1
|
Zhang Y, Yu H, Li J. microRNA-181a-5p promotes fibroblast differentiation of mesenchymal stem cells in rats with pelvic floor dysfunction. Clinics (Sao Paulo) 2024; 79:100428. [PMID: 38972248 PMCID: PMC11277317 DOI: 10.1016/j.clinsp.2024.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
The use of stem cells capable of multilineage differentiation in treating Pelvic Floor Dysfunction (PFD) holds great promise since they are susceptible to entering connective tissue of various cell types and repairing damaged tissues. This research investigated the effect of microRNA-181a-5p (miR-181a-5p) on Bone Marrow Mesenchymal Stem Cells (BMSCs) in rats with PFD. BMSCs were transfected and analyzed for their fibroblast differentiation ability. miR-181a-5p, MFN1, and fibroblast-related genes were quantitatively analyzed. Whether MFN1 is a target gene of miR-181a-5p was predicted and confirmed. The efficacy of BMSCs in vivo rats with PFD was evaluated by measuring Leak Point Pressure (LPP), Conscious Cystometry (CMG), hematoxylin and eosin staining, and Masson staining. The present results discovered that miR-181a-5p was up-regulated and MFN1 was down-regulated during the differentiation of BMSCs into fibroblasts. Fibroblast differentiation of BMSCs was promoted after miR-181a-5p was induced or MFN1 was suppressed, but it was suppressed after miR-181a-5p was silenced. miR-181a-5p improved LPP and conscious CMG outcomes in PDF rats by targeting MFN1 expression, thereby accelerating fibroblast differentiation of BMSCs. In brief, miR-181a-5p induces fibroblast differentiation of BMSCs in PDF rats by MFN1, potentially targeting PDF therapeutics.
Collapse
Affiliation(s)
- YongHong Zhang
- Department of Pediatrics, Muping District Hospital of Traditional Chinese Medicine, Yantai City, Shandong Province, China
| | - HaiYang Yu
- Department of Gynecology, Muping District Hospital of Traditional Chinese Medicine, Yantai City, Shandong Province, China
| | - JianChao Li
- Department of Gynecology, Muping District Hospital of Traditional Chinese Medicine, Yantai City, Shandong Province, China.
| |
Collapse
|
2
|
Zhang C. Exosomes Derived from Mesenchymal Stem Cells: Therapeutic Opportunities for Spinal Cord Injury. Bull Exp Biol Med 2024; 176:716-721. [PMID: 38888648 DOI: 10.1007/s10517-024-06095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 06/20/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological condition comprising primary and secondary injury and causing severe neurological impairments. The effect of the conventional treatment is limited, including supportive therapy and emergency surgery. Exosomes derived from mesenchymal stem cells (MSCs-Exos) were previously reported to exert its potential therapeutic effects on SCI. Compared with mesenchymal stem cells (MSCs) transplantation for SCI, MSC-Exos showed several superiorities. In the present review, we summarized the revealed data of mechanisms underlying MSC-Exos repairing of SCI and discussed the issues of MSC-Exos use. Thus, in this review we summarized the latest studies on MSCs-Exos in the therapy of SCI and discussed whether MSCs-Exos can be applied to SCI and the prospects of transformation application.
Collapse
Affiliation(s)
- C Zhang
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
3
|
Du X, Kong D, Guo R, Liu B, He J, Zhang J, Amponsah AE, Cui H, Ma J. Combined transplantation of hiPSC-NSC and hMSC ameliorated neuroinflammation and promoted neuroregeneration in acute spinal cord injury. Stem Cell Res Ther 2024; 15:67. [PMID: 38444003 PMCID: PMC10916262 DOI: 10.1186/s13287-024-03655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious clinical condition that has pathological changes such as increased neuroinflammation and nerve tissue damage, which eventually manifests as fibrosis of the injured segment and the development of a spinal cord cavity leading to loss of function. Cell-based therapy, such as mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are promising treatment strategies for spinal cord injury via immunological regulation and neural replacement respectively. However, therapeutic efficacy is rare reported on combined transplantation of MSC and NSC in acute mice spinal cord injury even the potential reinforcement might be foreseen. Therefore, this study was conducted to investigate the safety and efficacy of co-transplanting of MSC and NSC sheets into an SCI mice model on the locomotor function and pathological changes of injured spinal cord. METHODS To evaluate the therapeutic effects of combination cells, acute SCI mice model were established and combined transplantation of hiPSC-NSCs and hMSCs into the lesion site immediately after the injury. Basso mouse scale was used to perform the open-field tests of hind limb motor function at days post-operation (dpo) 1, 3, 5, and 7 after SCI and every week after surgery. Spinal cord and serum samples were collected at dpo 7, 14, and 28 to detect inflammatory and neurotrophic factors. Hematoxylin-eosin (H&E) staining, masson staining and transmission electron microscopy were used to evaluate the morphological changes, fibrosis area and ultrastructure of the spinal cord. RESULT M&N transplantation reduced fibrosis formation and the inflammation level while promoting the secretion of nerve growth factor and brain-derived neurotrophic factor. We observed significant reduction in damaged tissue and cavity area, with dramatic improvement in the M&N group. Compared with the Con group, the M&N group exhibited significantly improved behaviors, particularly limb coordination. CONCLUSION Combined transplantation of hiPSC-NSC and hMSC could significantly ameliorate neuroinflammation, promote neuroregeneration, and decrease spinal fibrosis degree in safe and effective pattern, which would be indicated as a novel potential cell treatment option.
Collapse
Affiliation(s)
- Xiaofeng Du
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Boxin Liu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Huixian Cui
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Jun Ma
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
4
|
Ye H, Wang F, Xu G, Shu F, Fan K, Wang D. Advancements in engineered exosomes for wound repair: current research and future perspectives. Front Bioeng Biotechnol 2023; 11:1301362. [PMID: 38033824 PMCID: PMC10682480 DOI: 10.3389/fbioe.2023.1301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Wound healing is a complex and prolonged process that remains a significant challenge in clinical practice. Exosomes, a type of nanoscale extracellular vesicles naturally secreted by cells, are endowed with numerous advantageous attributes, including superior biocompatibility, minimal toxicity, and non-specific immunogenicity. These properties render them an exceptionally promising candidate for bioengineering applications. Recent advances have illustrated the potential of exosome therapy in promoting tissue repair. To further augment their therapeutic efficacy, the concept of engineered exosomes has been proposed. These are designed and functionally modifiable exosomes that have been tailored on the attributes of natural exosomes. This comprehensive review delineates various strategies for exosome engineering, placing specific emphasis on studies exploring the application of engineered exosomes for precision therapy in wound healing. Furthermore, this review sheds light on strategies for integrating exosomes with biomaterials to enhance delivery effectiveness. The insights presented herein provide novel perspectives and lay a robust foundation for forthcoming research in the realm of cutaneous wound repair therapies.
Collapse
Affiliation(s)
- Hailian Ye
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Wang
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Guangchao Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feihong Shu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunwu Fan
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Slovinska L, Harvanova D. The Role of Mesenchymal Stromal Cells and Their Products in the Treatment of Injured Spinal Cords. Curr Issues Mol Biol 2023; 45:5180-5197. [PMID: 37367078 DOI: 10.3390/cimb45060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Spinal cord injury (SCI) is a destructive condition that results in lasting neurological damage resulting in disruption of the connection between the central nervous system and the rest of the body. Currently, there are several approaches in the treatment of a damaged spinal cord; however, none of the methods allow the patient to return to the original full-featured state of life before the injury. Cell transplantation therapies show great potential in the treatment of damaged spinal cords. The most examined type of cells used in SCI research are mesenchymal stromal cells (MSCs). These cells are at the center of interest of scientists because of their unique properties. MSCs regenerate the injured tissue in two ways: (i) they are able to differentiate into some types of cells and so can replace the cells of injured tissue and (ii) they regenerate tissue through their powerful known paracrine effect. This review presents information about SCI and the treatments usually used, aiming at cell therapy using MSCs and their products, among which active biomolecules and extracellular vesicles predominate.
Collapse
Affiliation(s)
- Lucia Slovinska
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
| |
Collapse
|
6
|
Almeida F, Marques S, Santos A, Prins C, Cardoso F, Heringer L, Mendonça H, Martinez A. Molecular approaches for spinal cord injury treatment. Neural Regen Res 2023; 18:23-30. [PMID: 35799504 PMCID: PMC9241396 DOI: 10.4103/1673-5374.344830] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.
Collapse
|
7
|
Szymoniuk M, Litak J, Sakwa L, Dryla A, Zezuliński W, Czyżewski W, Kamieniak P, Blicharski T. Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells 2022; 12:120. [PMID: 36611914 PMCID: PMC9818156 DOI: 10.3390/cells12010120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal Cord Injury (SCI) is a common neurological disorder with devastating psychical and psychosocial sequelae. The majority of patients after SCI suffer from permanent disability caused by motor dysfunction, impaired sensation, neuropathic pain, spasticity as well as urinary complications, and a small number of patients experience a complete recovery. Current standard treatment modalities of the SCI aim to prevent secondary injury and provide limited recovery of lost neurological functions. Stem Cell Therapy (SCT) represents an emerging treatment approach using the differentiation, paracrine, and self-renewal capabilities of stem cells to regenerate the injured spinal cord. To date, multipotent stem cells including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) represent the most investigated types of stem cells for the treatment of SCI in preclinical and clinical studies. The microenvironment of SCI has a significant impact on the survival, proliferation, and differentiation of transplanted stem cells. Therefore, a deep understanding of the pathophysiology of SCI and molecular mechanisms through which stem cells act may help improve the treatment efficacy of SCT and find new therapeutic approaches such as stem-cell-derived exosomes, gene-modified stem cells, scaffolds, and nanomaterials. In this literature review, the pathogenesis of SCI and molecular mechanisms of action of multipotent stem cells including MSCs, NSCs, and HSCs are comprehensively described. Moreover, the clinical efficacy of multipotent stem cells in SCI treatment, an optimal protocol of stem cell administration, and recent therapeutic approaches based on or combined with SCT are also discussed.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Aleksandra Dryla
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Zezuliński
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopaedics, Medical University in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
8
|
Di SJ, Wu SY, Liu TJ, Shi YY. Stem cell therapy as a promising strategy in necrotizing enterocolitis. Mol Med 2022; 28:107. [PMID: 36068527 PMCID: PMC9450300 DOI: 10.1186/s10020-022-00536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that affects newborns, particularly preterm infants, and is associated with high morbidity and mortality. No effective therapeutic strategies to decrease the incidence and severity of NEC have been developed to date. Stem cell therapy has been explored and even applied in various diseases, including gastrointestinal disorders. Animal studies on stem cell therapy have made great progress, and the anti-inflammatory, anti-apoptotic, and intestinal barrier enhancing effects of stem cells may be protective against NEC clinically. In this review, we discuss the therapeutic mechanisms through which stem cells may function in the treatment of NEC.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Si-Yuan Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
9
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Gao T, Huang F, Wang W, Xie Y, Wang B. Interleukin-10 genetically modified clinical-grade mesenchymal stromal cells markedly reinforced functional recovery after spinal cord injury via directing alternative activation of macrophages. Cell Mol Biol Lett 2022; 27:27. [PMID: 35300585 PMCID: PMC8931978 DOI: 10.1186/s11658-022-00325-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Background After spinal cord injury (SCI), dysregulated or nonresolving inflammatory processes can severely disturb neuronal homeostasis and drive neurodegeneration. Although mesenchymal stromal cell (MSC)-based therapies have showed certain therapeutic efficacy, no MSC therapy has reached its full clinical goal. In this study, we examine interleukin-10 (IL10) genetically modified clinical-grade MSCs (IL10-MSCs) and evaluate their clinical safety, effectiveness, and therapeutic mechanism in a completely transected SCI mouse model. Methods We established stable IL10-overexpressing human umbilical-cord-derived MSCs through electric transduction and screened out clinical-grade IL10-MSCs according to the criteria of cell-based therapeutic products, which were applied to mice with completely transected SCI by repeated tail intravenous injections. Then we comprehensively investigated the motor function, histological structure, and nerve regeneration in SCI mice, and further explored the potential therapeutic mechanism after IL10-MSC treatment. Results IL10-MSC treatment markedly reinforced locomotor improvement, accompanied with decreased lesion volume, regeneration of axons, and preservation of neurons, compared with naïve unmodified MSCs. Further, IL10-MSC transplantation increased the ratio of microglia to infiltrated alternatively activated macrophages (M2), and reduced the ratio of classically activated macrophages (M1) at the injured spinal cord, meanwhile increasing the percentage of Treg and Th2 cells, and reducing the percentage of Th1 cells in the peripheral circulatory system. In addition, IL10-MSC administration could prevent apoptosis and promote neuron differentiation of neural stem cells (NSCs) under inflammatory conditions in vitro. Conclusions IL10-MSCs exhibited a reliable safety profile and demonstrated promising therapeutic efficacy in SCI compared with naïve MSCs, providing solid support for future clinical application of genetically engineered MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00325-9.
Collapse
Affiliation(s)
- Tianyun Gao
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Feifei Huang
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wenqing Wang
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuanyuan Xie
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
11
|
Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S. Future Perspectives in Spinal Cord Repair: Brain as Saviour? TSCI with Concurrent TBI: Pathophysiological Interaction and Impact on MSC Treatment. Cells 2021; 10:2955. [PMID: 34831179 PMCID: PMC8616497 DOI: 10.3390/cells10112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma in young active patients, is frequently accompanied by traumatic brain injury (TBI). Although combined trauma results in inferior clinical outcomes and a higher mortality rate, the understanding of the pathophysiological interaction of co-occurring TSCI and TBI remains limited. This review provides a detailed overview of the local and systemic alterations due to TSCI and TBI, which severely affect the autonomic and sensory nervous system, immune response, the blood-brain and spinal cord barrier, local perfusion, endocrine homeostasis, posttraumatic metabolism, and circadian rhythm. Because currently developed mesenchymal stem cell (MSC)-based therapeutic strategies for TSCI provide only mild benefit, this review raises awareness of the impact of TSCI-TBI interaction on TSCI pathophysiology and MSC treatment. Therefore, we propose that unravelling the underlying pathophysiology of TSCI with concomitant TBI will reveal promising pharmacological targets and therapeutic strategies for regenerative therapies, further improving MSC therapy.
Collapse
Affiliation(s)
- Paul Köhli
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ellen Otto
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Denise Jahn
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marie-Jacqueline Reisener
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Jessika Appelt
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nima Taheri
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Johannes Keller
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- University Hospital Hamburg-Eppendorf, Department of Trauma Surgery and Orthopaedics, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Pumberger
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Serafeim Tsitsilonis
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| |
Collapse
|
12
|
Mahadewa TGB, Mardhika PE, Awyono S, Putra MB, Saapang GS, Wiyanjana KDF, Putra KK, Natakusuma TISD, Ryalino C. Mesenteric Neural Stem Cell for Chronic Spinal Cord Injury: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injury (SCI) is a common and potentially life-threatening condition with no established treatment to treat the primary injury. Mesenteric neural stem cell (NSC) therapy is a promising stem cell therapy to treat primary SCI in the chronic phase. We aimed to review the literature narratively to describe current evidence regarding mesenteric NSC in SCI. Primary SCI refers to tissue damage that occurs at the time of trauma that leads to the death of neuronal cells. In chronic SCI, the ability of neuronal regeneration is compromised by the development of gliotic scar. NSC is a stem cell therapy that targeted SCI in the chronic phase. Enteric NSC is one of the sources of NSC, and autologous gut harvesting in the appendix using endoscopic surgery provides a more straightforward and low-risk procedure. Intramedullary transplantation of stem cell with ultrasound guiding is administration technique which offers long-term regeneration. Mesenteric NSC is a promising stem cell therapy to treat chronic SCI with low risk and easier procedure to isolate cells compared to other NSC sources.
Collapse
|
13
|
Huang F, Gao T, Wang W, Wang L, Xie Y, Tai C, Liu S, Cui Y, Wang B. Engineered basic fibroblast growth factor-overexpressing human umbilical cord-derived mesenchymal stem cells improve the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery of spinal cord injury by activating the PI3K-Akt-GSK-3β signaling pathway. Stem Cell Res Ther 2021; 12:468. [PMID: 34419172 PMCID: PMC8379754 DOI: 10.1186/s13287-021-02537-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Objectives To investigate the safety for clinic use and therapeutic effects of basic fibroblast growth factor (bFGF)-overexpressing human umbilical cord-derived mesenchymal stem cells (HUCMSCs) in mice with completely transected spinal cord injury (SCI). Methods Stable bFGF-overexpressing HUCMSCs clones were established by electrotransfection and then subjected to systematic safety evaluations. Then, bFGF-overexpressing and control HUCMSCs were used to treat mice with completely transected SCI by tail intravenous injection. Therapeutic outcomes were then investigated, including functional recovery of locomotion, histological structures, nerve regeneration, and recovery mechanisms. Results Stable bFGF-overexpressing HUCMSCs met the standards and safety of MSCs for clinic use. In the mouse SCI model, stable bFGF-overexpressing HUCMSCs markedly improved therapeutic outcomes such as reducing glial scar formation, improving nerve regeneration and proliferation of endogenous neural stem cells (NSCs), and increasing locomotion functional recovery of posterior limbs compared with the control HUCMSCs group. Furthermore, bFGF-overexpressing HUCMSCs promoted the proliferation and neuronal differentiation of NSCs in vitro through the PI3K-Akt-GSK-3β pathway. Conclusion bFGF-overexpressing HUCMSCs meet the requirements of clinical MSCs and improve evident therapeutic outcomes of mouse SCI treatment, which firmly supports the safety and efficacy of gene-modified MSCs for clinical application.
Collapse
Affiliation(s)
- Feifei Huang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Wenqing Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chenxun Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
14
|
Khamis T, Abdelalim AF, Saeed AA, Edress NM, Nafea A, Ebian HF, Algendy R, Hendawy DM, Arisha AH, Abdallah SH. Breast milk MSCs upregulated β-cells PDX1, Ngn3, and PCNA expression via remodeling ER stress /inflammatory /apoptotic signaling pathways in type 1 diabetic rats. Eur J Pharmacol 2021; 905:174188. [PMID: 34004210 DOI: 10.1016/j.ejphar.2021.174188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is one of the autoimmune diseases characterized by beta-cell dysfunction with serious health complications. Br-MSCs represent a novel valid candidate in regenerative medicine disciplines. Yet, the full potential of Br-MSCs in managing type 1 diabetes remains elusive. Indeed, this study was designed to explore a novel approach investigating the possible regenerative capacity of Br-MSCs in type1 diabetic islet on the level of the cellular mRNA expression of different molecular pathways involved in pancreatic beta-cell dysfunction. Sixty adult male Sprague-Dawley rats were randomly assigned into 3 groups (20 rats each); the control group, type1 diabetic group, and the type 1 diabetic Br-MSCs treated group. And, for the first time, our results revealed that intraperitoneally transplanted Br-MSCs homed to the diabetic islet and improved fasting blood glucose, serum insulin level, pancreatic oxidative stress, upregulated pancreatic mRNA expression for: regenerative markers (Pdx1, Ngn3, PCNA), INS, beta-cell receptors (IRS1, IRβ, PPARγ), pancreatic growth factors (IGF-1, VEGFβ1, FGFβ), anti-inflammatory cytokine (IL10) and anti-apoptotic marker (BCL2) too, Br-MSCs downregulated pancreatic mRNA expression for: inflammatory markers (NFKβ, TNFα, IL1β, IL6, IL8, MCP1), apoptotic markers for both intrinsic and extrinsic pathways (FAS, FAS-L, P53, P38, BAX, Caspase3), ER stress markers (ATF6, ATF3, ATF4, BIP, CHOP, JNK, XBP1) and autophagy inhibitor (mTOR). In conclusion, Br-MSCs could be considered as a new insight in beta cell regenerative therapy improving the deteriorated diabetic islet microenvironment via modulating; ER stress, inflammatory, and apoptotic signaling pathways besides, switching on the cellular quality control system (autophagy) thus enhancing beta-cell function.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt.
| | - Abdelalim F Abdelalim
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Ahmed A Saeed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Nagah M Edress
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Alaa Nafea
- Department of Pediatrics, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Huda F Ebian
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Reem Algendy
- Department of Milk Hygiene, Food Control Department, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Doaa M Hendawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt.
| | - Somia Hassan Abdallah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, 44511, Zagazig, Egypt
| |
Collapse
|
15
|
He X, Hong W, Yang J, Lei H, Lu T, He C, Bi Z, Pan X, Liu Y, Dai L, Wang W, Huang C, Deng H, Wei X. Spontaneous apoptosis of cells in therapeutic stem cell preparation exert immunomodulatory effects through release of phosphatidylserine. Signal Transduct Target Ther 2021; 6:270. [PMID: 34262012 PMCID: PMC8280232 DOI: 10.1038/s41392-021-00688-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC)-mediated immunomodulation has been harnessed for the treatment of human diseases, but its underlying mechanism has not been fully understood. Dead cells, including apoptotic cells have immunomodulatory properties. It has been repeatedly reported that the proportion of nonviable MSCs in a MSC therapeutic preparation varied from 5~50% in the ongoing clinical trials. It is conceivable that the nonviable cells in a MSC therapeutic preparation may play a role in the therapeutic effects of MSCs. We found that the MSC therapeutic preparation in the present study had about 5% dead MSCs (DMSCs), characterized by apoptotic cells. Namely, 1 × 106 MSCs in the preparation contained about 5 × 104 DMSCs. We found that the treatment with even 5 × 104 DMSCs alone had the equal therapeutic effects as with 1 × 106 MSCs. This protective effect of the dead MSCs alone was confirmed in four mouse models, including concanavalin A (ConA)- and carbon tetrachloride (CCl4)-induced acute liver injury, LPS-induced lung injury and spinal cord injury. We also found that the infused MSCs died by apoptosis in vivo. Furthermore, the therapeutic effect was attributed to the elevated level of phosphatidylserine (PS) upon the injection of MSCs or DMSCs. The direct administration of PS liposomes (PSLs) mimic apoptotic cell fragments also exerted the protective effects as MSCs and DMSCs. The Mer tyrosine kinase (MerTK) deficiency or the knockout of chemokine receptor C-C motif chemokine receptor 2 (CCR2) reversed these protective effects of MSCs or DMSCs. These results revealed that DMSCs alone in the therapeutic stem cell preparation or the apoptotic cells induced in vivo may exert the same immunomodulatory property as the "living MSCs preparation" through releasing PS, which was further recognized by MerTK and participated in modulating immune cells.
Collapse
Affiliation(s)
- Xuemei He
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China ,grid.488387.8Experimental Medicine Center, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan People’s Republic of China
| | - Weiqi Hong
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Jingyun Yang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Hong Lei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Tianqi Lu
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Cai He
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Zhenfei Bi
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Xiangyu Pan
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Yu Liu
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Lunzhi Dai
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Wei Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Canhua Huang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Hongxin Deng
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
16
|
Poletto E, Pinheiro CV, Schuh RS, Campagnol D, Cioato M, Garcez TNA, Martins GR, Matte U, Baldo G. Biodistribution of Transplanted Hematopoietic Precursor Cells Injected Through Different Administration Routes in Newborn Mice. Hum Gene Ther 2021; 32:495-505. [PMID: 33632008 DOI: 10.1089/hum.2019.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cell transplantation has been studied for several decades now, mostly as a treatment for malignancies and hematological diseases but also for genetic metabolic disorders. Since many diseases that could be potentially treated with this approach develop early in life, studies of cell transplantation in newborn mice are needed, especially for gene therapy protocols. However, the small size of pups restricts the possibilities for routes of administration, and those available are normally technically challenging. Our goal was to test different routes of administration of Lin- cells in 2-day-old mice: intraperitoneal, intravenous through temporal vein (TV), and intravenous through retro-orbital (RO) sinus. Routes were evaluated by their easiness of execution and their influence in the biodistribution of cells in the short (48 h) and medium (30 days) term. In either 48 h or 30 days, all three routes presented similar results, with cells going mostly to bone marrow, liver, and spleen in roughly the same number. RO injection resulted in quick distribution of cells to the brain, suggesting better performance than the others. Rate of failure was higher for the TV route, which was also the hardest to execute, whereas the other two were considered easier. In conclusion, TV was the hardest to perform and all routes seemed to demonstrate similar results for cell biodistribution. In particular, the RO injection results in quicker biodistribution of cells to the brain, which is particularly important in the study of genetic metabolic disorders with a neurological component.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center.,Postgraduate Program in Genetics and Molecular Biology
| | | | | | - Daniela Campagnol
- Unidade de Experimentação Animal; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marta Cioato
- Unidade de Experimentação Animal; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Tuane Nerissa Alves Garcez
- Unidade de Experimentação Animal; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Ursula Matte
- Gene Therapy Center.,Postgraduate Program in Genetics and Molecular Biology
| | - Guilherme Baldo
- Gene Therapy Center.,Postgraduate Program in Genetics and Molecular Biology.,Postgraduate Program in Physiology; Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
17
|
Zhao B, Sun Q, Fan Y, Hu X, Li L, Wang J, Cui S. Transplantation of bone marrow-derived mesenchymal stem cells with silencing of microRNA-138 relieves pelvic organ prolapse through the FBLN5/IL-1β/elastin pathway. Aging (Albany NY) 2021; 13:3045-3059. [PMID: 33460398 PMCID: PMC7880387 DOI: 10.18632/aging.202465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Nondegradable transvaginal polypropylene meshes for treating pelvic organ prolapse (POP) are now generally unavailable or banned due to serious adverse events. New tissue engineering approaches combine degradable scaffolds with mesenchymal stem/stromal cells from human endometrium (eMSC). In this study, we investigate effect of microRNA-138 (miR-138) regulation on bone marrow-derived mesenchymal stem cells (BMSCs) and the efficacy of BMSC transplantation therapy in a rat POP model. We first identified FBLN5 as a target of miR-138. miR-138, fibulin-5 (FBLN5), interleukin-1β (IL-1β), and elastin expression in uterosacral ligament of POP patients and controls were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. After isolation and identification, BMSCs were treated to alter their expression of miR-138 or FBLN5. Proliferation of BMSCs was analyzed by CCK-8. After establishing the rat pelvic floor dysfunction (PFD) model, we evaluated efficacy of BMSC injection by applying leak point pressure (LPP) and the conscious cystometry (CMG) tests. miR-138 inhibition resulted in increased viability of BMSCs and elevated their secretion of elastin, while downregulating IL-1β expression. BMSCs with inhibited miR-138 improved LPP and conscious CMG results in vivo. Taken together, miR-138 could be a potential therapeutic target for treating POP in conjunction with tissue engineering.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Qing Sun
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Yazhou Fan
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Xinming Hu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Linyu Li
- Department of Scientific Research, Xinxiang Medical University Sanquan Medical College, Xinxiang 453003, Henan Province, PR China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, PR China
| | - Shihong Cui
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| |
Collapse
|
18
|
Li Y, Liu L, Yu Z, Yu Y, Sun B, Xiao C, Luo S, Li L. Effects of Edaravone on Functional Recovery of a Rat Model with Spinal Cord Injury Through Induced Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells. Cell Reprogram 2021; 23:47-56. [PMID: 33400610 DOI: 10.1089/cell.2020.0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Edaravone can induce differentiation of bone marrow mesenchymal stem cells (BMSCs) into neuron-like cells and replace lost cells by transplanting neuron-like cells to repair spinal cord injury (SCI). In this study, BMSCs were derived from the bone marrow of male Wistar rats (4 weeks old) through density gradient centrifugation (1.073 g/mL), and the cell purity of BMSCs was up to 95%. The combined injection of basic fibroblast growth factor and edaravone was conducted to differentiate BMSCs into neuron-like cells. In this study, 120 male Wistar rats were used to establish the model of semitransverse SCI; on the seventh day, neuron-like cells were labeled by BrdU and then injected into the epicenter of the injury of rats. On the 14th day after cell transplantation, the biotin dextran amine (BDA) fluorescent agent was used to track the repair of nerve damage. At 7, 14, 21, and 30 days after SCI, the Basso, Beattie, and Bresnahan (BBB) locomotor scale method was used to measure the functional recovery of hind limbs in rats. Additionally, hematoxylin and eosin (H&E) staining, Nissl staining, immunohistochemistry, transmission electron microscopy (TEM), Western blotting, and Real-time quantitative reverse transcripion PCR (qRT-PCR) were used to observe the regeneration of nerve cells. In the edaravone+BMSC group, behavioral analysis of locomotor function showed that functional recovery was significantly enhanced after transplantation of the cells, BrdU-positive cells could be observed scattered in the injured area and extended to both the head and tail, and the BDA tracer shows that the edaravone+BMSC group emits more fluorescent signals. Additionally, H&E staining, Nissl staining, and immunohistochemistry revealed that the space of spinal cord tissue was attenuated and the neurons were increased. Western blotting and qRT-PCR showed that the expression levels of neuron-specific enolase (NSE), Nestin, and neurofilament 200 (NF) were increased, while the expression of glial fibrillary acidic protein (GFAP) was decreased. TEM showed that cytoplasmic edema was reduced, mitochondrial vacuoles were attenuated, and nuclear chromatin concentration was declined after transplantation of neuron-like cells. Moreover, with the extension of time of edaravone+BMSC transplantation, the structures of mitochondria and endoplasmic reticulum tended to be normal. In summary, the induced differentiation of BMSC transplantation can significantly promote the functional repair of SCI.
Collapse
Affiliation(s)
- Yumei Li
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Laibing Liu
- Department of Neurosurgery, Affiliated Baiyun Hospital, Guizhou Medical University, Guiyang, China
| | - Zijiang Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yan Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Baofei Sun
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Chaolun Xiao
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Shipeng Luo
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Lin Li
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Bellák T, Fekécs Z, Török D, Táncos Z, Nemes C, Tézsla Z, Gál L, Polgári S, Kobolák J, Dinnyés A, Nógrádi A, Pajer K. Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: modulation of the lesion microenvironment. Sci Rep 2020; 10:22414. [PMID: 33376249 PMCID: PMC7772333 DOI: 10.1038/s41598-020-79846-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury results in irreversible tissue damage followed by a very limited recovery of function. In this study we investigated whether transplantation of undifferentiated human induced pluripotent stem cells (hiPSCs) into the injured rat spinal cord is able to induce morphological and functional improvement. hiPSCs were grafted intraspinally or intravenously one week after a thoracic (T11) spinal cord contusion injury performed in Fischer 344 rats. Grafted animals showed significantly better functional recovery than the control rats which received only contusion injury. Morphologically, the contusion cavity was significantly smaller, and the amount of spared tissue was significantly greater in grafted animals than in controls. Retrograde tracing studies showed a statistically significant increase in the number of FB-labeled neurons in different segments of the spinal cord, the brainstem and the sensorimotor cortex. The extent of functional improvement was inversely related to the amount of chondroitin-sulphate around the cavity and the astrocytic and microglial reactions in the injured segment. The grafts produced GDNF, IL-10 and MIP1-alpha for at least one week. These data suggest that grafted undifferentiated hiPSCs are able to induce morphological and functional recovery after spinal cord contusion injury.
Collapse
Affiliation(s)
- Tamás Bellák
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary.,BioTalentum Ltd., Gödöllő, Hungary
| | - Zoltán Fekécs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| | - Dénes Török
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| | | | - Csilla Nemes
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Diagnostic Laboratory, State Health Centre, Military Hospital, Budapest, Hungary
| | - Zsófia Tézsla
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| | - László Gál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| | | | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary.,HCEMM-USZ StemCell Research Group, Szeged, Hungary.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary.
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| |
Collapse
|
20
|
Madsen SD, Giler MK, Bunnell BA, O'Connor KC. Illuminating the Regenerative Properties of Stem Cells In Vivo with Bioluminescence Imaging. Biotechnol J 2020; 16:e2000248. [PMID: 33089922 DOI: 10.1002/biot.202000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Preclinical animal studies are essential to the development of safe and effective stem cell therapies. Bioluminescence imaging (BLI) is a powerful tool in animal studies that enables the real-time longitudinal monitoring of stem cells in vivo to elucidate their regenerative properties. This review describes the application of BLI in preclinical stem cell research to address critical challenges in producing successful stem cell therapeutics. These challenges include stem cell survival, proliferation, homing, stress response, and differentiation. The applications presented here utilize bioluminescence to investigate a variety of stem and progenitor cells in several different in vivo models of disease and implantation. An overview of luciferase reporters is provided, along with the advantages and disadvantages of BLI. Additionally, BLI is compared to other preclinical imaging modalities and potential future applications of this technology are discussed in emerging areas of stem cell research.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
21
|
Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020; 2020:2853650. [PMID: 33204276 PMCID: PMC7661146 DOI: 10.1155/2020/2853650] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the serious neurological diseases that occur in young people with high morbidity and disability. However, there is still a lack of effective treatments for it. Stem cell (SC) treatment of SCI has gradually become a new research hotspot over the past decades. This article is aimed at reviewing the research progress of SC therapy for SCI. Methods Review the literature and summarize the effects, strategies, related mechanisms, safety, and clinical application of different SC types and new approaches in combination with SC in SCI treatment. Results A large number of studies have focused on SC therapy for SCI, most of which showed good effects. The common SC types for SCI treatment include mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The modes of treatment include in vivo and in vitro induction. The pathways of transplantation consist of intravenous, transarterial, nasal, intraperitoneal, intrathecal, and intramedullary injections. Most of the SC treatments for SCI use a number of cells ranging from tens of thousands to millions. Early or late SC administration, application of immunosuppressant or not are still controversies. Potential mechanisms of SC therapy include tissue repair and replacement, neurotrophy, and regeneration and promotion of angiogenesis, antiapoptosis, and anti-inflammatory. Common safety issues include thrombosis and embolism, tumorigenicity and instability, infection, high fever, and even death. Recently, some new approaches, such as the pharmacological activation of endogenous SCs, biomaterials, 3D print, and optogenetics, have been also developed, which greatly improved the application of SC therapy for SCI. Conclusion Most studies support the effects of SC therapy on SCI, while a few studies do not. The cell types, mechanisms, and strategies of SC therapy for SCI are very different among studies. In addition, the safety cannot be ignored, and more clinical trials are required. The application of new technology will promote SC therapy of SCI.
Collapse
|
22
|
Obara K, Tohgi N, Shirai K, Mii S, Hamada Y, Arakawa N, Aki R, Singh SR, Hoffman RM, Amoh Y. Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Encapsulated on Polyvinylidene Fluoride Membranes (PFM) Promote Functional Recovery from Spinal Cord Injury. Stem Cell Rev Rep 2020; 15:59-66. [PMID: 30341634 DOI: 10.1007/s12015-018-9856-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our previous studies showed that nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells, which reside in the bulge area of the hair follicle, could restore injured nerve and spinal cord and differentiate into cardiac muscle cells. Here we transplanted mouse green fluorescent protein (GFP)-expressing HAP stem-cell colonies enclosed on polyvinylidene fluoride membranes (PFM) into the severed thoracic spinal cord of nude mice. After seven weeks of implantation, we found the differentiation of HAP stem cells into neurons and glial cells. Our results also showed that PFM-captured GFP-expressing HAP stem-cell colonies assisted complete reattachment of the thoracic spinal cord. Furthermore, our quantitative motor function analysis with the Basso Mouse Scale for Locomotion (BMS) score demonstrated a significant improvement in the implanted mice compared to non-implanted mice with a severed spinal cord. Our study also showed that it is easy to obtain HAP stem cells, they do not develop teratomas, and do not loose differentiation ability when cryopreserved. Collectively our results suggest that HAP stem cells could be a better source compared to induced pluripotent stem cells (iPS) or embryonic stem (ES) cells for regenerative medicine, specifically for spinal cord repair.
Collapse
Affiliation(s)
- Koya Obara
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Natsuko Tohgi
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Kyoumi Shirai
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Sumiyuki Mii
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Yuko Hamada
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Nobuko Arakawa
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Ryoichi Aki
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA. .,Department of Surgery, University of California, San Diego, CA, 92103, USA.
| | - Yasuyuki Amoh
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan.
| |
Collapse
|
23
|
Amniotic membrane mesenchymal stem cells labeled by iron oxide nanoparticles exert cardioprotective effects against isoproterenol (ISO)-induced myocardial damage by targeting inflammatory MAPK/NF-κB pathway. Drug Deliv Transl Res 2020; 11:242-254. [PMID: 32441012 DOI: 10.1007/s13346-020-00788-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study is to investigate the protective effects of human amniotic membrane-derived mesenchymal stem cells (hAMSCs) labeled by superparamagnetic iron oxide nanoparticles (SPIONs) against isoproterenol (ISO)-induced myocardial injury in the presence and absence of a magnetic field. ISO was injected subcutaneously for 4 consecutive days to induce myocardial injury in male Wistar rats. The hAMSCs were incubated with 100 μg/ml SPIONs and injected to rats in magnet-dependent and magnet-independent groups via the tail vein. The size and shape of nanoparticles were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Prussian blue staining was used to determine cell uptake of nanoparticles. Myocardial fibrosis, heart function, characterization of hAMSCs, and histopathological changes were determined using Masson's trichrome, echocardiography, flow cytometry, and H&E staining, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to the expression pro-inflammatory cytokines. Immunohistochemistry assay was used to determine the expression of nuclear factor-κB (NF-κB) and the Ras/mitogen-activated protein kinase (MAPK). SPION-labeled MSCs in the presence of magnetic field significantly improved cardiac function and reduced fibrosis and tissue damage by suppressing inflammation in a NF-κB/MAPK-dependent mechanism (p < 0. 05). Collectively, our findings demonstrate that SPION-labeled MSCs in the presence of magnetic field can be a good treatment option to reduce inflammation following myocardial injury. Graphical abstract.
Collapse
|
24
|
Exosome Treatment Enhances Anti-Inflammatory M2 Macrophages and Reduces Inflammation-Induced Pyroptosis in Doxorubicin-Induced Cardiomyopathy. Cells 2019; 8:cells8101224. [PMID: 31600901 PMCID: PMC6830113 DOI: 10.3390/cells8101224] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (Dox) is an effective antineoplastic agent used to treat cancers, but its use is limited as Dox induces adverse cardiotoxic effects. Dox-induced cardiotoxicity (DIC) can lead to heart failure and death. There is no study that investigates whether embryonic stem cell-derived exosomes (ES-Exos) in DIC can attenuate inflammation-induced pyroptosis, pro-inflammatory M1 macrophages, inflammatory cell signaling, and adverse cardiac remodeling. For this purpose, we transplanted ES-Exos and compared with ES-cells (ESCs) to examine pyroptosis, inflammation, cell signaling, adverse cardiac remodeling, and their influence on DIC induced cardiac dysfunction. Therefore, we used C57BL/6J mice ages 10 ± 2 weeks and divided them into four groups (n = 6–8/group): Control, Dox, Dox + ESCs, and Dox + ES-Exos. Our data shows that the Dox treatment significantly increased expression of inflammasome markers (TLR4 and NLRP3), pyroptotic markers (caspase-1, IL1-β, and IL-18), cell signaling proteins (MyD88, p-P38, and p-JNK), pro-inflammatory M1 macrophages, and TNF-α cytokine. This increased pyroptosis, inflammation, and cell signaling proteins were inhibited with ES-Exos or ESCs. Moreover, ES-Exos or ESCs increased M2 macrophages and anti-inflammatory cytokine, IL-10. Additionally, ES-Exos or ESCs treatment inhibited significantly cytoplasmic vacuolization, myofibril loss, hypertrophy, and improved heart function. In conclusion, for the first time we demonstrated that Dox-induced pyroptosis and cardiac remodeling are ameliorated by ES-Exos or ESCs.
Collapse
|
25
|
Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther 2019; 10:238. [PMID: 31387621 PMCID: PMC6683526 DOI: 10.1186/s13287-019-1357-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The injured spinal cord is difficult to repair and regenerate. Traditional treatments are not effective. Stem cells are a type of cells that have the potential to differentiate into various cells, including neurons. They exert a therapeutic effect by safely and effectively differentiating into neurons or replacing damaged cells, secreting neurotrophic factors, and inhibiting the inflammatory response. Many types of stem cells have been used for transplantation, and each has its own advantages and disadvantages. This review discusses the possible mechanisms of stem cell therapy for spinal cord injury, and the types of stem cells commonly used in experiments, to provide a reference for basic and clinical research on stem cell therapy for spinal cord injury.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Sheng Tu
- Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Brain Research Institute, Zhejiang University, Hangzhou, 310003, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
26
|
Regulation of autophagy in mesenchymal stem cells modulates therapeutic effects on spinal cord injury. Brain Res 2019; 1721:146321. [PMID: 31278935 DOI: 10.1016/j.brainres.2019.146321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Transplantation with mesenchymal stem cells (MSCs) has shown beneficial effects in treating spinal cord injury. Autophagy is an evolutionarily conserved process of degradation and recycling of cellular components that plays an important role in tissue homeostasis and cellular survival. Whether regulating autophagy in MSCs may affect their therapeutic potential in spinal cord injury repair has not yet been determined. In this study, autophagy was inhibited in MSCs with lentiviruses expressing short hairpin RNA (shRNA) to knock down Becn-1 expression, and autophagy was upregulated in MSCs under nutrient starvation. These MSCs were then labelled with Hoechst and applied to spinal cord-injured rats to evaluate their therapeutic effects. After transplanting MSCs into rats with spinal cord injuries, functional recovery, immunohistochemistry, and remyelination analyses were performed. After inducing autophagy, the MSCs exhibited an accumulation of LC3-positive autophagosomes in the cytoplasm. The expression levels of neurotrophic factors, including vascular endothelial growth factor and brain derived neurotrophic factor, were significantly higher in autophagic MSCs than normal MSCs. The in vivo study showed that more labelled MSCs migrated to the lesion site after induction of autophagy. Inducing autophagy in MSCs promoted functional recovery after spinal cord injury, whereas functional recovery was weak after inhibiting autophagy in MSCs. In contrast to the autophagy inhibition group, transplanting autophagic MSCs exhibited a greater positive impact on axon regeneration, growth of serotonergic fibers, blood vessel regeneration, and myelination, indicating a multifactorial contribution to spinal cord injury repair. These results suggest that autophagy plays important roles in MSCs during spinal cord injury repair. Regulation of autophagy in MSCs before in vivo transplantation may be a potential therapeutic interventional strategy for spinal cord injury.
Collapse
|
27
|
Effects of Different Doses of Mesenchymal Stem Cells on Functional Recovery After Compressive Spinal-Cord Injury in Mice. Neuroscience 2019; 400:17-32. [DOI: 10.1016/j.neuroscience.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
|
28
|
Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res 2019; 14:227-237. [PMID: 30531002 PMCID: PMC6301181 DOI: 10.4103/1673-5374.244778] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-based technologies are used as a therapeutic strategy in spinal cord injury (SCI). Mesenchymal stem cells (MSCs), which secrete various neurotrophic factors and cytokines, have immunomodulatory, anti-apoptotic and anti-inflammatory effects, modulate reactivity/phenotype of astrocytes and the microglia, thereby promoting neuroregeneration seem to be the most promising. The therapeutic effect of MSCs is due to a paracrine mechanism of their action, therefore the survival of MSCs and their secretory phenotype is of particular importance. Nevertheless, these data are not always reported in efficacy studies of MSC therapy in SCI. Here, we provide a review with summaries of preclinical trials data evaluating the efficacy of MSCs in animal models of SCI. Based on the data collected, we have tried (1) to establish the behavior of MSCs after transplantation in SCI with an evaluation of cell survival, migration potential, distribution in the area of injured and intact tissue and possible differentiation; (2) to determine the effects MSCs on neuronal microenvironment and correlate them with the efficacy of functional recovery in SCI; (3) to ascertain the conditions under which MSCs demonstrate their best survival and greatest efficacy.
Collapse
Affiliation(s)
- Yana O Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University; Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Olga A Gracheva
- Department of Therapy and Clinical Diagnostics with radiology Faculty of Veterinary Medicine, Bauman Kazan State Academy of Veterinary Medicine, Kazan, Russia
| | - Dina M Mukhutdinova
- Department of Therapy and Clinical Diagnostics with radiology Faculty of Veterinary Medicine, Bauman Kazan State Academy of Veterinary Medicine, Kazan, Russia
| | - Yurii A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|