specific targets and metabolic pathways of KYDS treated by YGP can be found effectively by integration with the analysis of different biological samples (e.g., serum, urine, feces, and tissue). It is; therefore, important that this laid the foundation for deeper mechanism research and drug-targeted therapy of KYDS in future.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jia Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Runhua Zhan
- Shool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Zhang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiufeng Wang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Liu H, Qiu F, Zhao H, Bian B, Wang L. Simultaneous high-performance liquid chromatography with tandem mass spectrometry quantification of six bioactive components in rat plasma after oral administration of Yougui pill. J Sep Sci 2019; 42:1867-1877. [PMID: 30868717 DOI: 10.1002/jssc.201800772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/08/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Yougui pills are a classic Chinese medicine that shows significant effects on nerve regeneration and neuroprotection in modern pharmacological studies. With a complex formula, Yougui pills have faced significant challenges in the fields of bioanalysis and pharmacokinetics in animals and human studies. In the present study, a specific and accurate high-performance liquid chromatography with tandem mass spectrometry method was developed and validated for the quantitative determination of the six bioactive components in rat plasma after oral administration of Yougui pills. Chromatographic separation was performed on a C18 column with a gradient elution system. Samples were analysed using positive ion mode with multiple reaction monitoring mode. The assay showed good linearity for all six bioactive components in the dynamic range of 0.50 to 50 ng/mL with acceptable intra- and inter-batch accuracy and precision. The lower limits of quantification were 0.50 ng/mL for all six bioactive components. The method was successfully applied to rat pharmacokinetics after oral administration of Yougui pills. All six bioactive components were detected in rat plasma, including songorine, benzoylhypaconitine, benzoylmesaconitine, neoline, karacoline, and sweroside, while some other target compounds were not detected, such as rhmannioside A, loganin, and cornuside I. After oral administration of Yougui pills at a dose of 2500 mg/kg, all six bioactive components were rapidly absorbed, resulting in tmax values less than 1 h and relative lower Cmax values. The t1/2 values for songorine, benzoylhypaconitine, benzoylmesaconitine, neoline, karacoline, and sweroside were calculated to be 2.62 ± 0.67, 2.11 ± 0.45, 1.94 ± 0.35, 1.88 ± 0.31, 2.07 ± 0.44, and 1.59 ± 0.30 h, which indicated that Yougui pills should be taken in multiple oral doses over a relatively short period.
Collapse
Affiliation(s)
- Haolong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, P. R. China.,Beijing Institute For Drug Control, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, P. R. China
| | - Feng Qiu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, P. R. China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
7
|
Chen R, Wang J, Liao C, Zhang L, Guo Q, Wang X. Exploring the biomarkers and therapeutic mechanism of kidney-yang deficiency syndrome treated by You-gui pill using systems pharmacology and serum metabonomics. RSC Adv 2018; 8:1098-1115. [PMID: 35539000 PMCID: PMC9077015 DOI: 10.1039/c7ra12451a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
In this study, systems pharmacology was used to predict the molecular targets of You-gui pill (YGP) and explore the therapeutic mechanism of Kidney-Yang Deficiency Syndrome (KYDS) treated with YGP. On the basis of this, serum samples from control group, KYDS model group and YGP group rats were studied using 1H NMR to verify the results of systems pharmacology from the level of metabonomics. Simultaneously, 1H NMR spectra of serum samples were obtained and statistically assessed using pattern recognition analysis. Biochemical analyses of serums were performed via radioimmunoassays. Furthermore, histopathological studies were conducted on the pituitary, adrenal, and thyroid glands, and testicles of the control, KYDS and YGP rats. Using systems pharmacology to analyze the active components of YGP, 61 active compounds were finally found. These compounds were likely to have an effect on 3177 target proteins and involve 234 pathways. Using metabonomics to analyze serum from KYDS rats treated with YGP, 22 endogenous biomarkers were found. These biomarkers were mainly involved in 10 metabolic pathways. Combining systems pharmacology and metabonomics, we found that the regulation of KYDS was primarily associated with 19 active compounds of 5 Chinese herbal medicines in YGP. These active compounds mainly had an effect on 8 target proteins, including phosphoenolpyruvate carboxykinase, betaine-homocysteine s-methyltransferase 1, alcohol dehydrogenase 1C, etc. These target proteins were primarily involved in 6 overlapping pathways, namely aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, glycine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, arginine and proline metabolism, and pyruvate metabolism. In addition, there were 4 non-overlapping pathways, respectively alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and galactose metabolism. In summary, the therapeutic effects of YGP on KYDS were mainly associated with neuroendocrine regulation, energy metabolism, amino acid metabolism, inflammatory responses, apoptosis, oxidative stress and intestinal flora metabolism. What's more, we also found that YGP possessed the potential to protect liver and kidney function. Our study demonstrated that systems pharmacology and metabonomics methods were novel strategies for the exploration of the mechanisms of KYDS and TCM formulas.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Jia Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Chengbin Liao
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Lei Zhang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Qian Guo
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Xiufeng Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| |
Collapse
|
8
|
Zhang H, Zhou F, Pan Z, Bu X, Wang Y, Chen F. 11β-hydroxysteroid dehydrogenases-2 decreases the apoptosis of MC3T3/MLO-Y4 cells induced by glucocorticoids. Biochem Biophys Res Commun 2017; 490:1399-1406. [PMID: 28698139 DOI: 10.1016/j.bbrc.2017.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/08/2017] [Indexed: 12/28/2022]
Abstract
The aim of the present study was to confirm the role of 11β-hydroxysteroid dehydrogenases type 2(11β-HSD-2) in steroid induced osteonecrosis of the femoral head(SANFH). We cultured mouse bone-like cells (MLO-Y4) and mouse osteoblast-like cells (MC3T3-E1). After overexpressed 11β-HSD-2 successfully, we induced cell apoptosis by dexamethasone (DXM). The level of cell apoptosis, the expression of Bcl-2 in MLO-Y4 cells and the expression of Fas and caspase8 in MC3T3-E1 cells were detected. Then, we constructed 11β-HSD-2 siRNA plasmid and represented it on MLO-Y4/MC3T3-E1 Cells, to down-regulate the 11β-HSD-2 expression. After that, we used dexamethasone to induce cell apoptosis. The level of cell apoptosis, the expression of Bcl-2 in MLO-Y4 cells and the expression of Fas and caspase8 in MC3T3-E1 cells were detected again. In the overexpression model of cells, we found that the amount of cell apoptosis, the expression of Fas and caspase8 in MC3T3-E1 cells are lower than that of control groups. The amount of cell apoptosis, the expression of Fas and caspase8 in MC3T3-E1 cells were more than before when we reduced the expression of 11β-HSD-2. In our study, we concluded that 11β-HSD-2 plays an important role in the development of bone or osteoblast cell apoptosis, and the decreased expression of 11β-HSD-2 may aggravate steroid induced bone/osteoblast cell apoptosis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Xiangpeng Bu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yaoqing Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Fan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|