1
|
Vanden Bulcke C, Stölting A, Maric D, Macq B, Absinta M, Maggi P. Comparative overview of multi-shell diffusion MRI models to characterize the microstructure of multiple sclerosis lesions and periplaques. Neuroimage Clin 2024; 42:103593. [PMID: 38520830 PMCID: PMC10978527 DOI: 10.1016/j.nicl.2024.103593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
In multiple sclerosis (MS), accurate in vivo characterization of the heterogeneous lesional and extra-lesional tissue pathology remains challenging. Marshalling several advanced imaging techniques - quantitative relaxation time (T1) mapping, a model-free average diffusion signal approach and four multi-shell diffusion models - this study investigates the performance of multi-shell diffusion models and characterizes the microstructural damage within (i) different MS lesion types - active, chronic active, and chronic inactive - (ii) their respective periplaque white matter (WM), and (iii) the surrounding normal-appearing white matter (NAWM). In 83 MS participants (56 relapsing-remitting, 27 progressive) and 23 age and sex-matched healthy controls (HC), we analysed a total of 317 paramagnetic rim lesions (PRL+), 232 non-paramagnetic rim lesions (PRL-), 38 contrast-enhancing lesions (CEL). Consistent with previous findings and histology, our analysis revealed the ability of advanced multi-shell diffusion models to characterize the unique microstructural patterns of CEL, and to elucidate their possible evolution into a resolving (chronic inactive) vs smoldering (chronic active) inflammatory stage. In addition, we showed that the microstructural damage extends well beyond the MRI-visible lesion edge, gradually fading out while moving outward from the lesion edge into the immediate WM periplaque and the NAWM, the latter still characterized by diffuse microstructural damage in MS vs HC. This study also emphasizes the critical role of selecting appropriate diffusion models to elucidate the complex pathological architecture of MS lesions and their periplaque. More specifically, multi-compartment diffusion models based on biophysically interpretable metrics such as neurite orientation dispersion and density (NODDI; mean auc=0.8002) emerge as the preferred choice for MS applications, while simpler models based on a representation of the diffusion signal, like diffusion tensor imaging (DTI; mean auc=0.6942), consistently underperformed, also when compared to T1 mapping (mean auc=0.73375).
Collapse
Affiliation(s)
- Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Dragan Maric
- Flow and Imaging Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Benoît Macq
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Martina Absinta
- Translational Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
2
|
Tsuchida A, Boutinaud P, Verrecchia V, Tzourio C, Debette S, Joliot M. Early detection of white matter hyperintensities using SHIVA-WMH detector. Hum Brain Mapp 2024; 45:e26548. [PMID: 38050769 PMCID: PMC10789222 DOI: 10.1002/hbm.26548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
White matter hyperintensities (WMHs) are well-established markers of cerebral small vessel disease, and are associated with an increased risk of stroke, dementia, and mortality. Although their prevalence increases with age, small and punctate WMHs have been reported with surprisingly high frequency even in young, neurologically asymptomatic adults. However, most automated methods to segment WMH published to date are not optimized for detecting small and sparse WMH. Here we present the SHIVA-WMH tool, a deep-learning (DL)-based automatic WMH segmentation tool that has been trained with manual segmentations of WMH in a wide range of WMH severity. We show that it is able to detect WMH with high efficiency in subjects with only small punctate WMH as well as in subjects with large WMHs (i.e., with confluency) in evaluation datasets from three distinct databases: magnetic resonance imaging-Share consisting of young university students, MICCAI 2017 WMH challenge dataset consisting of older patients from memory clinics, and UK Biobank with community-dwelling middle-aged and older adults. Across these three cohorts with a wide-ranging WMH load, our tool achieved voxel-level and individual lesion cluster-level Dice scores of 0.66 and 0.71, respectively, which were higher than for three reference tools tested: the lesion prediction algorithm implemented in the lesion segmentation toolbox (LPA: Schmidt), PGS tool, a DL-based algorithm and the current winner of the MICCAI 2017 WMH challenge (Park et al.), and HyperMapper tool (Mojiri Forooshani et al.), another DL-based method with high reported performance in subjects with mild WMH burden. Our tool is publicly and openly available to the research community to facilitate investigations of WMH across a wide range of severity in other cohorts, and to contribute to our understanding of the emergence and progression of WMH.
Collapse
Affiliation(s)
- Ami Tsuchida
- GIN, IMN‐UMR5293Université de Bordeaux, CEA, CNRSBordeauxFrance
- BPH‐U1219, INSERMUniversité de BordeauxBordeauxFrance
| | | | - Violaine Verrecchia
- GIN, IMN‐UMR5293Université de Bordeaux, CEA, CNRSBordeauxFrance
- BPH‐U1219, INSERMUniversité de BordeauxBordeauxFrance
| | | | | | - Marc Joliot
- GIN, IMN‐UMR5293Université de Bordeaux, CEA, CNRSBordeauxFrance
| |
Collapse
|
3
|
Goeckner BD, Brett BL, Mayer AR, España LY, Banerjee A, Muftuler LT, Meier TB. Associations of prior concussion severity with brain microstructure using mean apparent propagator magnetic resonance imaging. Hum Brain Mapp 2024; 45:e26556. [PMID: 38158641 PMCID: PMC10789198 DOI: 10.1002/hbm.26556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Magnetic resonance imaging (MRI) diffusion studies have shown chronic microstructural tissue abnormalities in athletes with history of concussion, but with inconsistent findings. Concussions with post-traumatic amnesia (PTA) and/or loss of consciousness (LOC) have been connected to greater physiological injury. The novel mean apparent propagator (MAP) MRI is expected to be more sensitive to such tissue injury than the conventional diffusion tensor imaging. This study examined effects of prior concussion severity on microstructure with MAP-MRI. Collegiate-aged athletes (N = 111, 38 females; ≥6 months since most recent concussion, if present) completed semistructured interviews to determine the presence of prior concussion and associated injury characteristics, including PTA and LOC. MAP-MRI metrics (mean non-Gaussian diffusion [NG Mean], return-to-origin probability [RTOP], and mean square displacement [MSD]) were calculated from multi-shell diffusion data, then evaluated for associations with concussion severity through group comparisons in a primary model (athletes with/without prior concussion) and two secondary models (athletes with/without prior concussion with PTA and/or LOC, and athletes with/without prior concussion with LOC only). Bayesian multilevel modeling estimated models in regions of interest (ROI) in white matter and subcortical gray matter, separately. In gray matter, the primary model showed decreased NG Mean and RTOP in the bilateral pallidum and decreased NG Mean in the left putamen with prior concussion. In white matter, lower NG Mean with prior concussion was present in all ROI across all models and was further decreased with LOC. However, only prior concussion with LOC was associated with decreased RTOP and increased MSD across ROI. Exploratory analyses conducted separately in male and female athletes indicate associations in the primary model may differ by sex. Results suggest microstructural measures in gray matter are associated with a general history of concussion, while a severity-dependent association of prior concussion may exist in white matter.
Collapse
Affiliation(s)
- Bryna D. Goeckner
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Benjamin L. Brett
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research InstituteAlbuquerqueNew MexicoUSA
- Departments of Neurology and PsychiatryUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Lezlie Y. España
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Anjishnu Banerjee
- Department of BiostatisticsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - L. Tugan Muftuler
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Timothy B. Meier
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Biomedical EngineeringMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
4
|
Caranova M, Soares JF, Batista S, Castelo-Branco M, Duarte JV. A systematic review of microstructural abnormalities in multiple sclerosis detected with NODDI and DTI models of diffusion-weighted magnetic resonance imaging. Magn Reson Imaging 2023; 104:61-71. [PMID: 37775062 DOI: 10.1016/j.mri.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS), namely the phenotype of the relapsing-remitting form, is the most common white matter disease and is mostly characterized by demyelination and inflammation, which lead to neurodegeneration and cognitive decline. Its diagnosis and monitoring are performed through conventional structural MRI, in which T2-hyperintense lesions can be identified, but this technique lacks sensitivity and specificity, mainly in detecting damage to normal appearing tissues. Models of diffusion-weighted MRI such as diffusion-tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) allow to uncover microstructural abnormalities that occur in MS, mainly in normal appearing tissues such as the normal appearing white matter (NAWM), which allows to overcome limitations of conventional MRI. DTI is the standard method used for modelling this kind of data, but it has limitations, which can be tackled by using more complex diffusion models, such as NODDI, which provides additional information on morphological properties of tissues. Although there are several studies in MS using both diffusion models, there is no formal assessment that summarizes the findings of both methods in lesioned and normal appearing tissues, and whether one is more advantageous than the other. Hence, this systematic review aims to identify what microstructural abnormalities are seen in lesions and/or NAWM in relapsing-remitting MS while using two different approaches to modelling diffusion data, namely DTI and NODDI, and if one of them is more appropriate than the other or if they are complementary to each other. The search was performed using PubMed, which was last searched on November 2022, and aimed at finding studies that either utilized both DTI and NODDI in the same dataset, or only one of the methods. Eleven articles were included in this review, which included cohorts with a relatively low sample size (total number of patients = 254, total number of healthy controls = 240), and patients with a moderate disease duration, all with relapsing-remitting MS. Overall, studies found decreased fractional anisotropy (FA), neurite density index (NDI) and orientation dispersion index (ODI), and increased mean, axial and radial diffusivities (MD, AD and RD, respectively) in lesions, when compared to contralateral NAWM and healthy controls' white matter. Compared to healthy controls' white matter, NAWM showed lower FA and NDI and higher MD, AD, RD, and ODI. Results from the included articles confirm that there is active demyelination and inflammation in both lesions and NAWM, as well as loss in neurites, and that structural damage is not confined to focal lesions, which is in concordance with histological findings and results from other imaging techniques. Furthermore, NODDI is suggested to have higher sensitivity and specificity, as seen by inspecting imaging results, compared to DTI, while still being clinically feasible. The use of biomarkers derived from such advanced diffusion models in clinical practice could imply a better understanding of treatment efficacy and disease progression, without relying on the manifestation of clinical symptoms, such as relapses.
Collapse
Affiliation(s)
- Maria Caranova
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| | - Júlia F Soares
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Sónia Batista
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Tan J, Zhang G, Hao J, Cai H, Wu D, Su Z, Liu B, Wu M. Progress in the application of molecular imaging in psychiatric disorders. PSYCHORADIOLOGY 2023; 3:kkad020. [PMID: 38666107 PMCID: PMC10917387 DOI: 10.1093/psyrad/kkad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 04/28/2024]
Abstract
Psychiatric disorders have always attracted a lot of attention from researchers due to the difficulties in their diagnoses and treatments. Molecular imaging, as an emerging technology, has played an important role in the researchers of various diseases. In recent years, molecular imaging techniques including magnetic resonance spectroscopy, nuclear medicine imaging, and fluorescence imaging have been widely used in the study of psychiatric disorders. This review will briefly summarize the progression of molecular imaging in psychiatric disorders.
Collapse
Affiliation(s)
- Jia Tan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Guangying Zhang
- Department of Radiology, Banan People's Hospital, Chongqing Medical University, Chongqing 400037, China
| | - Jiaqi Hao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine and Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingping Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuoxiao Su
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
6
|
Laporte JP, Faulkner ME, Gong Z, Palchamy E, Akhonda MA, Bouhrara M. Investigation of the association between central arterial stiffness and aggregate g-ratio in cognitively unimpaired adults. Front Neurol 2023; 14:1170457. [PMID: 37181577 PMCID: PMC10167487 DOI: 10.3389/fneur.2023.1170457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Stiffness of the large arteries has been shown to impact cerebral white matter (WM) microstructure in both younger and older adults. However, no study has yet demonstrated an association between arterial stiffness and aggregate g-ratio, a specific magnetic resonance imaging (MRI) measure of axonal myelination that is highly correlated with neuronal signal conduction speed. In a cohort of 38 well-documented cognitively unimpaired adults spanning a wide age range, we investigated the association between central arterial stiffness, measured using pulse wave velocity (PWV), and aggregate g-ratio, measured using our recent advanced quantitative MRI methodology, in several cerebral WM structures. After adjusting for age, sex, smoking status, and systolic blood pressure, our results indicate that higher PWV values, that is, elevated arterial stiffness, were associated with lower aggregate g-ratio values, that is, lower microstructural integrity of WM. Compared to other brain regions, these associations were stronger and highly significant in the splenium of the corpus callosum and the internal capsules, which have been consistently documented as very sensitive to elevated arterial stiffness. Moreover, our detailed analysis indicates that these associations were mainly driven by differences in myelination, measured using myelin volume fraction, rather than axonal density, measured using axonal volume fraction. Our findings suggest that arterial stiffness is associated with myelin degeneration, and encourages further longitudinal studies in larger study cohorts. Controlling arterial stiffness may represent a therapeutic target in maintaining the health of WM tissue in cerebral normative aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
7
|
Alghamdi AJ. The Value of Various Post-Processing Modalities of Diffusion Weighted Imaging in the Detection of Multiple Sclerosis. Brain Sci 2023; 13:brainsci13040622. [PMID: 37190587 DOI: 10.3390/brainsci13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Diffusion tensor imaging (DTI) showed its adequacy in evaluating the normal-appearing white matter (NAWM) and lesions in the brain that are difficult to evaluate with routine clinical magnetic resonance imaging (MRI) in multiple sclerosis (MS). Recently, MRI systems have been developed with regard to software and hardware, leading to different proposed diffusion analysis methods such as diffusion tensor imaging, q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, and axonal diameter measurement. These methods have the ability to better detect in vivo microstructural changes in the brain than DTI. These different analysis modalities could provide supplementary inputs for MS disease characterization and help in monitoring the disease’s progression as well as treatment efficacy. This paper reviews some of the recent diffusion MRI methods used for the assessment of MS in vivo.
Collapse
Affiliation(s)
- Ahmad Joman Alghamdi
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Sher A, Tabassum S, Wallace HM, Khan A, Karim AM, Gul S, Kang SC. In Vitro Analysis of Cytotoxic Activities of Monotheca buxifolia Targeting WNT/ β-Catenin Genes in Breast Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1147. [PMID: 36904007 PMCID: PMC10005423 DOI: 10.3390/plants12051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer (BC) is known to be the most common malignancy among women throughout the world. Plant-derived natural products have been recognized as a great source of anticancer drugs. In this study, the efficacy and anticancer potential of the methanolic extract of Monotheca buxifolia leaves using human breast cancer cells targeting WNT/β-catenin signaling was evaluated. We used methanolic and other (chloroform, ethyl acetate, butanol, and aqueous) extracts to discover their potential cytotoxicity on breast cancer cells (MCF-7). Among these, the methanol showed significant activity in the inhibition of the proliferation of cancer cells because of the presence of bioactive compounds, including phenols and flavonoids, detected by a Fourier transform infrared spectrophotometer and by gas chromatography mass spectrometry. The cytotoxic effect of the plant extract on the MCF-7 cells was examined by MTT and acid phosphatase assays. Real-time PCR analysis was performed to measure the mRNA expression of WNT-3a and β-catenin, along with Caspase-1,-3,-7, and -9 in MCF-7 cells. The IC50 value of the extract was found to be 232 μg/mL and 173 μg/mL in the MTT and acid phosphatase assays, respectively. Dose selection (100 and 300 μg/mL) was performed for real-time PCR, Annexin V/PI analysis, and Western blotting using Doxorubicin as a positive control. The extract at 100 μg/mL significantly upregulated caspases and downregulated the WNT-3a and β-catenin gene in MCF-7 cells. Western blot analysis further confirmed the dysregulations of the WNT signaling component (*** p< 0.0001). The results showed an increase in the number of dead cells in methanolic extract-treated cells in the Annexin V/PI analysis. Our study concludes that M. buxifolia may serve as an effective anticancer mediator through gene modulation that targets WNT/β-catenin signaling, and it can be further characterized using more powerful experimental and computational tools.
Collapse
Affiliation(s)
- Ambreen Sher
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Sobia Tabassum
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | | | - Asifullah Khan
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Asad Mustafa Karim
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sarah Gul
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
9
|
Rahmanzadeh R, Weigel M, Lu PJ, Melie-Garcia L, Nguyen TD, Cagol A, La Rosa F, Barakovic M, Lutti A, Wang Y, Bach Cuadra M, Radue EW, Gaetano L, Kappos L, Kuhle J, Magon S, Granziera C. A comparative assessment of myelin-sensitive measures in multiple sclerosis patients and healthy subjects. Neuroimage Clin 2022; 36:103177. [PMID: 36067611 PMCID: PMC9468574 DOI: 10.1016/j.nicl.2022.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Multiple Sclerosis (MS) is a common neurological disease primarily characterized by myelin damage in lesions and in normal - appearing white and gray matter (NAWM, NAGM). Several quantitative MRI (qMRI) methods are sensitive to myelin characteristics by measuring specific tissue biophysical properties. However, there are currently few studies assessing the relative reproducibility and sensitivity of qMRI measures to MS pathology in vivo in patients. METHODS We performed two studies. The first study assessed of the sensitivity of qMRI measures to MS pathology: in this work, we recruited 150 MS and 100 healthy subjects, who underwent brain MRI at 3 T including quantitative T1 mapping (qT1), quantitative susceptibility mapping (QSM), magnetization transfer saturation imaging (MTsat) and myelin water imaging for myelin water fraction (MWF). The sensitivity of qMRIs to MS focal pathology (MS lesions vs peri-plaque white/gray matter (PPWM/PPGM)) was studied lesion-wise; the sensitivity to diffuse normal appearing (NA) pathology was measured using voxel-wise threshold-free cluster enhancement (TFCE) in NAWM and vertex-wise inflated cortex analysis in NAGM. Furthermore, the sensitivity of qMRI to the identification of lesion tissue was investigated using a voxel-wise logistic regression analysis to distinguish MS lesion and PP voxels. The second study assessed the reproducibility of myelin-sensitive qMRI measures in a single scanner. To evaluate the intra-session and inter-session reproducibility of qMRI measures, we have investigated 10 healthy subjects, who underwent two brain 3 T MRIs within the same day (without repositioning), and one after 1-week interval. Five region of interest (ROIs) in white and deep grey matter areas were segmented, and inter- and intra- session reproducibility was studied using the intra-class correlation coefficient (ICC). Further, we also investigated the voxel-wise reproducibility of qMRI measures in NAWM and NAGM. RESULTS qT1 and QSM showed the highest sensitivity to distinguish MS focal WM and cortical pathology from peri-plaque WM (P < 0.0001), although QSM also showed the highest variance when applied to lesions. MWF and MTsat exhibited the highest sensitivity to NAWM pathology (P < 0.01). On the other hand, qT1 appeared to be the most sensitive measure to NAGM pathology (P < 0.01). All myelin-sensitive qMRI measures exhibited high inter/intra sessional ICCs in various WM and deep GM ROIs, in NAWM and in NAGM (ICC 0.82 ± 0.12). CONCLUSION This work shows that the applied qT1, MWF, MTsat and QSM are highly reproducible and exhibit differential sensitivity to focal and diffuse WM and GM pathology in MS patients.
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Alessandro Cagol
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,CIBM Center for Biomedical Imaging, Lausanne, Switzerland,Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,CIBM Center for Biomedical Imaging, Lausanne, Switzerland,Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ernst-Wilhelm Radue
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefano Magon
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland,Corresponding author.
| |
Collapse
|
10
|
Hori M, Maekawa T, Kamiya K, Hagiwara A, Goto M, Takemura MY, Fujita S, Andica C, Kamagata K, Cohen-Adad J, Aoki S. Advanced Diffusion MR Imaging for Multiple Sclerosis in the Brain and Spinal Cord. Magn Reson Med Sci 2022; 21:58-70. [PMID: 35173096 PMCID: PMC9199983 DOI: 10.2463/mrms.rev.2021-0091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) has been established its usefulness in evaluating normal-appearing white matter (NAWM) and other lesions that are difficult to evaluate with routine clinical MRI in the evaluation of the brain and spinal cord lesions in multiple sclerosis (MS), a demyelinating disease. With the recent advances in the software and hardware of MRI systems, increasingly complex and sophisticated MRI and analysis methods, such as q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, white matter tract integrity, and multiple diffusion encoding, referred to as advanced diffusion MRI, have been proposed. These are capable of capturing in vivo microstructural changes in the brain and spinal cord in normal and pathological states in greater detail than DTI. This paper reviews the current status of recent advanced diffusion MRI for assessing MS in vivo as part of an issue celebrating two decades of magnetic resonance in medical sciences (MRMS), an official journal of the Japanese Society of Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center.,Department of Radiology, Juntendo University School of Medicine
| | - Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center.,Department of Radiology, Juntendo University School of Medicine
| | | | - Masami Goto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University
| | | | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine
| | | | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine
| | | | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine
| |
Collapse
|
11
|
Ricigliano VAG, Tonietto M, Hamzaoui M, Poirion É, Lazzarotto A, Bottlaender M, Gervais P, Maillart E, Stankoff B, Bodini B. Spontaneous remyelination in lesions protects the integrity of surrounding tissues over time in multiple sclerosis. Eur J Neurol 2022; 29:1719-1729. [DOI: 10.1111/ene.15285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Vito A. G. Ricigliano
- Sorbonne Université Paris Brain Institute ICM CNRS Inserm Paris France
- Neurology Department St Antoine Hospital APHP Paris France
| | - Matteo Tonietto
- Sorbonne Université Paris Brain Institute ICM CNRS Inserm Paris France
- Université Paris‐Saclay CEA CNRS Inserm, BioMaps Service Hospitalier Frédéric Joliot Orsay France
| | - Mariem Hamzaoui
- Sorbonne Université Paris Brain Institute ICM CNRS Inserm Paris France
| | - Émilie Poirion
- Sorbonne Université Paris Brain Institute ICM CNRS Inserm Paris France
- Service dImagerie Médicale Hôpital Fondation Adolphe de Rothschild Paris France
| | - Andrea Lazzarotto
- Sorbonne Université Paris Brain Institute ICM CNRS Inserm Paris France
- Neurology Department St Antoine Hospital APHP Paris France
| | - Michel Bottlaender
- Université Paris‐Saclay CEA CNRS Inserm, BioMaps Service Hospitalier Frédéric Joliot Orsay France
| | - Philippe Gervais
- Université Paris‐Saclay CEA CNRS Inserm, BioMaps Service Hospitalier Frédéric Joliot Orsay France
| | | | - Bruno Stankoff
- Sorbonne Université Paris Brain Institute ICM CNRS Inserm Paris France
- Neurology Department St Antoine Hospital APHP Paris France
| | - Benedetta Bodini
- Sorbonne Université Paris Brain Institute ICM CNRS Inserm Paris France
- Neurology Department St Antoine Hospital APHP Paris France
| |
Collapse
|
12
|
Gatto RG, Wu YC. Editorial: Innovative Imaging Techniques in Preclinical Models of Neurodegenerative Diseases. Front Neurosci 2022; 15:801037. [PMID: 35002612 PMCID: PMC8733289 DOI: 10.3389/fnins.2021.801037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rodolfo G Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Cortina LE, Kim RW, Kiely M, Triebswetter C, Gong Z, Alsameen MH, Bouhrara M. Cerebral aggregate g-ratio mapping using magnetic resonance relaxometry and diffusion tensor imaging to investigate sex and age-related differences in white matter microstructure. Magn Reson Imaging 2022; 85:87-92. [PMID: 34678436 PMCID: PMC8629921 DOI: 10.1016/j.mri.2021.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Axonal demyelination is a cardinal feature of aging and age-related diseases. The g-ratio, mathematically defined as the inner-to-outer diameter of a myelinated axon, is used as a structural index of optimal axonal myelination and has been shown to represent a sensitive imaging biomarker of microstructural integrity. Several magnetic resonance imaging (MRI) methods for whole-brain mapping of aggregate g-ratio have been introduced. Computation of the aggerate g-ratio requires estimates of the myelin volume fraction (MVF) and the axonal volume fraction (AVF). While accurate determinations of MVF and AVF can be obtained through multicomponent relaxometry or diffusion analyses, respectively, these methods require lengthy acquisition times making their implementation challenging in a clinical context. Therefore, any attempt to overcome this drawback is needed. Expanding on our previous work, we introduced a new MRI method for whole-brain mapping of aggregate g-ratio. This new approach is based on the use of a single-shell diffusion for AVF determination, reducing the acquisition time by approximately ~10 min from our recently introduced approach, while offering the possibility to investigate g-ratio differences in previous studies with existing data for MVF mapping and single-shell diffusion data for AVF mapping. Our comparison analysis indicates that our newly derived aggregate g-ratio values were similar to those derived from our previous method, which requires a longer acquisition time. Further, in agreement with our previous observations, we found quadratic U-shaped relationships between aggregate g-ratio and age in this much larger study cohort. However, our results show that sexual dimorphism in g-ratio was not significant in any brain region investigated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mustapha Bouhrara
- Corresponding author: Mustapha Bouhrara, PhD., MRPAD Unit, National Institute on Aging (NIA), National Institutes of Health (NIH), Intramural Research Program, BRC 05C-222, 251 Bayview Boulevard, Baltimore, MD 21224, USA. Tel: 410-558-8541,
| |
Collapse
|
14
|
Investigating Microstructural Changes in White Matter in Multiple Sclerosis: A Systematic Review and Meta-Analysis of Neurite Orientation Dispersion and Density Imaging. Brain Sci 2021; 11:brainsci11091151. [PMID: 34573172 PMCID: PMC8469792 DOI: 10.3390/brainsci11091151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is characterised by widespread damage of the central nervous system that includes alterations in normal-appearing white matter (NAWM) and demyelinating white matter (WM) lesions. Neurite orientation dispersion and density imaging (NODDI) has been proposed to provide a precise characterisation of WM microstructures. NODDI maps can be calculated for the Neurite Density Index (NDI) and Orientation Dispersion Index (ODI), which estimate orientation dispersion and neurite density. Although NODDI has not been widely applied in MS, this technique is promising in investigating the complexity of MS pathology, as it is more specific than diffusion tensor imaging (DTI) in capturing microstructural alterations. We conducted a meta-analysis of studies using NODDI metrics to assess brain microstructural changes and neuroaxonal pathology in WM lesions and NAWM in patients with MS. Three reviewers conducted a literature search of four electronic databases. We performed a random-effect meta-analysis and the extent of between-study heterogeneity was assessed with the I2 statistic. Funnel plots and Egger’s tests were used to assess publication bias. We identified seven studies analysing 374 participants (202 MS and 172 controls). The NDI in WM lesions and NAWM were significantly reduced compared to healthy WM and the standardised mean difference of each was −3.08 (95%CI −4.22 to (−1.95), p ≤ 0.00001, I2 = 88%) and −0.70 (95%CI −0.99 to (−0.40), p ≤ 0.00001, I2 = 35%), respectively. There was no statistically significant difference of the ODI in MS WM lesions and NAWM compared to healthy controls. This systematic review and meta-analysis confirmed that the NDI is significantly reduced in MS lesions and NAWM than in WM from healthy participants, corresponding to reduced intracellular signal fraction, which may reflect underlying damage or loss of neurites.
Collapse
|
15
|
Lucignani M, Breschi L, Espagnet MCR, Longo D, Talamanca LF, Placidi E, Napolitano A. Reliability on multiband diffusion NODDI models: A test retest study on children and adults. Neuroimage 2021; 238:118234. [PMID: 34091031 DOI: 10.1016/j.neuroimage.2021.118234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Neurite Orientation Dispersion and Density Imaging (NODDI) and Bingham-NODDI diffusion MRI models are nowadays very well-known models in the field of diffusion MRI as they represent powerful tools for the estimation of brain microstructure. In order to efficiently translate NODDI imaging findings into the diagnostic clinical practice, a test-retest approach would be useful to assess reproducibility and reliability of NODDI biomarkers, thus providing validation on precision of different fitting toolboxes. In this context, we conducted a test-retest study with the aim to assess the effects of different factors (i.e. fitting algorithms, multiband acceleration, shell configuration, age of subject and hemispheric side) on diffusion models reliability, assessed in terms of Intra-class Correlation Coefficient (ICC) and Variation Factor (VF). To this purpose, data from pediatric and adult subjects were acquired with Simultaneous-MultiSlice (SMS) imaging method with two different acceleration factor (AF) and four b-values, subsequently combined in seven shell configurations. Data were then fitted with two different GPU-based algorithms to speed up the analysis. Results show that each factor investigated had a significant effect on reliability of several diffusion parameters. Particularly, both datasets reveal very good ICC values for higher AF, suggesting that faster acquisitions do not jeopardize the reliability and are useful to decrease motion artifacts. Although very small reliability differences appear when comparing shell configurations, more extensive diffusion parameters variability results when considering shell configuration with lower b-values, especially for simple model like NODDI. Also fitting tools have a significant effect on reliability, but their difference occurs in both datasets and AF, so it appears to be independent from either misalignment and motion artifacts, or noise and SNR. The main achievement of the present study is to show how 10 min multi-shell diffusion MRI acquisition for NODDI acquisition can have reliable results in WM. More complex models do not appear to be more prone to less data acquisition as well as noisier data thus stressing the idea of Bingham-NODDI having greater sensitivity to true subject variability.
Collapse
Affiliation(s)
- Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Breschi
- Medical Physics Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Maria Camilla Rossi Espagnet
- Neuroradiology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy; Nesmos Department, Sapienza University, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Elisa Placidi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Medical Physics UOC, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
16
|
Chen A, Wen S, Lakhani DA, Gao S, Yoon K, Smith SA, Dortch R, Xu J, Bagnato F. Assessing brain injury topographically using MR neurite orientation dispersion and density imaging in multiple sclerosis. J Neuroimaging 2021; 31:1003-1013. [PMID: 34033187 DOI: 10.1111/jon.12876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Axonal injury is a key player of disability in persons with multiple sclerosis (pwMS). Yet, detecting and measuring it in vivo is challenging. The neurite orientation dispersion and density imaging (NODDI) proposes a novel framework for probing axonal integrity in vivo. NODDI at 3.0 Tesla was used to quantify tissue damage in pwMS and its relationship with disease progression. METHODS Eighteen pwMS (4 clinically isolated syndrome, 11 relapsing remitting, and 3 secondary progressive MS) and nine age- and sex-matched healthy controls underwent a brain MRI, inclusive of clinical sequences and a multi-shell diffusion acquisition. Parametric maps of axial diffusivity (AD), neurite density index (ndi), apparent isotropic volume fraction (ivf), and orientation dispersion index (odi) were fitted. Anatomically matched regions of interest were used to quantify AD and NODDI-derived metrics and to assess the relations between these measures and those of disease progression. RESULTS AD, ndi, ivf, and odi significantly differed between chronic black holes (cBHs) and T2-lesions, and between the latter and normal appearing white matter (NAWM). All metrics except ivf significantly differed between NAWM located next to a cBH and that situated contra-laterally. Only NAWM odi was significantly associated with T2-lesion volume, the timed 25-foot walk test and disease duration. CONCLUSIONS NODDI is sensitive to tissue injury but its relationship with clinical progression remains limited.
Collapse
Affiliation(s)
- Amalie Chen
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Neurology Residency, Brigham and Women's Hospital, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia, USA
| | - Dhairya A Lakhani
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Department of Radiology, West Virginia University, Morgantown, West Virginia, USA
| | - Si Gao
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia, USA
| | - Keejin Yoon
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Vanderbilt University College of Arts and Science, Nashville, Tennessee, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, VUMC, Nashville, Tennessee, USA
| | - Richard Dortch
- Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, VUMC, Nashville, Tennessee, USA.,Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, VUMC, Nashville, Tennessee, USA
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Department of Neurology, VA Hospital, TN Valley Healthcare System (TVHS) Nashville, Tennessee, USA
| |
Collapse
|
17
|
Hong H, Yu X, Zhang R, Jiaerken Y, Wang S, Luo X, Lou M, Huang P, Zhang M. Cortical degeneration detected by neurite orientation dispersion and density imaging in chronic lacunar infarcts. Quant Imaging Med Surg 2021; 11:2114-2124. [PMID: 33936992 DOI: 10.21037/qims-20-880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Although lacunar infarcts are focal lesions, they may also have more widespread effects. A reduction in cortical thickness in the remote cortex after lacunar infarcts has been detected by structural imaging; however, its underlying microstructural changes are yet to be elucidated. This study aimed to investigate the effects of lacunar infarcts on the microstructural abnormalities associated with cortical thickness reduction in the remote cortex. Methods Thirty-seven patients with chronic lacunar infarcts were included. Brain structural magnetic resonance images (MRIs) and diffusion tensor images were acquired. We constructed the white matter tracts connecting with the lacunar infarcts and identified the connected cortical area based on a standard brain atlas warped into the subject space. Cortical thickness and microstructural neurite orientation dispersion and density imaging (NODDI) metrics of the ipsilesional and contralesional cortices were compared, and correlations between cortical thickness and NODDI metrics were also investigated. Results We found decreased cortical thickness and reduced neurite orientation dispersion index (ODI) in the ipsilesional cortex (2.47 vs. 2.50 mm, P=0.008; 0.451 vs. 0.456, P=0.035, respectively). In patients with precentral gyrus involvement (n=23), we found that ODI in the ipsilesional cortex was correlated with cortical thickness (r=0.437, P=0.037), and ODI in the contralesional cortex was also correlated with contralesional cortical thickness (r=0.440, P=0.036). Conclusions NODDI metrics could reflect cortical microstructural changes following lacunar infarcts. The correlation between decreased ODI and reduced cortical thickness suggests that dendrites' loss might contribute to lacunar infarct-related cortical atrophy.
Collapse
Affiliation(s)
- Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Petracca M, Pontillo G, Moccia M, Carotenuto A, Cocozza S, Lanzillo R, Brunetti A, Brescia Morra V. Neuroimaging Correlates of Cognitive Dysfunction in Adults with Multiple Sclerosis. Brain Sci 2021; 11:346. [PMID: 33803287 PMCID: PMC8000635 DOI: 10.3390/brainsci11030346] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a frequent and meaningful symptom in multiple sclerosis (MS), caused by the accrual of brain structural damage only partially counteracted by effective functional reorganization. As both these aspects can be successfully investigated through the application of advanced neuroimaging, here, we offer an up-to-date overview of the latest findings on structural, functional and metabolic correlates of cognitive impairment in adults with MS, focusing on the mechanisms sustaining damage accrual and on the identification of useful imaging markers of cognitive decline.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80125 Naples, Italy
| | - Marcello Moccia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| |
Collapse
|
19
|
Rahmanzadeh R, Lu PJ, Barakovic M, Weigel M, Maggi P, Nguyen TD, Schiavi S, Daducci A, La Rosa F, Schaedelin S, Absinta M, Reich DS, Sati P, Wang Y, Bach Cuadra M, Radue EW, Kuhle J, Kappos L, Granziera C. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain 2021; 144:1684-1696. [PMID: 33693571 PMCID: PMC8374972 DOI: 10.1093/brain/awab088] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022] Open
Abstract
Damage to the myelin sheath and the neuroaxonal unit is a cardinal feature of multiple sclerosis; however, a detailed characterization of the interaction between myelin and axon damage in vivo remains challenging. We applied myelin water and multi-shell diffusion imaging to quantify the relative damage to myelin and axons (i) among different lesion types; (ii) in normal-appearing tissue; and (iii) across multiple sclerosis clinical subtypes and healthy controls. We also assessed the relation of focal myelin/axon damage with disability and serum neurofilament light chain as a global biological measure of neuroaxonal damage. Ninety-one multiple sclerosis patients (62 relapsing-remitting, 29 progressive) and 72 healthy controls were enrolled in the study. Differences in myelin water fraction and neurite density index were substantial when lesions were compared to healthy control subjects and normal-appearing multiple sclerosis tissue: both white matter and cortical lesions exhibited a decreased myelin water fraction and neurite density index compared with healthy (P < 0.0001) and peri-plaque white matter (P < 0.0001). Periventricular lesions showed decreased myelin water fraction and neurite density index compared with lesions in the juxtacortical region (P < 0.0001 and P < 0.05). Similarly, lesions with paramagnetic rims showed decreased myelin water fraction and neurite density index relative to lesions without a rim (P < 0.0001). Also, in 75% of white matter lesions, the reduction in neurite density index was higher than the reduction in the myelin water fraction. Besides, normal-appearing white and grey matter revealed diffuse reduction of myelin water fraction and neurite density index in multiple sclerosis compared to healthy controls (P < 0.01). Further, a more extensive reduction in myelin water fraction and neurite density index in normal-appearing cortex was observed in progressive versus relapsing-remitting participants. Neurite density index in white matter lesions correlated with disability in patients with clinical deficits (P < 0.01, beta = -10.00); and neurite density index and myelin water fraction in white matter lesions were associated to serum neurofilament light chain in the entire patient cohort (P < 0.01, beta = -3.60 and P < 0.01, beta = 0.13, respectively). These findings suggest that (i) myelin and axon pathology in multiple sclerosis is extensive in both lesions and normal-appearing tissue; (ii) particular types of lesions exhibit more damage to myelin and axons than others; (iii) progressive patients differ from relapsing-remitting patients because of more extensive axon/myelin damage in the cortex; and (iv) myelin and axon pathology in lesions is related to disability in patients with clinical deficits and global measures of neuroaxonal damage.
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Pietro Maggi
- Department of Neurology, Lausanne University Hospital, Lausanne, Switzerland.,Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussel, Belgium
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Radiology Department, Center for Biomedical Imaging (CIBM), Lausanne University and University Hospital, Lausanne, Switzerland
| | - Sabine Schaedelin
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Radiology Department, Center for Biomedical Imaging (CIBM), Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ernst-Wilhelm Radue
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Bouhrara M, Kim RW, Khattar N, Qian W, Bergeron CM, Melvin D, Zukley LM, Ferrucci L, Resnick SM, Spencer RG. Age-related estimates of aggregate g-ratio of white matter structures assessed using quantitative magnetic resonance neuroimaging. Hum Brain Mapp 2021; 42:2362-2373. [PMID: 33595168 PMCID: PMC8090765 DOI: 10.1002/hbm.25372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
The g‐ratio, defined as the inner‐to‐outer diameter of a myelinated axon, is associated with the speed of nerve impulse conduction, and represents an index of axonal myelination and integrity. It has been shown to be a sensitive and specific biomarker of neurodevelopment and neurodegeneration. However, there have been very few magnetic resonance imaging studies of the g‐ratio in the context of normative aging; characterizing regional and time‐dependent cerebral changes in g‐ratio in cognitively normal subjects will be a crucial step in differentiating normal from abnormal microstructural alterations. In the current study, we investigated age‐related differences in aggregate g‐ratio, that is, g‐ratio averaged over all fibers within regions of interest, in several white matter regions in a cohort of 52 cognitively unimpaired participants ranging in age from 21 to 84 years. We found a quadratic, U‐shaped, relationship between aggregate g‐ratio and age in most cerebral regions investigated, suggesting myelin maturation until middle age followed by a decrease at older ages. As expected, we observed that these age‐related differences vary across different brain regions, with the frontal lobes and parietal lobes exhibiting slightly earlier ages of minimum aggregate g‐ratio as compared to more posterior structures such as the occipital lobes and temporal lobes; this agrees with the retrogenesis paradigm. Our results provide evidence for a nonlinear association between age and aggregate g‐ratio in a sample of adults from a highly controlled population. Finally, sex differences in aggregate g‐ratio were observed in several cerebral regions, with women exhibiting overall lower values as compared to men; this likely reflects the greater myelin content in women's brain, in agreement with recent investigations.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard W Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Wenshu Qian
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Christopher M Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Denise Melvin
- Clinical Research Core, Office of the Scientific Director, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Linda M Zukley
- Clinical Research Core, Office of the Scientific Director, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods 2020; 346:108908. [PMID: 32814118 DOI: 10.1016/j.jneumeth.2020.108908] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Diffusion MRI (dMRI) has proven to be a useful imaging approach for both clinical diagnosis and research investigating the microstructures of nervous tissues, and it has helped us to better understand the neurophysiological mechanisms of many diseases. Though diffusion tensor imaging (DTI) has long been the default tool to analyze dMRI data in clinical research, acquisition with stronger diffusion weightings beyond the DTI regimen is now possible with modern clinical scanners, potentially enabling even more detailed characterization of tissue microstructures. To take advantage of such data, neurite orientation dispersion and density imaging (NODDI) has been proposed as a way to relate the dMRI signal to tissue features via biophysically inspired modeling. The number of reports demonstrating the potential clinical utility of NODDI is rapidly increasing. At the same time, the pitfalls and limitations of NODDI, and general challenges in microstructure modeling, are becoming increasingly recognized by clinicians. dMRI microstructure modeling is a rapidly evolving field with great promise, where people from different scientific backgrounds, such as physics, medicine, biology, neuroscience, and statistics, are collaborating to build novel tools that contribute to improving human healthcare. Here, we review the applications of NODDI in clinical research and discuss future perspectives for investigations toward the implementation of dMRI microstructure imaging in clinical practice.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan; Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
22
|
Lee HH, Papaioannou A, Kim SL, Novikov DS, Fieremans E. A time-dependent diffusion MRI signature of axon caliber variations and beading. Commun Biol 2020; 3:354. [PMID: 32636463 PMCID: PMC7341838 DOI: 10.1038/s42003-020-1050-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
MRI provides a unique non-invasive window into the brain, yet is limited to millimeter resolution, orders of magnitude coarser than cell dimensions. Here, we show that diffusion MRI is sensitive to the micrometer-scale variations in axon caliber or pathological beading, by identifying a signature power-law diffusion time-dependence of the along-fiber diffusion coefficient. We observe this signature in human brain white matter and identify its origins by Monte Carlo simulations in realistic substrates from 3-dimensional electron microscopy of mouse corpus callosum. Simulations reveal that the time-dependence originates from axon caliber variation, rather than from mitochondria or axonal undulations. We report a decreased amplitude of time-dependence in multiple sclerosis lesions, illustrating the potential sensitivity of our method to axonal beading in a plethora of neurodegenerative disorders. This specificity to microstructure offers an exciting possibility of bridging across scales to image cellular-level pathology with a clinically feasible MRI technique.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Antonios Papaioannou
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sung-Lyoung Kim
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Els Fieremans
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
23
|
Lakhani DA, Schilling KG, Xu J, Bagnato F. Advanced Multicompartment Diffusion MRI Models and Their Application in Multiple Sclerosis. AJNR Am J Neuroradiol 2020; 41:751-757. [PMID: 32354707 DOI: 10.3174/ajnr.a6484] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/03/2020] [Indexed: 01/22/2023]
Abstract
Conventional MR imaging techniques are sensitive to pathologic changes of the brain and spinal cord seen in MS, but they lack specificity for underlying axonal and myelin integrity. By isolating the signal contribution from different tissue compartments, newly developed advanced multicompartment diffusion MR imaging models have the potential to detect specific tissue subtypes and associated injuries with increased pathologic specificity. These models include neurite orientation dispersion and density imaging, diffusion basis spectrum imaging, multicompartment microscopic diffusion MR imaging with the spherical mean technique, and models enabled through high-gradient diffusion MR imaging. In this review, we provide an appraisal of the current literature on the physics principles, histopathologic validation, and clinical applications of each of these techniques in both brains and spinal cords of patients with MS. We discuss limitations of each of the methods and directions that future research could take to provide additional validation of their roles as biomarkers of axonal and myelin injury in MS.
Collapse
Affiliation(s)
- D A Lakhani
- From the Neuroimaging Unit (D.A.L., F.B.), Neuroimmunology Division, Department of Neurology
- Division of Internal Medicine (D.A.L.)
- Department of Radiology (D.A.L.), West Virginia University, Morgantown, West Virginia
| | - K G Schilling
- Department of Radiology and Radiological Sciences (K.G.S., J.X.), Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - J Xu
- Department of Radiology and Radiological Sciences (K.G.S., J.X.), Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - F Bagnato
- From the Neuroimaging Unit (D.A.L., F.B.), Neuroimmunology Division, Department of Neurology
- Department of Neurology (F.B.), VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|