1
|
Xu Y, Sun S, Fu Y, Wang L, Ren C, Ling Y, Zhang Z, Cao H. Positive In Vitro Effect of ROCK Pathway Inhibitor Y-27632 on Qualitative Characteristics of Goat Sperm Stored at Low Temperatures. Animals (Basel) 2024; 14:1441. [PMID: 38791659 PMCID: PMC11117216 DOI: 10.3390/ani14101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Y-27632, as a cytoskeleton protector, is commonly used for low-temperature preservation of cells. Goat sperm are prone to damage to the cytoskeleton under low-temperature conditions, leading to a loss of sperm vitality. However, the Y-27632 small molecule has not yet been used in research on low-temperature preservation of goat semen. This study aims to address the issue of low temperature-induced loss of sperm motility in goats by using Y-27632, and explore the regulation of Y-27632 on goat sperm metabolism. At a low temperature of 4 °C, different concentrations of Y-27632 were added to the sperm diluent. The regulation of Y-27632 on the quality of low temperature-preserved goat semen was evaluated by detecting goat sperm motility, antioxidant capacity, mitochondrial activity, cholesterol levels, and metabolomics analysis. The results indicated that 20 µM Y-27632 significantly increased plasma membrane integrity (p < 0.05), and acrosome integrity (p < 0.05) and sperm motility (p < 0.05), increased levels of superoxide dismutase (SOD) and catalase (CAT) (p < 0.01), increased total antioxidant capacity (T-AOC) (p < 0.05), decreased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) (p < 0.01), and significantly increased mitochondrial membrane potential (MMP). The levels of ATP, Ca2+, and TC in sperm increased (p < 0.01). Twenty metabolites with significant differences were identified, with six metabolic pathways having a significant impact, among which the D-glutamic acid and D-glutamine metabolic pathways had the most significant impact. The artificial insemination effect of goat semen treated with 20 μM Y-27632 was not significantly different from that of fresh semen. This study indicates that Y-27632 improves the quality of low-temperature preservation of sperm by protecting the sperm plasma membrane, enhancing sperm antioxidant capacity, regulating D-glutamine and D-glutamate metabolism, and promoting the application of low-temperature preservation of semen in artificial insemination technology.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Roda VMDP, da Silva RA, Siqueira PV, Lustoza-Costa GJ, Moraes GM, Matsuda M, Hamassaki DE, Santos MF. Inhibition of Rho kinase (ROCK) impairs cytoskeletal contractility in human Müller glial cells without effects on cell viability, migration, and extracellular matrix production. Exp Eye Res 2024; 238:109745. [PMID: 38043763 DOI: 10.1016/j.exer.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The epiretinal membrane is a fibrocontractile tissue that forms on the inner surface of the retina, causing visual impairment ranging from mild to severe, and even retinal detachment. Müller glial cells actively participate in the formation of this membrane. Current research is constantly seeking for new therapeutic approaches that aim to prevent or treat cellular dysfunctions involved in the progression of this common fibrosis condition. The Rho GTPases signaling pathway regulates several processes associated with the epiretinal membrane, such as cell proliferation, migration, and contraction. Rho kinase (ROCK), an effector of the RhoA GTPase, is an interesting potential therapeutic target. This study aimed to evaluate the effects of a ROCK inhibitor (Y27632) on human Müller cells viability, growth, cytoskeletal organization, expression of extracellular matrix components, myofibroblast differentiation, migration, and contractility. Müller cells of the MIO-M1 lineage were cultured and treated for different periods with the inhibitor. Viability was evaluated by MTT assay and trypan blue exclusion method, and growth was evaluated by growth curve and BrdU incorporation assay. The actin cytoskeleton was stained with fluorescent phalloidin, intermediate filaments and microtubules were analyzed with immunofluorescence for vimentin and α-tubulin. Gene and protein expression of collagens I and V, laminin and fibronectin were evaluated by rt-PCR and immunofluorescence. Chemotactic and spontaneous cell migration were studied by transwell assay and time-lapse observation of live cells, respectively. Cell contractility was assessed by collagen gel contraction assay. The results showed that ROCK inhibition by Y27632 did not affect cell viability, but decreased cell growth and proliferation after 72 h. There was a change in cell morphology and organization of F-actin, with a reduction in the cell body, disappearance of stress fibers and formation of long, branched cell extensions. Microtubules and vimentin filaments were also affected, possibly because of F-actin alterations. The inhibitor also reduced gene expression and immunoreactivity of smooth muscle α-actin, a marker of myofibroblasts. The expression of extracellular matrix components was not affected by the inhibitor. Chemotactic cell migration showed no significant changes, while cell contractility was substantially reduced. No spontaneous migration of MIO-M1 cells was observed. In conclusion, pharmacological inhibition of ROCK in Müller cells could be a potentially promising approach to treat epiretinal membranes by preventing cell proliferation, contractility and transdifferentiation, without affecting cell viability.
Collapse
Affiliation(s)
- Vinicius Moraes de Paiva Roda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rafael André da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Veloso Siqueira
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Jesus Lustoza-Costa
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriélla Malheiros Moraes
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marinilce Fagundes Santos
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Jiao W, Li W, Li T, Feng T, Wu C, Zhao D. Induced pluripotent stem cell-derived extracellular vesicles overexpressing SFPQ protect retinal Müller cells against hypoxia-induced injury. Cell Biol Toxicol 2023; 39:2647-2663. [PMID: 36790503 DOI: 10.1007/s10565-023-09793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
Splicing factor proline/glutamine-rich (SFPQ) is expressed in induced pluripotent stem cells (iPSCs), which are reported to orchestrate hypoxic injury responses and release extracellular vesicles (EVs). Therefore, this study sought to explore the role of iPSC-derived EVs carrying SFPQ in hypoxia-induced injury to retinal Müller cells. We induced oxygen-glucose deprivation/reoxygenation (OGD/R) in Müller cells. SFPQ was overexpressed or knocked down in iPSCs, from which EVs were extracted. Müller cells were co-cultured with EVs, and the results indicated that SFPQ protein was transferred into retinal Müller cells by iPSC-derived EVs. We identified an interaction of SFPQ with HDAC1 in retinal Müller cells. Specifically, SFPQ recruited HDAC1 to downregulate HIF-2α by regulating its acetylation. The in vitro studies suggested that iPSC-derived EVs, SFPQ or HDAC1 overexpression, or HIF-2α silencing diminished cell injury and apoptosis but elevated proliferation in retinal Müller cells. The in vivo studies indicated that iPSC-derived EVs containing SFPQ curtailed apoptosis of retinal Müller cells, thus alleviating retinal ischemia/reperfusion (I/R) injury of rat model. Taken together, iPSC-derived EVs containing SFPQ upregulated HDAC1 to attenuate OGD/R-induced Müller cell injury via downregulation of HIF-2α.
Collapse
Affiliation(s)
- Wenjun Jiao
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Weifang Li
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Tianyi Li
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Tao Feng
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Cong Wu
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Di Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
4
|
Zhou Q, Tang H, Li S. Protective effect of evolocumab on Müller cells in the rat retina under hyperglycaemic and hypoxic conditions. J Diabetes Complications 2023; 37:108593. [PMID: 37717351 DOI: 10.1016/j.jdiacomp.2023.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023]
Abstract
AIMS In this study, rat retinal Müller cells (RMCs) were cultured in vitro to investigate the protective mechanism of evolocumab on rat RMCs in diabetes mellitus (DM) and the expression of relevant inflammatory factors. METHODS The expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the retinal tissues of diabetic rats was detected by immunohistochemistry. Sprague-Dawley (SD) rats at 5-7 d of life were selected as the source of RMCs and divided equally into three groups of 12 rats/24 eyes each. The effect of CoCl2 and evolocumab on the cellular activity of RMCs was determined by CCK-8 assay. The effect of CoCl2 and evolocumab on the migration level of RMCs after 72 h was measured by scratch test and the expression of various proteins after 72 h was measured by Western blot. RESULTS In STZ rats, the expression of PCSK9 was significantly upregulated in the retina, especially in the inner nuclear layer, which is mainly composed of RMCs. High glucose and CoCl2 stimulation markedly elevated PCSK9 and GFAP expression at the protein level in RMCs (P < 0.05). Evolocumab treatment (100 μg/ml) reduced the expression and secretion of inflammatory factors in stimulated RMCs (P < 0.05). Furthermore, evolocumab downregulates toll-like receptor-4 (TLR-4) levels and inhibited nuclear transcription factor-κB (NF-κB) phosphorylation in RMCs (P < 0.05). CONCLUSIONS Evolocumab protects against inflammation in RMCs, at least in part, by negatively regulating the activation of the TLR-4/NF-κB signalling pathway. Evolocumab may be a promising anti-inflammatory therapy for ocular fundus diseases, such as DR.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Ophthalmology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Huan Tang
- Department of Ophthalmology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shuting Li
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
5
|
Fujii Y, Arima M, Murakami Y, Sonoda KH. Rhodopsin-positive cell production by intravitreal injection of small molecule compounds in mouse models of retinal degeneration. PLoS One 2023; 18:e0282174. [PMID: 36821627 PMCID: PMC9949636 DOI: 10.1371/journal.pone.0282174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
We aimed to verify whether the intravitreal injection of small molecule compounds alone can create photoreceptor cells in mouse models of retinal degeneration. Primary cultured mouse Müller cells were stimulated in vitro with combinations of candidate compounds and the rhodopsin expression was measured on day 7 using polymerase chain reaction and immunostaining. We used 6-week-old N-methyl-N-nitrosourea-treated and 4-week-old rd10 mice as representative in vivo models of retinal degeneration. The optimal combination of compounds selected via in vitro screening was injected into the vitreous and the changes in rhodopsin expression were investigated on day 7 using polymerase chain reaction and immunostaining. The origin of rhodopsin-positive cells was also analyzed via lineage tracing and the recovery of retinal function was assessed using electroretinography. The in vitro mRNA expression of rhodopsin in Müller cells increased 30-fold, and 25% of the Müller cells expressed rhodopsin protein 7 days after stimulation with a combination of 4 compounds: transforming growth factor-β inhibitor, bone morphogenetic protein inhibitor, glycogen synthase kinase 3 inhibitor, and γ-secretase inhibitor. The in vivo rhodopsin mRNA expression and the number of rhodopsin-positive cells in the outer retina were significantly increased on day 7 after the intravitreal injection of these 4 compounds in both N-methyl-N-nitrosourea-treated and rd10 mice. Lineage tracing in td-Tomato mice treated with N-methyl-N-nitrosourea suggested that the rhodopsin-positive cells originated from endogenous Müller cells, accompanied with the recovery of the rhodopsin-derived scotopic function. It was suggested that rhodopsin-positive cells generated by compound stimulation contributes to the recovery of retinal function impaired by degeneration.
Collapse
Affiliation(s)
- Yuya Fujii
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan,* E-mail:
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Dexmedetomidine Attenuates Methotrexate-Induced Neurotoxicity and Memory Deficits in Rats through Improving Hippocampal Neurogenesis: The Role of miR-15a/ROCK-1/ERK1/2/CREB/BDNF Pathway Modulation. Int J Mol Sci 2023; 24:ijms24010766. [PMID: 36614208 PMCID: PMC9821704 DOI: 10.3390/ijms24010766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Methotrexate (MTX) is a widely used neurotoxic drug with broad antineoplastic and immunosuppressant spectra. However, the exact molecular mechanisms by which MTX inhibits hippocampal neurogenesis are yet unclear. Dexmedetomidine (Dex), an α2-adrenergic receptor agonist, has recently shown neuroprotective effects; however, its full mechanism is unexplored. This study investigated the potential of Dex to mitigate MTX-induced neurotoxicity and memory impairment in rats and the possible role of the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway. Notably, no former studies have linked this pathway to MTX-induced neurotoxicity. Male Sprague Dawley rats were placed into four groups. Group 1 received saline i.p. daily and i.v. on days 8 and 15. Group 2 received Dex at 10 μg/kg/day i.p. for 30 days. Group 3 received MTX at 75 mg/kg i.v. on days 8 and 15, followed by four i.p. doses of leucovorin at 6 mg/kg after 18 h and 3 mg/kg after 26, 42, and 50 h. Group 4 received MTX and leucovorin as in group 3 and Dex daily dosages as in group 2. Bioinformatic analysis identified the association of miR-15a with ROCK-1/ERK1/2/CREB/BDNF and neurogenesis. MTX lowered hippocampal doublecortin and Ki-67, two markers of neurogenesis. This was associated with the downregulation of miR-15a, upregulation of its target ROCK-1, and reduction in the downstream ERK1/2/CREB/BDNF pathway, along with disturbed hippocampal redox state. Novel object recognition and Morris water maze tests demonstrated the MTX-induced memory deficiencies. Dex co-treatment reversed the MTX-induced behavioral, biochemical, and histological alterations in the rats. These neuroprotective actions could be partly mediated through modulating the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway, which enhances hippocampal neurogenesis.
Collapse
|
7
|
Xie D, Hu J, Wu T, Cao K, Luo X. Potential Biomarkers and Drugs for Nanoparticle-Induced Cytotoxicity in the Retina: Based on Regulation of Inflammatory and Apoptotic Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095664. [PMID: 35565057 PMCID: PMC9099825 DOI: 10.3390/ijerph19095664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
The eye is a superficial organ directly exposed to the surrounding environment. Thus, the toxicity of nanoparticle (NP) pollutants to the eye may be potentially severer relative to inner organs and needs to be monitored. However, the cytotoxic mechanisms of NPs on the eyes remain rarely reported. This study was to screen crucial genes associated with NPs-induced retinal injuries. The gene expression profiles in the retina induced by NPs [GSE49371: Au20, Au100, Si20, Si100; GSE49048: presumptive therapeutic concentration (PTC) TiO2, 10PTC TiO2] and commonly used retinal cell injury models (optic nerve injury procedure: GSE55228, GSE120257 and GSE131486; hypoxia exposure: GSE173233, GSE151610, GSE135844; H2O2 exposure: GSE122270) were obtained from the Gene Expression Omnibus database. A total of 381 differentially expressed genes (including 372 mRNAs and 9 lncRNAs) were shared between NP exposure and the optic nerve injury model when they were compared with their corresponding controls. Function enrichment analysis of these overlapped genes showed that Tlr2, Crhbp, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk were involved in inflammatory- and apoptotic-related processes. Protein-protein interaction network analysis revealed eight of them (Tlr2, Ccl2, Cxcl10, Irf8, Socs3, Stat3, Casp1 and Syk) were hub genes. Moreover, Socs3 could interact with upstream Stat3 and downstream Fas/Casp1/Ccl2/Cxcl10; Irf8 could interact with upstream Tlr2, Syk and downstream Cxcl10. Competing endogenous RNAs network analysis identified Socs3, Irf8, Gdf6 and Crhbp could be regulated by lncRNAs and miRNAs (9330175E14Rik-mmu-miR-762-Socs3, 6430562O15Rik-mmu-miR-207-Irf8, Gm9866-mmu-miR-669b-5p-Gdf6, 4933406C10Rik-mmu-miR-9-5p-Crhbp). CMap-CTD database analyses indicated the expression levels of Tlr2, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk could be reversed by folic acid. Crhbp and Gdf6 were also verified to be downregulated, while Tlr2, Ccl2, Irf8, Socs3 and Stat3 were upregulated in hypoxia/H2O2-induced retinal injury models. Hereby, our findings suggest that Crhbp, Irf8, Socs3 and Gdf6 as well as their upstream mRNAs, lncRNAs and miRNAs may be potential monitoring biomarkers and therapeutic targets for NP-induced retinal injuries. Folic acid supplementation may be a preventive and therapeutic approach.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd., 3188 Xiupu Road, Pudong New Area, Shanghai 200122, China;
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Shanghai 200240, China;
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
- Correspondence: ; Tel.: +86-0512-67162531
| |
Collapse
|
8
|
Lebon C, Neubauer H, Berdugo M, Delaunay K, Markert E, Becker K, Baum-Kroker KS, Prestle J, Fuchs H, Bakker RA, Behar-Cohen F. Evaluation of an Intravitreal Rho-Associated Kinase Inhibitor Depot Formulation in a Rat Model of Diabetic Retinopathy. Pharmaceutics 2021; 13:pharmaceutics13081105. [PMID: 34452066 PMCID: PMC8401380 DOI: 10.3390/pharmaceutics13081105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Rho-associated kinase (ROCK) activation was shown to contribute to microvascular closure, retinal hypoxia, and to retinal pigment epithelium (RPE) barrier disruption in a rat model of diabetic retinopathy. Fasudil, a clinically approved ROCK inhibitor, improved retinal perfusion and reduced edema in this model, indicating that ROCK inhibition could be a promising new therapeutic approach for the treatment of diabetic retinopathy. However, due to its short intravitreal half-life, fasudil is not suitable for long-term treatment. In this study, we evaluated a very potent ROCK1/2 inhibitor (BIRKI) in a depot formulation administered as a single intravitreal injection providing a slow release for at least four weeks. Following BIRKI intravitreal injection in old Goto-Kakizaki (GK) type 2 diabetic rats, we observed a significant reduction in ROCK1 activity in the retinal pigment epithelium/choroid complex after 8 days and relocation of ROCK1 to the cytoplasm and nucleus in retinal pigment epithelium cells after 28 days. The chronic ROCK inhibition by the BIRKI depot formulation restored retinal pigment epithelial cell morphology and distribution, favored retinal capillaries dilation, and reduced hypoxia and inner blood barrier leakage observed in the diabetic retina. No functional or morphological negative effects were observed, indicating suitable tolerability of BIRKI after intravitreous injection. In conclusion, our data suggest that sustained ROCK inhibition, provided by BIRKI slow-release formulation, could be a valuable treatment option for diabetic retinopathy, especially with regard to the improvement of retinal vascular infusion and protection of the outer retinal barrier.
Collapse
Affiliation(s)
- Cecile Lebon
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Marianne Berdugo
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Kimberley Delaunay
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Elke Markert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (E.M.); (K.B.)
| | - Kolja Becker
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (E.M.); (K.B.)
| | - Katja S. Baum-Kroker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany;
| | - Jürgen Prestle
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Holger Fuchs
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Remko A. Bakker
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Francine Behar-Cohen
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
- Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophthalmopole, 75014 Paris, France
- Correspondence:
| |
Collapse
|
9
|
Mateos-Olivares M, García-Onrubia L, Valentín-Bravo FJ, González-Sarmiento R, Lopez-Galvez M, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Rho-Kinase Inhibitors for the Treatment of Refractory Diabetic Macular Oedema. Cells 2021; 10:cells10071683. [PMID: 34359853 PMCID: PMC8307715 DOI: 10.3390/cells10071683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic macular oedema (DMO) is one of the leading causes of vision loss associated with diabetic retinopathy (DR). New insights in managing this condition have changed the paradigm in its treatment, with intravitreal injections of antivascular endothelial growth factor (anti-VEGF) having become the standard therapy for DMO worldwide. However, there is no single standard therapy for all patients DMO refractory to anti-VEGF treatment; thus, further investigation is still needed. The key obstacles in developing suitable therapeutics for refractory DMO lie in its complex pathophysiology; therefore, there is an opportunity for further improvements in the progress and applications of new drugs. Previous studies have indicated that Rho-associated kinase (Rho-kinase/ROCK) is an essential molecule in the pathogenesis of DMO. This is why the Rho/ROCK signalling pathway has been proposed as a possible target for new treatments. The present review focuses on the recent progress on the possible role of ROCK and its therapeutic potential in DMO. A systematic literature search was performed, covering the years 1991 to 2021, using the following keywords: "rho-Associated Kinas-es", "Diabetic Retinopathy", "Macular Edema", "Ripasudil", "Fasudil" and "Netarsudil". Better insight into the pathological role of Rho-kinase/ROCK may lead to the development of new strategies for refractory DMO treatment and prevention.
Collapse
Affiliation(s)
- Milagros Mateos-Olivares
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Luis García-Onrubia
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fco. Javier Valentín-Bravo
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Rogelio González-Sarmiento
- Area of Infectious, Inflammatory and Metabolic Disease, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Maribel Lopez-Galvez
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - J. Carlos Pastor
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| | - Salvador Pastor-Idoate
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| |
Collapse
|
10
|
Sugiyama T, Yamamoto H, Kon T, Chaya T, Omori Y, Suzuki Y, Abe K, Watanabe D, Furukawa T. The potential role of Arhgef33 RhoGEF in foveal development in the zebra finch retina. Sci Rep 2020; 10:21450. [PMID: 33293601 PMCID: PMC7722920 DOI: 10.1038/s41598-020-78452-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/17/2020] [Indexed: 01/11/2023] Open
Abstract
The fovea is a pit formed in the center of the retina that enables high-acuity vision in certain vertebrate species. While formation of the fovea fascinates many researchers, the molecular mechanisms underlying foveal development are poorly understood. In the current study, we histologically investigated foveal development in zebra finch (Taeniopygia guttata) and found that foveal pit formation begins just before post-hatch day 14 (P14). We next performed RNA-seq analysis to compare gene expression profiles between the central (foveal and parafoveal) and peripheral retina in zebra finch at P14. We found that the Arhgef33 expression is enriched in the middle layer of the inner nuclear layer at the parafovea, suggesting that Arhgef33 is dominantly expressed in Müller glial cells in the developing parafovea. We then performed a pull-down assay using Rhotekin-RBD and observed GEF activity of Arhgef33 against RhoA. We found that overexpression of Arhgef33 in HEK293 cells induces cell contraction and that Arhgef33 expression inhibits neurite extension in Neuro 2A cells, which is partially recovered by a Rho-kinase (ROCK) inhibitor. Taken together, we used zebra finch as a model animal to investigate foveal development and identified Arhgef33 as a candidate protein possibly involved in foveal development through modulating RhoA activity.
Collapse
Affiliation(s)
- Takefumi Sugiyama
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruka Yamamoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Kentaro Abe
- Laboratory of Brain Development, Graduate School of Life Sciences, Tohoku University, Miyagi, 980-8577, Japan.,Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Improving outcomes in retinal detachment: the potential role of rho-kinase inhibitors. Curr Opin Ophthalmol 2020; 31:192-198. [PMID: 32235252 DOI: 10.1097/icu.0000000000000658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Retinal detachment initiates a series of events that lead to degenerative changes in retinal synaptic architecture as well as the well-known phenomena of gliosis and photoreceptor apoptosis. Retinal reattachment does not always result in complete visual recovery, even if the fovea is not directly involved in the detachment. Rho-kinase (ROCK) inhibitors may mitigate some of these deleterious changes including disruption of synaptic architecture, photoreceptor apoptosis, and initiation of the epithelial-mesenchymal transition that characterizes proliferative vitreoretinopathy (PVR). This review focuses on the use of ROCK inhibitors to modulate synaptic disjunction. RECENT FINDINGS ROCK inhibition prevents retinal detachment-induced photoreceptor synaptic terminal retraction (i.e., synaptic disjunction), thereby diminishing the damage of the first synapse in the visual pathway. ROCK inhibition also reduces retinal detachment-induced photoreceptor apoptosis and suppresses PVR progression in preclinical models. SUMMARY Inhibition of ROCK may help to optimize visual recovery after retinal detachment surgery or iatrogenic detachments during cell transplantation or viral subretinal injection and might play a role in reducing the risk of PVR after retinal detachment surgery.
Collapse
|
12
|
Moura-Coelho N, Tavares Ferreira J, Bruxelas CP, Dutra-Medeiros M, Cunha JP, Pinto Proença R. Rho kinase inhibitors-a review on the physiology and clinical use in Ophthalmology. Graefes Arch Clin Exp Ophthalmol 2019; 257:1101-1117. [PMID: 30843105 DOI: 10.1007/s00417-019-04283-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
The Rho kinase (ROCK) signaling pathway is involved in several cellular events that include cell proliferation and cytoskeleton modulation leading to cell adhesion. The ROCK pathway in the human eye has been hypothesized to play important roles in corneal endothelial cell physiology and pathologic states. In addition, ROCK signaling has been identified as an important regulator of trabecular meshwork (TM) outflow, which is altered in glaucomatous eyes. These roles in corneal and glaucomatous disease states have led to the growing interest in the development of drugs selectively targeting this pathway (ROCK inhibitors). The authors provide a review of the literature on the pathobiology of the ROCK signaling in corneal endothelial disease, glaucoma, and vitreoretinal disease, as well as the clinical usefulness of ROCK inhibitors in Ophthalmology.
Collapse
Affiliation(s)
- Nuno Moura-Coelho
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal. .,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal. .,Instituto Português de Retina (IPR), Lisbon, Portugal. .,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal.
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal
| | - Carolina Pereira Bruxelas
- Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Ophthalmology Department, Ocidental Lisbon Hospital Center (CHLO), Lisbon, Portugal
| | - Marco Dutra-Medeiros
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Instituto Português de Retina (IPR), Lisbon, Portugal.,Associação Protectora dos Diabéticos de Portugal (APDP), Lisbon, Portugal
| | - João Paulo Cunha
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal
| | - Rita Pinto Proença
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal.,Faculdade de Medicina de Lisboa-Universidade de Lisboa (FML-UL), Lisbon, Portugal
| |
Collapse
|
13
|
Wu YP, Gao HY, Ouyang SH, Kurihara H, He RR, Li YF. Predator stress-induced depression is associated with inhibition of hippocampal neurogenesis in adult male mice. Neural Regen Res 2019; 14:298-305. [PMID: 30531013 PMCID: PMC6301170 DOI: 10.4103/1673-5374.244792] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stress has been suggested to disturb the 5-hydroxytryptamine system and decrease neurogenesis, which contribute to the development of depression. Few studies have investigated the effect of predator stress, a type of psychological stress, on depression and hippocampal neurogenesis in adult mice; we therefore investigated this in the present study. A total of 35 adult male Kunming mice were allocated to a cat stress group, cat odor stress group, cat stress + fluoxetine group, cat odor stress + fluoxetine group, or a control group (no stress/treatment). After 12 days of cat stress or cat odor stress, behavioral correlates of depression were measured using the open field test, elevated plus maze test, and dark-avoidance test. The concentrations of hippocampal 5-hydroxytryptamine and 5-hydroxyindoleacetic acid were measured using high-performance liquid chromatography-electrochemical detection. Neurogenesis was also analyzed using a bromodeoxyuridine and doublecortin double-immunostaining method. Cat stress and cat odor stress induced depression-like behaviors; this effect was stronger in the cat stress model. Furthermore, compared with the control group, cat stress mice exhibited lower 5-hydroxytryptamine concentrations, higher 5-hydroxyindoleacetic acid concentrations, and significantly fewer bromodeoxyuridine+/doublecortin+-labeled cells in the dentate gyrus, which was indicative of less neurogenesis. The changes observed in the cat stress group were not seen in the cat stress + fluoxetine group, which suggests that the effects of predator stress on depression and neurogenesis were reversed by fluoxetine. Taken together, our results indicate that depression-like behaviors induced by predator stress are associated with the inhibition of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yan-Ping Wu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, China
| | - Hua-Ying Gao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, China
| | - Shu-Hua Ouyang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, China
| | - Hiroshi Kurihara
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Fang Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Moshirfar M, Parker L, Birdsong OC, Ronquillo YC, Hofstedt D, Shah TJ, Gomez AT, Hoopes PCS. Use of Rho kinase Inhibitors in Ophthalmology: A Review of the Literature. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2018; 7:101-111. [PMID: 30386798 PMCID: PMC6205677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of Rho Kinase (ROCK) inhibitors as therapeutic agents in ophthalmology has been a topic of discussion for several years, particularly in the realm of glaucoma, Fuchs' endothelial dystrophy, and diabetic retinopathy. In this review, the authors provide a detailed and comprehensive overview of the published literature on the use of Rho kinase inhibitors for the aforementioned purposes. A thorough search of several databases was conducted to find sufficient literature on ROCK inhibitors. This research found strong evidence demonstrating that inhibition of Rho kinase significantly decreases IOP, increases healing of the corneal endothelium, and decreases progression of diabetic retinopathy. The main side effect of ROCK inhibitors is conjunctival hyperemia that is often present in more than half of the patients in certain formulations. Additional clinical trials investigating the reviewed treatment options of Rho kinase inhibitors are necessary to further validate previous findings on the topic. Nonetheless, it is clear that Rho kinase inhibitors have the potential to be another potent therapeutic option for several chronic diseases in ophthalmology.
Collapse
Affiliation(s)
- Majid Moshirfar
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, 50 North Medical Dr., Salt Lake City, UT 84132, USA, Utah Lions Eye Bank, Murray, UT, USA, HDR Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT 84020, USA,Correspondence to: Majid Moshirfar, MD, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, 50 North Medical Dr., Salt Lake City, UT 84132, USA. E-mail:
| | - Lawsen Parker
- Utah Valley University, 800 West University Pkwy, Orem, UT, USA 84058, USA
| | - Orry C. Birdsong
- HDR Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT 84020, USA
| | - Yasmyne C. Ronquillo
- HDR Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT 84020, USA
| | - Daniel Hofstedt
- Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W Jefferson St, Kirksville, MO 63501, USA
| | - Tirth J. Shah
- College of Medicine, Department of Ophthalmology, University of Arizona, Phoenix, Arizona, USA
| | - Aaron T. Gomez
- School of Medicine, University of Texas, Rio Grande Valley, Edinburg, TX, USA
| | - Phillip C Sr. Hoopes
- HDR Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT 84020, USA
| |
Collapse
|