1
|
Quirke F, Biesty L, Battin M, Bloomfield FH, Daly M, Finucane E, Healy P, Hurley T, Kirkham JJ, Molloy E, Haas DM, Meher S, Ní Bhraonáin E, Walker K, Webbe J, Devane D. Neonatal encephalopathy: a systematic review of reported treatment outcomes. BMJ Paediatr Open 2024; 8:e002510. [PMID: 39322607 PMCID: PMC11425948 DOI: 10.1136/bmjpo-2024-002510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/04/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Neonatal encephalopathy (NE) is a multi-organ condition potentially leading to death or long-term neurodisability. Therapeutic hypothermia is the standard treatment for NE; however, long-term impairments remain common. Studies of new treatments for NE often measure and report different outcomes. Core outcome sets (COSs), a minimum set of outcomes to be measured and reported in all studies for a condition, address this problem. This paper aimed to identify outcomes reported (primary, secondary, adverse events and other reported outcomes) in (1) randomised trials and (2) systematic reviews of randomised trials of interventions for the treatment of NE in the process of developing a COS for interventions for the treatment of NE. METHODS We completed a systematic search for outcomes used to evaluate treatments for NE using MEDLINE, Embase, Cochrane CENTRAL, the Cochrane Database of Systematic Reviews and the WHO International Clinical Trials Registry Platform. Two reviewers screened all included articles independently. Outcomes were extracted verbatim, similar outcomes were grouped and outcome domains were developed. RESULTS 386 outcomes were reported in 116 papers, from 85 studies. Outcomes were categorised into 18 domains. No outcome was reported by all studies, a single study reported 11 outcomes and it was not explicitly stated that outcomes had input from parents. DISCUSSION Heterogeneity in reported outcomes means that synthesis of studies evaluating new treatments for NE remains difficult. A COS, that includes parental/family input, is needed to ensure consistency in measuring and reporting outcomes, and to enable comparison of randomised trials.
Collapse
Affiliation(s)
- Fiona Quirke
- Neonatal Encephalopathy PhD Training Network, Health Research Board, Dublin, Ireland
- Health Research Board -Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
| | - Linda Biesty
- School of Nursing & Midwifery, University of Galway, Galway, Ireland
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| | | | | | - Mandy Daly
- Advocacy and Policymaking Irish Neonatal Health Alliance, Wicklow, Ireland
| | - Elaine Finucane
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| | - Patricia Healy
- School of Nursing & Midwifery, University of Galway, Galway, Ireland
| | - Tim Hurley
- Neonatal Encephalopathy PhD Training Network, Health Research Board, Dublin, Ireland
| | - Jamie J Kirkham
- Centre for Biostatistics, Manchester Academic Health Science Centre, Manchester University, Manchester, UK
| | - Eleanor Molloy
- Paediatrics, Trinity College Dublin, Dublin, Ireland
- Paediatrics, Tallaght Hospital, Dublin, Ireland
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University, Bloomington, Indiana, USA
| | - Shireen Meher
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Karen Walker
- Grace Centre for Newborn Care, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - James Webbe
- Academic Neonatal Medicine, Imperial College London, London, UK
| | - Declan Devane
- Health Research Board -Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Cetinkaya M. Neuroprotective treatment options for neonatal hypoxic-ischemic encephalopathy: Therapeutic hypothermia and beyond. GLOBAL PEDIATRICS 2024; 9:100223. [DOI: 10.1016/j.gpeds.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Huntingford SL, Boyd SM, McIntyre SJ, Goldsmith SC, Hunt RW, Badawi N. Long-Term Outcomes Following Hypoxic Ischemic Encephalopathy. Clin Perinatol 2024; 51:683-709. [PMID: 39095104 DOI: 10.1016/j.clp.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the most common cause of neonatal encephalopathy and results in significant morbidity and mortality. Long-term outcomes of the condition encompass impairments across all developmental domains. While therapeutic hypothermia (TH) has improved outcomes for term and late preterm infants with moderate to severe HIE, trials are ongoing to investigate the use of TH for infants with mild or preterm HIE. There is no evidence that adjuvant therapies in combination with TH improve long-term outcomes. Numerous trials of various adjuvant therapies are underway in the quest to further improve outcomes for infants with HIE.
Collapse
Affiliation(s)
- Simone L Huntingford
- Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia; Monash Newborn, Monash Health, 246 Clayton Road, Clayton, Victoria 3168, Australia; Paediatric Infant Perinatal Emergency Retrieval, Royal Children's Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia.
| | - Stephanie M Boyd
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Hawkesbury Road, Westmead, New South Wales 2145, Australia; Faculty of Medicine and Health, University of Sydney, Campderdown, New South Wales 2006, Australia
| | - Sarah J McIntyre
- CP Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Shona C Goldsmith
- CP Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rod W Hunt
- Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia; Monash Newborn, Monash Health, 246 Clayton Road, Clayton, Victoria 3168, Australia; CP Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Hawkesbury Road, Westmead, New South Wales 2145, Australia; CP Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Lv H, Wang Q, Liu F, Jin L, Ren P, Li L. A biochemical feedback signal for hypothermia treatment for neonatal hypoxic-ischemic encephalopathy: focusing on central nervous system proteins in biofluids. Front Pediatr 2024; 12:1288853. [PMID: 38766393 PMCID: PMC11100326 DOI: 10.3389/fped.2024.1288853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Hypothermia has been widely used to treat moderate to severe neonatal hypoxic-ischemic encephalopathy (HIE), yet evaluating the effects of hypothermia relies on clinical neurology, neuroimaging, amplitude-integrated electroencephalography, and follow-up data on patient outcomes. Biomarkers of brain injury have been considered for estimating the effects of hypothermia. Proteins specific to the central nervous system (CNS) are components of nervous tissue, and once the CNS is damaged, these proteins are released into biofluids (cerebrospinal fluid, blood, urine, tears, saliva), and they can be used as markers of brain damage. Clinical reports have shown that CNS-specific marker proteins (CNSPs) were early expressed in biofluids after brain damage and formed unique biochemical profiles. As a result, these markers may serve as an indicator for screening brain injury in infants, monitoring disease progression, identifying damage region of brain, and assessing the efficacy of neuroprotective measures. In clinical work, we have found that there are few reports on using CNSPs as biological signals in hypothermia for neonatal HIE. The aim of this article is to review the classification, origin, biochemical composition, and physiological function of CNSPs with changes in their expression levels after hypothermia for neonatal HIE. Hopefully, this review will improve the awareness of CNSPs among pediatricians, and encourage future studies exploring the mechanisms behind the effects of hypothermia on these CNSPs, in order to reduce the adverse outcome of neonatal HIE.
Collapse
Affiliation(s)
- Hongyan Lv
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
- Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Qiuli Wang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Fang Liu
- Department of Pediatrics, The 980 Hospital of the PLA Joint Logistics Support Force, Shijiazhuang, China
| | - Linhong Jin
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Pengshun Ren
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Lianxiang Li
- Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| |
Collapse
|
5
|
Fei Q, Wang D, Yuan T. Comparison of Different Adjuvant Therapies for Hypothermia in Neonates with Hypoxic-Ischemic Encephalopathy: A Systematic Review and Network Meta-Analysis. Indian J Pediatr 2024; 91:235-241. [PMID: 37199820 DOI: 10.1007/s12098-023-04563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVES Neonatal hypoxic-ischemic encephalopathy is a major cause of perinatal death and neurodevelopmental impairment (NDI). Hypothermia (HT) is the standard of care; however, additional neuroprotective agents are required to improve prognosis. The authors searched for all drugs in combination with HT and compared their effects using a network meta-analysis. METHODS The authors searched PubMed, Embase, and Cochrane Library until September 24, 2022 for articles assessing mortality, NDI, seizures, and abnormal brain imaging findings in neonates with hypoxic-ischemic encephalopathy. Direct pairwise comparisons and a network meta-analysis was performed under random effects. RESULTS Thirteen randomized clinical trials enroled 902 newborns treated with six combination therapies: erythropoietin magnesium sulfate, melatonin (MT), topiramate, xenon, and darbepoetin alfa. The results of all comparisons were not statistically significant, except for NDI, HT vs. MT+HT: odds ratio = 6.67, 95% confidence interval = 1.14-38.83; however, the overall evidence quality was low for the small sample size. CONCLUSIONS Currently, no combination therapy can reduce mortality, seizures, or abnormal brain imaging findings in neonatal hypoxic-ischemic encephalopathy. According to low quality evidence, HT combined with MT may reduce NDI.
Collapse
Affiliation(s)
- Qiang Fei
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binsheng Rd, No.3333, Hangzhou, 310003, China
| | - Dandan Wang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binsheng Rd, No.3333, Hangzhou, 310003, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binsheng Rd, No.3333, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Arun Babu T, Ballambattu VB. Charting the Course for Adjuvant Neuroprotective Therapies in Neonatal Hypoxic-Ischemic Encephalopathy: Insights from a Network Meta-Analysis. Indian J Pediatr 2024; 91:215-216. [PMID: 37971646 DOI: 10.1007/s12098-023-04919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Thirunavukkarasu Arun Babu
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Mangalagiri, Andhra Pradesh, India
| | - Vishnu Bhat Ballambattu
- Department of Pediatrics, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation-DU, Kirumampakkam, Pondicherry, India.
| |
Collapse
|
7
|
Marques KL, Rodrigues V, Balduci CTN, Montes GC, Barradas PC, Cunha-Rodrigues MC. Emerging therapeutic strategies in hypoxic-ischemic encephalopathy: a focus on cognitive outcomes. Front Pharmacol 2024; 15:1347529. [PMID: 38469401 PMCID: PMC10925695 DOI: 10.3389/fphar.2024.1347529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Perinatal hypoxia-ischemia represents a significant risk to CNS development, leading to high mortality rates, diverse damages, and persistent neurological deficits. Despite advances in neonatal medicine in recent decades, the incidence of HIE remains substantial. Motor deficits can manifest early, while cognitive impairments may be diagnosed later, emphasizing the need for extended follow-up. This review aims to explore potential candidates for therapeutic interventions for hypoxic-ischemic encephalopathy (HIE), with a focus on cognitive deficits. We searched randomized clinical trials (RCT) that tested drug treatments for HIE and evaluated cognitive outcomes. The results included studies on erythropoietin, melatonin, magnesium sulfate, topiramate, and a combination of vitamin C and ibuprofen. Although there are several indications of the efficacy of these drugs among animal models, considering neuroprotective properties, the RCTs failed to provide complete effectiveness in the context of cognitive impairments derived from HIE. More robust RCTs are still needed to advance our knowledge and to establish standardized treatments for HIE.
Collapse
Affiliation(s)
- Kethely L. Marques
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Rodrigues
- Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassiana T. N. Balduci
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rare Diseases Sales Force, Daiichi Sankyo Brazil, São Paulo, Brazil
| | - Guilherme C. Montes
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta C. Cunha-Rodrigues
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Ovcjak A, Pontello R, Miller SP, Sun HS, Feng ZP. Hypothermia combined with neuroprotective adjuvants shortens the duration of hospitalization in infants with hypoxic ischemic encephalopathy: Meta-analysis. Front Pharmacol 2023; 13:1037131. [PMID: 36686686 PMCID: PMC9853207 DOI: 10.3389/fphar.2022.1037131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Objective: Therapeutic hypothermia (TH) is the current standard of care for neonatal hypoxic-ischemic encephalopathy (HIE), yet morbidity and mortality remain significant. Adjuvant neuroprotective agents have been suggested to augment hypothermic-mediated neuroprotection. This analysis aims to identify the classes of drugs that have been used in combination with hypothermia in the treatment of neonatal HIE and determine whether combination therapy is more efficacious than TH alone. Methods: A systematic search of PubMed, Embase and Medline from conception through December 2022 was conducted. Randomized- and quasi-randomized controlled trials, observational studies and retrospective studies evaluating HIE infants treated with combination therapy versus TH alone were selected. Primary reviewers extracted information on mortality, neurodevelopmental impairment and length of hospitalization for meta-analyses. Effect sizes were pooled using a random-effects model and measured as odds ratio (OR) or mean difference (MD) where applicable, and 95% confidence intervals (CI) were calculated. Risk of bias was assessed using the tool from the Cochrane Handbook for Systematic Reviews of Interventions. Results: The search strategy collected 519 studies, 16 of which met analysis inclusion criteria. HIE infants totaled 1,288 infants from included studies, 646 infants received some form of combination therapy, while 642 received TH alone. GABA receptor agonists, NMDA receptor antagonists, neurogenic and angiogenic agents, stem cells, glucocorticoids and antioxidants were identified as candidate adjuvants to TH that have been evaluated in clinical settings compared to TH alone. Length of hospitalization was significantly reduced in infants treated with combination therapy (MD -4.81, 95% CI [-8.42. to -1.19], p = .009) compared to those treated with TH alone. Risk of mortality and neurodevelopmental impairment did not differ between combination therapy and TH alone groups. Conclusion: Compared to the current standard of care, administration of neuroprotective adjuvants with TH reduced the duration of hospitalization but did not impact the risk of mortality or neurodevelopmental impairment in HIE infants. Meta-analysis was limited by a moderate risk of bias among included studies and small sample sizes. This analysis highlights the need for preclinical trials to conduct drug development studies in hypothermic settings to identify relevant molecular targets that may offer additive or synergistic neuroprotection to TH, and the need for larger powered clinical trials to determine the dose and timing of administration at which maximal clinical benefits are observed for adjuvant neuroprotectants.
Collapse
Affiliation(s)
- Andrea Ovcjak
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Riley Pontello
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Steve P. Miller
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, The University of Toronto, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
The mechanism of ferroptosis regulating oxidative stress in ischemic stroke and the regulation mechanism of natural pharmacological active components. Biomed Pharmacother 2022; 154:113611. [PMID: 36081288 DOI: 10.1016/j.biopha.2022.113611] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cerebrovascular diseases, such as ischemic stroke, pose serious medical challenges worldwide due to their high morbidity and mortality and limitations in clinical treatment strategies. Studies have shown that reactive oxygen species (ROS)-mediated inflammation, excitotoxicity, and programmed cell death of each neurovascular unit during post-stroke hypoxia and reperfusion play an important role in the pathological cascade. Ferroptosis, a programmed cell death characterized by iron-regulated accumulation of lipid peroxidation, is caused by abnormal metabolism of lipids, glutathione (GSH), and iron, and can accelerate acute central nervous system injury. Recent studies have gradually uncovered the pathological process of ferroptosis in the neurovascular unit of acute stroke. Some drugs such as iron chelators, ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) can protect nerves after neurovascular unit injury in acute stroke by inhibiting ferroptosis. In addition, combined with our previous studies on ferroptosis mediated by natural compounds in ischemic stroke, this review summarized the progress in the regulation mechanism of natural chemical components and herbal chemical components on ferroptosis in recent years, in order to provide reference information for future research on ferroptosis and lead compounds for the development of ferroptosis inhibitors.
Collapse
|
10
|
Perrone S, Lembo C, Gironi F, Petrolini C, Catalucci T, Corbo G, Buonocore G, Gitto E, Esposito SMR. Erythropoietin as a Neuroprotective Drug for Newborn Infants: Ten Years after the First Use. Antioxidants (Basel) 2022; 11:antiox11040652. [PMID: 35453337 PMCID: PMC9031072 DOI: 10.3390/antiox11040652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Protective strategies against perinatal brain injury represent a major challenge for modern neonatology. Erythropoietin (Epo) enhances endogenous mechanisms of repair and angiogenesis. In order to analyse the newest evidence on the role of Epo in prematurity, hypoxic ischemic encephalopathy (HIE) and perinatal stroke, a critical review using 2020 PRISMA statement guidelines was conducted. This review uncovered 26 clinical trials examining the use of Epo for prematurity and brain injury-related outcomes. The effects of Epo on prematurity were analysed in 16 clinical trials. Erythropoietin was provided until 32–35 weeks of corrected postnatal age with a dosage between 500–3000 UI/kg/dose. Eight trials reported the Epo effects on HIE term newborn infants: Erythropoietin was administered in the first weeks of life, at different multiple doses between 250–2500 UI/kg/dose, as either an adjuvant therapy with hypothermia or a substitute for hypothermia. Two trials investigated Epo effects in perinatal stroke. Erythropoietin was administered at a dose of 1000 IU/kg for three days. No beneficial effect in improving morbidity was observed after Epo administration in perinatal stroke. A positive effect on neurodevelopmental outcome seems to occur when Epo is used as an adjuvant therapy with hypothermia in the HIE newborns. Administration of Epo in preterm infants still presents inconsistencies with regard to neurodevelopmental outcome. Clinical trials show significant differences mainly in target population and intervention scheme. The identification of specific markers and their temporal expression at different time of recovery after hypoxia-ischemia in neonates might be implemented to optimize the therapeutic scheme after hypoxic-ischemic injury in the developing brain. Additional studies on tailored regimes, accounting for the risk stratification of brain damage in newborns, are required.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.P.); (S.M.R.E.)
- Correspondence:
| | - Chiara Lembo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Federica Gironi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Chiara Petrolini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.P.); (S.M.R.E.)
| | - Tiziana Catalucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Giulia Corbo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Eloisa Gitto
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | | |
Collapse
|
11
|
Tsang HW, Bhatia I, Chan KW, Chan GCF, Ip P, Cheung PT. Transmembrane 29 (Tmem29), a Newly Identified Molecule Showed Downregulation in Hypoxic-Ischemic Brain Damage. NEUROSCI 2022; 3:41-51. [PMID: 39484674 PMCID: PMC11523738 DOI: 10.3390/neurosci3010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 11/03/2024] Open
Abstract
Transmembrane 29 (Tmem29) gene with unknown function is a gene located on the X chromosome of the mouse genome. The gene showed differential expression in the Vannucci neonatal hypoxic-ischemic mouse brain model. We found the gene expresses with different molecular forms, including a group of long non-coding RNA forming a family of transcripts. It was predominantly expressed in the testes, brain, and kidney of mouse. In vitro identification and functional characterization were carried out in Neuro2a cells. Using fluorescence microscopy, Tmem29 protein was found to be constitutively expressed in mouse cell lines of different origins. Oxygen glucose deprivation (OGD) induced apoptotic cell death in Neuro2a cells and was confirmed by activations of caspase 3. Tmem29 protein was found to be associated with cell death especially at the time points of caspase 3 activations. A similar response was obtained in glucose deprivation (GD) cultures suggesting Tmem29 response to a common mechanism induced by OGD and GD. Downregulation of Tmem29 was induced by OGD and GD, further validating its response to hypoxia-ischemia (HI) insults. Our findings contributed to further understanding of molecular events after hypoxic-ischemic insults and opens new avenues for developing protective and therapeutic strategies for hypoxic-ischemic encephalopathy or even pathological programmed cell death.
Collapse
Affiliation(s)
- Hing-Wai Tsang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-W.T.); (I.B.); (K.-W.C.); (G.C.-F.C.)
| | - Inderjeet Bhatia
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-W.T.); (I.B.); (K.-W.C.); (G.C.-F.C.)
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-W.T.); (I.B.); (K.-W.C.); (G.C.-F.C.)
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-W.T.); (I.B.); (K.-W.C.); (G.C.-F.C.)
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-W.T.); (I.B.); (K.-W.C.); (G.C.-F.C.)
- Room 123, 1/F, New Clinical Building, Queen Mary Hospital, Hong Kong, China
| | - Pik-To Cheung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-W.T.); (I.B.); (K.-W.C.); (G.C.-F.C.)
- 5/F, Virtus Medical Tower, 122 Queen's Road Central, Hong Kong, China
| |
Collapse
|
12
|
Yang G, Xue Z, Zhao Y. Efficacy of erythropoietin alone in treatment of neonates with hypoxic-ischemic encephalopathy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26365. [PMID: 34128891 PMCID: PMC8213261 DOI: 10.1097/md.0000000000026365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Multiple clinical trials have demonstrated the safety and efficacy of erythropoietin in improving neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy (HIE). It is undoubtedly urgent to include only randomized controlled trials (RCTs) for more standardized systematic reviews and meta-analyses. The purpose of this study is to examine whether erythropoietin reduces the risk of death and improve neurodevelopmental disorders in infants with HIE. METHODS The electronic databases of Cochrane Library, EMBASE, PubMed, and Web of Science were searched from the inception to June 2021 using the following key terms: "erythropoietin," "hypoxic-ischemic encephalopathy," and "prospective," for all relevant RCTs. Only English publications were included. The primary outcome was mortality rate. Secondary outcomes included neurodevelopmental disorders, brain injury, and cognitive impairment. The Cochrane risk of bias tool was independently used to evaluate the risk of bias of included RCTs by 2 reviewers. RESULTS We hypothesized that group with erythropoietin would provide better therapeutic benefits compared with control group. OSF REGISTRATION NUMBER 10.17605/OSF.IO/FERUS.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Shanxi Medical University
| | - Zhimin Xue
- Neonatal Medicine, Shanxi Children's Hospital, Shanxi, China
| | - Yuan Zhao
- Neonatal Medicine, Shanxi Children's Hospital, Shanxi, China
| |
Collapse
|
13
|
McAdams RM, Berube MW. Emerging therapies and management for neonatal encephalopathy-controversies and current approaches. J Perinatol 2021; 41:661-674. [PMID: 33712717 DOI: 10.1038/s41372-021-01022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
Neonatal encephalopathy (NE) continues to have a major impact on newborn survival and neurodevelopmental outcomes worldwide. In high-income settings, therapeutic hypothermia is the only established standard treatment for neonates with moderate-to-severe NE, with compelling evidence that cooling reduces mortality and major neurodevelopmental impairment in survivors. Despite therapeutic hypothermia, a significant proportion of cooled infants continue to suffer long-term disability from brain injury. Innovative therapies offer the possibility of further improving neurodevelopmental outcomes by working synergistically with therapeutic hypothermia to decrease hypoxia-ischemia-induced excitotoxicity, prevent progression to secondary energy failure, and in some cases, promote neuroregeneration in the developing neonatal brain. This review discusses emerging NE therapies currently under investigation, offers insight into controversies surrounding various approaches to clinical care during therapeutic hypothermia, and identifies ongoing knowledge deficits that hinder attainment of optimal outcomes for neonates with NE.
Collapse
Affiliation(s)
- Ryan M McAdams
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Megan W Berube
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
14
|
Li N, Liu C, Wang C, Chen R, Li X, Wang Y, Wang C. Early changes of NLRP3 inflammasome activation after hypoxic-ischemic brain injury in neonatal rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:209-220. [PMID: 33564353 PMCID: PMC7868790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The pathogenesis of neonatal hypoxic-ischemic (HI) brain injury may involve activation of the NOD-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome and its downstream effectors, caspase-1 and interleukin (IL)-1β. The start time of therapy is associated with adverse neurodevelopmental outcome following HI injury. We performed this study investigating early dynamic changes in NLRP3, caspase-1, and IL-1β expression during the first 24 h following HI brain injury in an animal model, in order to optimize selection of treatment time after injury. Rats were randomized to an HI group (n=40) and sham group (n=40). Rats in the HI group were subjected to right common carotid artery ligation and then exposed to hypoxia (8% O2) for 2 h, and divided into 5 subgroups with 8 cases in each group at 5 postoperative time points (0, 4, 8, 12, 24 h). Brain injury during the first 24 h after surgery/hypoxia was evaluated by cranial ultrasonography. RT-PCR, western blot, and immunohistochemistry were applied to determine protein and mRNA expressions. In the HI group, ultrasonography revealed accelerated right vertebrobasilar artery flow at 4 h, enhanced brain parenchyma echogenicity at 24 h, and blood stealing from the vertebrobasilar artery at 24 h. In the HI group, immunohistochemistry demonstrated elevated expressions of NLRP3 and IL-1β at 4, 8, 12, and 24 h and enhanced expression of caspase-1 at 8 and 12 h (all P < 0.01). Western blot and RT-PCR revealed that, compared with the sham group, the HI group exhibited elevated expression of NLRP3 at 4, 8, and 24 h, caspase-1 at 12 h, and IL-1β at 8 h (all P < 0.05). In summary, the present results suggested that activation of NLRP3/caspase-1/IL-1β signaling occurs within 4 h of HI brain injury in the neonatal rat.
Collapse
Affiliation(s)
- Na Li
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese MedicineShenyang, China
- Children’s Neurorehabilitation Laboratory, Shenyang Children’s HospitalShenyang, China
| | - Chunying Liu
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese MedicineShenyang, China
| | - Chunnan Wang
- Children’s Neurorehabilitation Laboratory, Shenyang Children’s HospitalShenyang, China
| | - Ruidan Chen
- Children’s Neurorehabilitation Laboratory, Shenyang Children’s HospitalShenyang, China
| | - Xiaofeng Li
- Children’s Neurorehabilitation Laboratory, Shenyang Children’s HospitalShenyang, China
| | - Yang Wang
- Children’s Neurorehabilitation Laboratory, Shenyang Children’s HospitalShenyang, China
| | - Chunyu Wang
- Children’s Neurorehabilitation Laboratory, Shenyang Children’s HospitalShenyang, China
| |
Collapse
|
15
|
Erythropoietin monotherapy for neuroprotection after neonatal encephalopathy in low-to-middle income countries: a systematic review and meta-analysis. J Perinatol 2021; 41:2134-2140. [PMID: 34175900 PMCID: PMC8440196 DOI: 10.1038/s41372-021-01132-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE We examined whether erythropoietin monotherapy improves neurodevelopmental outcomes in near-term and term infants with neonatal encephalopathy (NE) in low-middle income countries (LMICs). METHODS We searched Pubmed, Embase, and Web of Science databases to identify studies that used erythropoietin (1500-12,500 units/kg/dose) or a derivative to treat NE. RESULTS Five studies, with a total of 348 infants in LMICs, were retrieved. However, only three of the five studies met the primary outcome of death or neuro-disability at 18 months of age or later. Erythropoietin reduced the risk of death (during the neonatal period and at follow-up) or neuro-disability at 18 months or later (p < 0.05). Death or neuro-disability occurred in 27.6% of the erythropoietin group and 49.7% of the comparison group (risk ratio 0.56 (95% CI: 0.42-0.75)). CONCLUSION The pooled data suggest that erythropoietin monotherapy may improve outcomes after NE in LMICs where therapeutic hypothermia is not available.
Collapse
|
16
|
Thompson A, Farmer K, Rowe E, Hayley S. Erythropoietin modulates striatal antioxidant signalling to reduce neurodegeneration in a toxicant model of Parkinson's disease. Mol Cell Neurosci 2020; 109:103554. [DOI: 10.1016/j.mcn.2020.103554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
|
17
|
Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13120424. [PMID: 33255969 PMCID: PMC7760199 DOI: 10.3390/ph13120424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence in the literature demonstrates the pleiotropic effects of the administration of recombinant human erythropoietin (rhEPO) and its molecular variants in different tissues and organs, including the brain. Some of these reports suggest that the chemical properties of this molecule by itself or in combination with other agents (e.g., growth factors) could provide the necessary pharmacological characteristics to be considered a potential protective agent in neurological disorders such as Alzheimer’s disease (AD). AD is a degenerative disorder of the brain, characterized by an aberrant accumulation of amyloid β (Aβ) and hyperphosphorylated tau (tau-p) proteins in the extracellular and intracellular space, respectively, leading to inflammation, oxidative stress, excitotoxicity, and other neuronal alterations that compromise cell viability, causing neurodegeneration in the hippocampus and the cerebral cortex. Unfortunately, to date, it lacks an effective therapeutic strategy for its treatment. Therefore, in this review, we analyze the evidence regarding the effects of exogenous EPOs (rhEPO and its molecular variants) in several in vivo and in vitro Aβ and tau-p models of AD-type neurodegeneration, to be considered as an alternative protective treatment to this condition. Particularly, we focus on analyzing the differential effect of molecular variants of rhEPO when changes in doses, route of administration, duration of treatment or application times, are evaluated for the improved cellular alterations generated in this disease. This narrative review shows the evidence of the effectiveness of the exogenous EPOs as potential therapeutic molecules, focused on the mechanisms that establish cellular damage and clinical manifestation in the AD.
Collapse
Affiliation(s)
- José J. Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Martha C. Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM-Juriquilla, Querétaro 76230, Mexico;
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Ciudad de Mexico 07360, Mexico;
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| | - Carlos Beas-Zárate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| |
Collapse
|
18
|
Zhou KQ, Davidson JO, Bennet L, Gunn AJ. Combination treatments with therapeutic hypothermia for hypoxic-ischemic neuroprotection. Dev Med Child Neurol 2020; 62:1131-1137. [PMID: 32614467 DOI: 10.1111/dmcn.14610] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Therapeutic hypothermia is now proven to reduce death or disability in term and near-term born infants with moderate to severe hypoxic-ischemic encephalopathy. Nevertheless, many infants still survive with disability, despite treatment with hypothermia. Recent preclinical and clinical studies suggest that current protocols for therapeutic hypothermia are near-optimal. The obvious strategy, in addition to improving early initiation of therapeutic hypothermia after birth, is to combine hypothermia with other neuroprotective agents. We review evidence that the mechanisms of action of many promising agents overlap with the anti-excitotoxic, anti-apoptotic, and anti-inflammatory mechanisms of hypothermia, leading to a lack of benefit from combination treatment. Moreover, even apparently beneficial combinations have failed to translate in clinical trials. These considerations highlight the need for preclinical studies to test clinically realistic protocols of timing and duration of treatment, before committing to large randomized controlled trials.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Maxwell JR, Ohls RK. Update on Erythropoiesis-Stimulating Agents Administered to Neonates for Neuroprotection. Neoreviews 2020; 20:e622-e635. [PMID: 31676737 DOI: 10.1542/neo.20-11-e622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Erythropoiesis-stimulating agents (ESAs) such as erythropoietin and darbepoetin have been studied as red blood cell growth factors in preterm and term infants for more than 30 years. Recently, studies have focused on the potential neuroprotective effects of ESAs. In this review, we summarize preclinical animal models and recent clinical trials that provide evidence for ESAs as potential treatments to improve neurodevelopmental outcomes in preterm and term infants.
Collapse
Affiliation(s)
- Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM
| | - Robin K Ohls
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| |
Collapse
|
20
|
Oorschot DE, Sizemore RJ, Amer AR. Treatment of Neonatal Hypoxic-Ischemic Encephalopathy with Erythropoietin Alone, and Erythropoietin Combined with Hypothermia: History, Current Status, and Future Research. Int J Mol Sci 2020; 21:E1487. [PMID: 32098276 PMCID: PMC7073127 DOI: 10.3390/ijms21041487] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) remains a major cause of morbidity and mortality. Moderate hypothermia (33.5 °C) is currently the sole established standard treatment. However, there are a large number of infants for whom this therapy is ineffective. This inspired global research to find neuroprotectants to potentiate the effect of moderate hypothermia. Here we examine erythropoietin (EPO) as a prominent candidate. Neonatal animal studies show that immediate, as well as delayed, treatment with EPO post-injury, can be neuroprotective and/or neurorestorative. The observed improvements of EPO therapy were generally not to the level of control uninjured animals, however. This suggested that combining EPO treatment with an adjunct therapeutic strategy should be researched. Treatment with EPO plus hypothermia led to less cerebral palsy in a non-human primate model of perinatal asphyxia, leading to clinical trials. A recent Phase II clinical trial on neonatal infants with HIE reported better 12-month motor outcomes for treatment with EPO plus hypothermia compared to hypothermia alone. Hence, the effectiveness of combined treatment with moderate hypothermia and EPO for neonatal HIE currently looks promising. The outcomes of two current clinical trials on neurological outcomes at 18-24 months-of-age, and at older ages, are now required. Further research on the optimal dose, onset, and duration of treatment with EPO, and critical consideration of the effect of injury severity and of gender, are also required.
Collapse
Affiliation(s)
- Dorothy E. Oorschot
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (R.J.S.); (A.R.A.)
| | | | | |
Collapse
|
21
|
Xiong LL, Xue LL, Al-Hawwas M, Huang J, Niu RZ, Tan YX, Xu Y, Su YY, Liu J, Wang TH. Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage. Neural Regen Res 2020; 15:86-95. [PMID: 31535656 PMCID: PMC6862396 DOI: 10.4103/1673-5374.264469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A single-nucleotide polymorphism (SNP) is an alteration in one nucleotide in a certain position within a genome. SNPs are associated with disease susceptibility. However, the influences of SNPs on the pathogenesis of neonatal hypoxic-ischemic brain damage remain elusive. Seven-day-old rats were used to establish a hypoxic ischemic encephalopathy model. SNPs and expression profiles of mRNAs were analyzed in hypoxic ischemic encephalopathy model rats using RNA sequencing. Genes exhibiting SNPs associated with hypoxic ischemic encephalopathy were identified and studied by gene ontology and pathway analysis to identify their possible involvement in the disease mechanism. We identified 89 up-regulated genes containing SNPs that were mainly located on chromosome 1 and 2. Gene ontology analysis indicated that the up-regulated genes containing SNPs are mainly involved in angiogenesis, wound healing and glutamatergic synapse and biological processing of calcium-activated chloride channels. Signaling pathway analysis indicated that the differentially expressed genes play a role in glutamatergic synapses, long-term depression and oxytocin signaling. Moreover, intersection analysis of high throughput screening following PubMed retrieval and RNA sequencing for SNPs showed that CSRNP1, DUSP5 and LRRC25 were most relevant to hypoxic ischemic encephalopathy. Significant up-regulation of genes was confirmed by quantitative real-time polymerase chain reaction analysis of oxygen-glucose-deprived human fetal cortical neurons. Our results indicate that CSRNP1, DUSP5 and LRRC25, containing SNPs, may be involved in the pathogenesis of hypoxic ischemic encephalopathy. These findings indicate a novel direction for further hypoxic ischemic encephalopathy research. This animal study was approved on February 5, 2017 by the Animal Care and Use Committee of Kunming Medical University, Yunnan Province, China (approval No. kmmu2019038). Cerebral tissue collection from a human fetus was approved on September 30, 2015 by the Ethics Committee of Kunming Medical University, China (approval No. 2015-9).
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Anesthesiology, National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Lu-Lu Xue
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jin Huang
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ya-Xin Tan
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying-Ying Su
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ting-Hua Wang
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province; Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
22
|
Sun YJ, Zhang ZY, Fan B, Li GY. Neuroprotection by Therapeutic Hypothermia. Front Neurosci 2019; 13:586. [PMID: 31244597 PMCID: PMC6579927 DOI: 10.3389/fnins.2019.00586] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hypothermia therapy is an old and important method of neuroprotection. Until now, many neurological diseases such as stroke, traumatic brain injury, intracranial pressure elevation, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy have proven to be suppressed by therapeutic hypothermia. Beneficial effects of therapeutic hypothermia have also been discovered, and progress has been made toward improving the benefits of therapeutic hypothermia further through combination with other neuroprotective treatments and by probing the mechanism of hypothermia neuroprotection. In this review, we compare different hypothermia induction methods and provide a summarized account of the synergistic effect of hypothermia therapy with other neuroprotective treatments, along with an overview of hypothermia neuroprotection mechanisms and cold/hypothermia-induced proteins.
Collapse
Affiliation(s)
- Ying-Jian Sun
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Davidson JO, Dhillon SK, Wassink G, Zhou KQ, Bennet L, Gunn AJ. Endogenous neuroprotection after perinatal hypoxia-ischaemia: the resilient developing brain. J R Soc N Z 2018. [DOI: 10.1080/03036758.2018.1529685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Joanne O. Davidson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kelly Q. Zhou
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Wang Q, Lv H, Lu L, Ren P, Li L. Neonatal hypoxic-ischemic encephalopathy: emerging therapeutic strategies based on pathophysiologic phases of the injury. J Matern Fetal Neonatal Med 2018; 32:3685-3692. [PMID: 29681183 DOI: 10.1080/14767058.2018.1468881] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is an important cause of neonatal death and disability. At present, there is no unified standard and specialized treatment method for neonatal HIE. In clinical practice, we have found that a gap remains between preclinical medical research and clinical application in the treatment of neonatal HIE. To promote an organic combination of preclinical research and clinical application, we propose the different phases as intervention targets, based on the pathophysiologic changes in phases I, II, and III of neonatal HIE; moreover, we suggest transformative medicine as a principle that may improve the therapeutic effect by blocking the progression of the disease to an irreversible stage. For instance, in phase I, mild hypothermia, free radical scavenger (erythropoietin, hydrogen-rich saline), excitatory amino acid receptor blocker, and neuroprotective agents should be administered to neonates with moderate/severe HIE; in phase II, following phase I treatment, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients; in phase III, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients. As soon as the patient's condition has stabilized, acupuncture, massage, and rehabilitation training should be performed. Following further study of stem cells, stem cell transplantation is expected to become the most promising therapeutic candidate for treatment of severe neonatal HIE with its sequelae.
Collapse
Affiliation(s)
- Qiuli Wang
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Hongyan Lv
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lixin Lu
- c Department of Pediatrics , Handan 7th Hospital , Handan , PR China
| | - Pengshun Ren
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lianxiang Li
- b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,d Department of Neural Development and Neural Pathology , Hebei University of Engineering School of Medicine , Handan , PR China
| |
Collapse
|