1
|
Ghotbeddin Z, Badripour N, Amini-Khoei H, Basir Z, Balali-dehkordi S. Proinflammatory factors inhibition and fish oil treatment: A promising therapy for neonatal seizures. IBRO Neurosci Rep 2024; 17:337-346. [PMID: 39483191 PMCID: PMC11525464 DOI: 10.1016/j.ibneur.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Brain injury is one of the most important causes of infant mortality and chronic neurological disabilities. Hypoxia is an acute brain injury which led to various cognitive, behavioral, and memory disorders throughout life. Previous studies reported neuroprotective possibilities for fish oil (FO) in brain-injured situations. In this study, we evaluated the effect of the FO diet during the lactation period on seizure activity, behavioral performance, histomorphometry, and inflammatory changes in the brains of hypoxia rats. Male Wistar rats were randomly divided in to 4 groups: Sham (intact rats), hypoxia, FO and FO+hypoxia groups. Hypoxia was induced by keeping neonate rats at PND12 in a hypoxic chamber (7 % oxygen and 93 % nitrogen intensity) for 15 minutes. In the FO groups, rats received oral FO (1 ml/day) for 12 days during the lactation period. Seizure activity was assessed by measuring the number of tonic-clonic seizures and seizure thresholds. Novel object recognition tests (NORT), rotarod, and open field tests were used to measure behavioral performances. A Histological study was performed to evaluate histomorphometric changes in the hippocampus and cerebellum. The gene expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was measured using RT-PCR. Findings showed that the number of tonic-clonic seizures, atrophy, and cell death in the hippocampus and cerebellum, the gene expression of TNF-α and IL-1β in the hippocampus, and behavioral disorders were significantly increased in the hypoxia rats compared to the sham group. Administration of FO in the hypoxia groups significantly decreased the gene expression of TNF-α and IL-1β, the number of tonic-clonic seizures, and neuronal cell death in the hippocampus and cerebellum compared to the hypoxia groups. Furthermore, it can improve behavioral tasks and cognitions.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nima Badripour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Basir
- Department of Histology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shima Balali-dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Peng Y, Li C, Zhang L, Yu R, Wang Y, Pan L, Guo H, Wei Y, Liu X. Cyclophilin A promotes porcine deltacoronavirus replication by regulating autophagy via the Ras/AKT/NF-κB pathway. Vet Microbiol 2024; 297:110190. [PMID: 39084161 DOI: 10.1016/j.vetmic.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused major worldwide economic losses in the pig industry. Previous studies have shown that cyclophilin A (CypA), a key player in aetiological agent infection, is involved in regulating viral infection. However, the role of CypA during PDCoV replication remains unknown. Therefore, in this study, the role of CypA in PDCoV replication was determined. The results demonstrated that PDCoV infection increased CypA expression in LLC-PK1 cells. CypA overexpression substantially promoted PDCoV replication. Proteomic analysis was subsequently used to assess changes in total protein expression levels after CypA overexpression. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to further determine the mechanisms by which CypA affects viral replication. Proteomic analysis revealed that CypA protein overexpression significantly upregulated 75 differentially expressed proteins and significantly downregulated 172 differentially expressed proteins. The differentially expressed proteins were involved mainly in autophagy and activation of the host innate immune pathway. Subsequent experimental results revealed that the CypA protein promoted viral replication by reducing the levels of natural immune cytokines and mitigated the inhibitory effect of chloroquine (CQ) on viral replication. Further investigation revealed that CypA could activate the Ras/AKT/NF-κB pathway, mediate autophagy signalling and promote PDCoV replication. In summary, the findings of this study may help elucidate the role of CypA in PDCoV replication.
Collapse
Affiliation(s)
- Yousheng Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Chenchen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
3
|
Chen Y, Fang X, Liu H, Fan Q. Knockdown of IGF2BP3 Down-Regulates PDCD4 Levels to Attenuate Hypoxic-Ischemic Brain Damage. FRONT BIOSCI-LANDMRK 2024; 29:329. [PMID: 39344311 DOI: 10.31083/j.fbl2909329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Hypoxic-ischemic brain damage (HIBD) is a prevalent brain injury with high mortality and morbidity. It results from hypoxia and ischemia of the brain due to various perinatal factors. A previous study showed that knockdown of programmed cell death factor 4 (PDCD4) could reduce infarction injury resulting from ischemia/reperfusion injury. However, exact mechanism by which PDCD4 acts in HIBD is not yet understood. Our aim in present investigation was to investigate the function and mechanism of PDCD4 in alleviating HIBD. METHODS An HIBD model was developed using neonatal rats. After 48 h of modeling, short-term neurological function was evaluated and the brain tissue removed for assessment of cerebral infarct volume and brain water content (BWC). A cell model of oxygen glucose deprivation/reoxygenation (OGD/R) was also constructed. Overexpression or knockdown of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) or PDCD4 was performed in pretreated cells. RESULTS The geotaxis reflex time, cerebral infarct volume, and BWC all increased after HIBD in this neonatal rat model. Additionally, the levels of PDCD4 and of the N6-Methyladenosine (m6A) reader protein IGF2BP3 were increased in HIBD rats and OGD/R-stimulated pheochromocytoma (PC12) cells relative to controls. Moreover, OGD/R-stimulated pheochromocytoma PC12 cells showed decreased cell viability, increased apoptosis, and elevated Interleukin 6 (IL-6), Interleukin 1 β (IL-1β), and tumor necrosis factor-α (TNF-α) contents. These features were reversed after knocking down IGF2BP3. The interaction between IGF2BP3 protein and PDCD4 mRNA was confirmed by RNA immunoprecipitation and RNA pull-down assays. Furthermore, knockdown of IGF2BP3 in OGD/R-stimulated PC12 cells reduced cell damage via down-regulation of PDCD4. Finally, the IGF2BP3/PDCD4 axis alleviated OGD/R-induced cell injury in primary cortical neurons (PCNs). CONCLUSIONS PDCD4 and m6A reader protein IGF2BP3 were up-regulated in an HIBD neonatal rat model. Knockdown of IGF2BP3 in OGD/R-stimulated PC12 cells or PCNs alleviated cell damage through reducing PDCD4.
Collapse
Affiliation(s)
- Yuxia Chen
- Department of Neonatology, Longhua District Central Hospital, 518110 Shenzhen, Guangdong, China
| | - Xiaoyi Fang
- Department of Neonatology, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107 Shenzhen, Guangdong, China
| | - Huayan Liu
- Department of Neonatology, Longhua District Central Hospital, 518110 Shenzhen, Guangdong, China
| | - Qianqian Fan
- Department of Neonatology, Longhua District Central Hospital, 518110 Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Li QQ, Yu Q, Liu ZY, Zhang Q, Li MY, Hu Y. Sevoflurane anesthesia during late gestation induces cognitive disorder in rat offspring via the TLR4/BDNF/TrkB/CREB pathway. J Neuropathol Exp Neurol 2024:nlae096. [PMID: 39271176 DOI: 10.1093/jnen/nlae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Sevoflurane (Sevo) is widely used for general anesthesia during pregnancy. Emerging evidence indicates that maternal Sevo exposure can trigger developmental neurotoxicity in the offspring. Nonetheless, the underlying mechanisms need further investigation. Pregnant Sprague-Dawley rats on gestational day 18 were exposed to 3.5% Sevo to induce the rat model of neurotoxicity. TAK-242, a TLR4 inhibitor, was administrated to inhibit the signaling transduction. Hippocampal tissues of rat offspring were harvested for immunohistochemical staining, TUNEL staining, Western blotting, ELISA, and measurement of oxidative stress-related markers. Serum samples were collected to evaluate lipid metabolism-associated factors. Morris water maze was implemented to test the cognitive function of offspring rats. Rat hippocampal neurons were isolated to elucidate the effect of TAK-242 on the BDNF/TrkB/CREB signaling in vitro. The results showed that maternal Sevo exposure during the third trimester induced neuroinflammation, lipid metabolism disturbance, and oxidative stress, and impaired the spatial learning and memory of rat offspring. Sevo upregulated TLR4 and impeded BDNF/TrkB/CREB signaling transduction in the hippocampus of rat offspring; TAK-242 administration reversed these effects. In conclusion, Sevo anesthesia during late gestation impairs the learning and memory ability of rat offspring possibly by promoting neuroinflammation and disturbing lipid metabolism via the TLR4/BDNF/TrkB/CREB pathway.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Yu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhi-Yi Liu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qin Zhang
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meng-Yuan Li
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yan Hu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Liu CM, Gao XT, Zhang HM, Bi HN, Liang C, Jiang JY, Xiao PL, Yu XH, Wang XL. [Melatonin alleviates autophagy in cortical neurons of neonatal rats with hypoxic- ischemic brain damage via the PI3K/AKT pathway]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:631-638. [PMID: 38926381 DOI: 10.7499/j.issn.1008-8830.2312053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To observe the effects of melatonin on autophagy in cortical neurons of neonatal rats with hypoxic-ischemic brain damage (HIBD) and to explore its mechanisms via the PI3K/AKT signaling pathway, aiming to provide a basis for the clinical application of melatonin. METHODS Seven-day-old Sprague-Dawley neonatal rats were randomly divided into a sham operation group, an HIBD group, and a melatonin group (n=9 each). The neonatal rat HIBD model was established using the classic Rice-Vannucci method. Neuronal morphology in the neonatal rat cerebral cortex was observed with hematoxylin-eosin staining and Nissl staining. Autophagy-related protein levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 were detected by immunofluorescence staining and Western blot analysis. Phosphorylated phosphoinositide 3-kinase (p-PI3K) and phosphorylated protein kinase B (p-AKT) protein expression levels were measured by immunohistochemistry and Western blot. The correlation between autophagy and the PI3K pathway in the melatonin group and the HIBD group was analyzed using Pearson correlation analysis. RESULTS Twenty-four hours post-modeling, neurons in the sham operation group displayed normal size and orderly arrangement. In contrast, neurons in the HIBD group showed swelling and disorderly arrangement, while those in the melatonin group had relatively normal morphology and more orderly arrangement. Nissl bodies were normal in the sham operation group but distorted in the HIBD group; however, they remained relatively intact in the melatonin group. The average fluorescence intensity of LC3 and Beclin-1 was higher in the HIBD group compared to the sham operation group, but was reduced in the melatonin group compared to the HIBD group (P<0.05). The number of p-PI3K+ and p-AKT+ cells decreased in the HIBD group compared to the sham operation group but increased in the melatonin group compared to the HIBD group (P<0.05). LC3 and Beclin-1 protein expression levels were higher, and p-PI3K and p-AKT levels were lower in the HIBD group compared to the sham operation group (P<0.05); however, in the melatonin group, LC3 and Beclin-1 levels decreased, and p-PI3K and p-AKT increased compared to the HIBD group (P<0.05). The correlation analysis results showed that the difference of the mean fluorescence intensity of LC3 and Beclin-1 protein in the injured cerebral cortex between the melatonin and HIBD groups was negatively correlated with the difference of the number of p-PI3K+ and p-AKT+ cells between the two groups (P<0.05). CONCLUSIONS Melatonin can inhibit excessive autophagy in cortical neurons of neonatal rats with HIBD, thereby alleviating HIBD. This mechanism is associated with the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chen-Meng Liu
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Xiao-Tian Gao
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Hai-Mo Zhang
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Hui-Ning Bi
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Chen Liang
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong 261053, China
| | | | | | | | - Xiao-Li Wang
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong 261053, China
| |
Collapse
|
6
|
Wu Y, Zhang Y, Tang X, Ye S, Shao J, Tu L, Pan J, Chen L, Liang G, Yin L. Synergistic anti-oxidant and anti-inflammatory effects of ceria/resatorvid co-decorated nanoparticles for acute lung injury therapy. J Nanobiotechnology 2023; 21:502. [PMID: 38129906 PMCID: PMC10740228 DOI: 10.1186/s12951-023-02237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a critical inflammatory response syndrome that rapidly develops into acute respiratory distress syndrome (ARDS). Currently, no effective therapeutic modalities are available for patients with ALI/ARDS. According to recent studies, inhibiting both the release of pro-inflammatory cytokines and the formation of reactive oxygen species (ROS) as early as possible may be a promising therapy for ALI. RESULTS In this study, a ROS-responsive nano-delivery system based on oxidation-sensitive chitosan (Ox-CS) was fabricated for the simultaneous delivery of Ce NPs and RT. The in vitro experiments have shown that the Ox-CS/Ceria-Resatorvid nanoparticles (Ox-CS/CeRT NPs) were rapidly and efficiently internalised by inflammatory endothelial cells. Biological evaluations validated the significant attenuation of ROS-induced oxidative stress and cell apoptosis by Ox-CS/CeRT NPs, while maintaining mitochondrial function. Additionally, Ox-CS/CeRT NPs effectively inhibited the release of pro-inflammatory factors. After intraperitoneal (i.p.) administration, Ox-CS/CeRT NPs passively targeted the lungs of LPS-induced inflamed mice and released the drug activated by the high ROS levels in inflammatory tissues. Finally, Ox-CS/CeRT NPs significantly alleviated LPS-induced lung injury through inhibiting both oxidative stress and pro-inflammatory cytokine expression. CONCLUSIONS The created Ox-CS/CeRT NPs could act as a prospective nano-delivery system for a combination of anti-inflammatory and anti-oxidant therapy of ALI.
Collapse
Affiliation(s)
- Yue Wu
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Yawen Zhang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xuanyu Tang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Shuhui Ye
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jingjing Shao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Linglan Tu
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junzhi Pan
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Lingfeng Chen
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Lina Yin
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmacy, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
7
|
Deng J, Liao Y, Chen J, Chen A, Wu S, Huang Y, Qian H, Gao F, Wu G, Chen Y, Chen X, Zheng X. N6-methyladenosine demethylase FTO regulates synaptic and cognitive impairment by destabilizing PTEN mRNA in hypoxic-ischemic neonatal rats. Cell Death Dis 2023; 14:820. [PMID: 38092760 PMCID: PMC10719319 DOI: 10.1038/s41419-023-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) can result in significant global rates of neonatal death or permanent neurological disability. N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism, and m6A dysregulation is implicated in various neurological diseases. However, the biological roles and clinical significance of m6A in HIBD remain unclear. We currently evaluated the effect of HIBD on cerebral m6A methylation in RNAs in neonatal rats. The m6A dot blot assay showed a global augmentation in RNA m6A methylation post-HI. Herein, we also report on demethylase FTO, which is markedly downregulated in the hippocampus and is the main factor involved with aberrant m6A modification following HI. By conducting a comprehensive analysis of RNA-seq data and m6A microarray results, we found that transcripts with m6A modifications were more highly expressed overall than transcripts without m6A modifications. The overexpression of FTO resulted in the promotion of Akt/mTOR pathway hyperactivation, while simultaneously inhibiting autophagic function. This is carried out by the demethylation activity of FTO, which selectively demethylates transcripts of phosphatase and tensin homolog (PTEN), thus promoting its degradation and reduced protein expression after HI. Moreover, the synaptic and neurocognitive disorders induced by HI were effectively reversed through the overexpression of FTO in the hippocampus. Cumulatively, these findings demonstrate the functional importance of FTO-dependent hippocampal m6A methylome in cognitive function and provides novel mechanistic insights into the therapeutic potentials of FTO in neonatal HIBD.
Collapse
Affiliation(s)
- Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Jianghu Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Shuyan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yongxin Huang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Haitao Qian
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Guixi Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yisheng Chen
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of Belt and Road, Fuzhou, China.
| |
Collapse
|
8
|
Ashby FJ, Castillo EJ, Ludwig Y, Andraka NK, Chen C, Jamieson JC, Kabbej N, Sommerville JD, Aguirre JI, Heldermon CD. Femoral Structure and Biomechanical Characteristics in Sanfilippo Syndrome Type-B Mice. Int J Mol Sci 2023; 24:13988. [PMID: 37762291 PMCID: PMC10530914 DOI: 10.3390/ijms241813988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Sanfilippo syndrome Type-B, also known as mucopolysaccharidosis IIIB (MPS IIIB), accounts for approximately one-third of all Sanfilippo syndrome patients and is characterized by a similar natural history as Type-A. Patients suffer from developmental regression, bone malformation, organomegaly, GI distress, and profound neurological deficits. Despite human trials of enzyme replacement therapy (ERT) (SBC-103, AX250) in MPS IIIB, there is currently no FDA approved treatment and a few palliative options. The major concerns of ERT and gene therapy for the treatment of bone malformation are the inadequate biodistribution of the missing enzyme, N-acetyl-α-glucosaminidase (NAGLU), and that the skeleton is a poorly hit target tissue in ERT and gene therapy. Each of the four known human types of MPS III (A, B, C, and D) is usually regarded as having mild bone manifestations, yet it remains poorly characterized. This study aimed to determine bone mineral content (BMC), volumetric bone mineral density (vBMD), and biomechanical properties in femurs MPS IIIB C57BL/6 mice compared to phenotypic control C57BL/6 mice. Significant differences were observed in MPS IIIB mice within various cortical and cancellous bone parameters for both males and females (p < 0.05). Here, we establish some osteogenic manifestations of MPS IIIB within the mouse model by radiographic and biomechanical tests, which are also differentially affected by age and sex. This suggests that some skeletal features of the MPS IIIB mouse model may be used as biomarkers of peripheral disease correction for preclinical treatment of MPS IIIB.
Collapse
Affiliation(s)
- Frederick James Ashby
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Evelyn J. Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA; (E.J.C.); (J.I.A.)
| | - Yan Ludwig
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Natalia K. Andraka
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Cong Chen
- Department of Orthopaedic Surgery & Sports Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Julia C. Jamieson
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Nadia Kabbej
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - John D. Sommerville
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| | - Jose I. Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA; (E.J.C.); (J.I.A.)
| | - Coy D. Heldermon
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (Y.L.); (N.K.A.); (J.C.J.); (N.K.); (J.D.S.); (C.D.H.)
| |
Collapse
|
9
|
Feng Y, Ju Y, Wu Q, Sun G, Yan Z. TAK-242, a toll-like receptor 4 antagonist, against brain injury by alleviates autophagy and inflammation in rats. Open Life Sci 2023; 18:20220662. [PMID: 37528888 PMCID: PMC10389675 DOI: 10.1515/biol-2022-0662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Inhibition of Toll-like receptor 4 (TLR4)-mediated inflammatory pathways exerts a critical effect on neuronal death; therefore, it is a possible new therapeutic approach for traumatic brain injury (TBI). Resatorvid (TAK-242) is a novel small-molecule compound widely used to inhibit TLR4-mediated pathways, but the protective mechanism of TAK-242 in TBI remains unclear. Herein, we analyzed the neuroprotective effects of TAK-242 in rats after TBI. The rat model of brain injury was established using a modified Free-fall device, and the rats were injected with TAK-242 (0.5 mg/kg) through the caudal vein before TBI. The rats were allocated into four groups: a sham group, a TBI group, a TBI + vehicle group, and a TBI + TAK-242 group. The brain tissue was extracted for histology and determination of the expression of autophagy-related proteins and inflammatory mediators. TAK-242 pretreatment significantly reduced the damage to hippocampal neurons. Neuronal autophagy increased after brain injury, whereas TAK-242 significantly reduced autophagy marker protein LC3-II in the hippocampus. In addition, TAK-242 pretreatment significantly downregulated NF-κB p65, TNF-α, and IL-1β in the hippocampus. In conclusion, TAK-242 significantly reduced hippocampal neuronal damage by inhibiting autophagy and neuroinflammatory activity, possibly via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei 050000, China
| | - Yaru Ju
- Perinatal Center, The Fourth Hospital of Shi Jiazhuang, Shi Jiazhuang, Hebei050011, China
| | - Qiang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei 050000, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei 050000, China
| | - Zhongjie Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Heping West
Road, Shi Jiazhuang, Hebei 050000, China
| |
Collapse
|
10
|
Abstract
Xenon (Xe) is an inert, colorless and odorless heavy gas and has many biological functions. However, little is known about whether and how Xe can modulate hypoxic-ischemic brain damage (HIBD) in neonatal rats. This study employed a neonatal rat model to explore the potential effect of Xe on neuron autophagy and the severity of HIBD. Neonatal Sprague-Dawley rats were subjected to HIBD, randomized and treated with Xe or mild hypothermia (at 32 °C) for 3 h. The degrees of HIBD, neuron autophagy and the neuronal functions in some neonates from each group were tested by histopathology, immunochemistry, transmission electron microscopy, western blot, open-field and Trapeze tests at 3 and 28 days post-induction of HIBD, respectively. Compared with the Sham group, hypoxic-ischemia caused larger volumes of cerebral infarction and severe brain damage, and increased autophagosome formation and Beclin-1 and microtubule-associated protein 1A/1B-light chain 3 class II (LC3-II) expression in the brain of rats, accompanied by the defect in neuronal functions. In contrast, treatment with Xe and/or hypothermia significantly reduced infarct volumes and ameliorated neurological defects in the HIBD rats, particularly for the combination of Xe and hypothermia. Xe significantly mitigated the relative levels of Beclin-1 and LC3-II expression and autophagosome formation induced by HIBD in rats. Xe acted as a neuroprotective factor against HIBD, possibly by inhibiting the hypoxia-induced neuron autophagy in rats.
Collapse
|
11
|
Zhang M, Zhou H, He R, Yang J, Zou Y, Deng Y, Xie H, Yan Z. Up-regulating microRNA-214-3p relieves hypoxic-ischemic brain damage through inhibiting TXNIP expression. Mol Cell Biochem 2023; 478:597-608. [PMID: 35980563 DOI: 10.1007/s11010-022-04530-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
A list of microRNAs (miRs) has been referred to involve in the development of hypoxic-ischemic brain damage (HIBD). Based on that, we probed the concrete role of miR-214-3p regulating thioredoxin-interacting protein (TXNIP) in the illness. A neonatal HIBD mouse model was established using the Rice-Vannucci method, followed by measurements of miR-214-3p and TXNIP levels in brain tissues. After modeling, mice were given brain injection of the compounds that could alter miR-214-3p and TXNIP expression. Afterward, neurological function, neuronal inflammation, neuronal apoptosis, neuron morphology, and the number of Nissl body were assessed in HIBD mice. The binding of miR-214-3p to TXNIP was analyzed. Lower miR-214-3p and higher TXNIP were analyzed in brain tissues of mice with HIBD. Up-regulating miR-214-3p or depleting TXNIP improved neurological function, reduced neuronal inflammation and neuronal apoptosis, attenuated morphological damage of neurons, and increased the number of Nissl bodies in mice with HIBD. TXNIP was targeted by miR-214-3p and overexpressing TXNIP reversed the therapeutic effect of miR-214-3p on HIBD mice. It is noted that promotion of miR-214-3p relieves HIBD in mice through inhibiting TXNIP expression.
Collapse
Affiliation(s)
- Miaoyu Zhang
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Haiyang Zhou
- Department of Neurology, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Rongni He
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China
| | - Juan Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China
| | - Yang Zou
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yiting Deng
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China.
| | - Zhenxing Yan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
12
|
Mfsd2a attenuated hypoxic-ischemic brain damage via protection of the blood-brain barrier in mfat-1 transgenic mice. Cell Mol Life Sci 2023; 80:71. [PMID: 36820986 PMCID: PMC9950179 DOI: 10.1007/s00018-023-04716-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Previous studies have shown that mfat-1 transgenic mice have protective effects against some central nervous system (CNS) disorders, owing to the high docosahexaenoic acid (DHA) content enriched in their brains. However, whether this protective effect is connected to the blood-brain barrier (BBB) remains unclear. This study aims to investigate the mechanisms of the protective effect against hypoxic-ischemic brain damage (HIBD) of mfat-1 transgenic mice. mfat-1 mice not only demonstrated a significant amelioration of neurological dysfunction and neuronal damage but also partly maintained the physiological permeability of the BBB after HIBD. We initially showed this was associated with elevated major facilitator superfamily domain-containing 2a (Mfsd2a) expression on the BBB, resulting from more lysophosphatidylcholine (LPC)-DHA entering the brain. Wild-type (WT) mice showed a similar Mfsd2a expression trend after long-term feeding with an LPC-DHA-rich diet. Knockdown of Mfsd2a by siRNA intra-cerebroventricular (ICV) injection neutralized the protective effect against HIBD-induced BBB disruption in mfat-1 mice, further validating the protective function of Mfsd2a on BBB. HIBD-induced BBB high permeability was attenuated by Mfsd2a, primarily through a transcellular pathway to decrease caveolae-like vesicle-mediated transcytosis. Taken together, these findings not only reveal that mfat-1 transgenic mice have higher expression of Mfsd2a on the BBB, which partly sustains BBB permeability via vesicular transcytosis to alleviate the severity of HIBD, but also suggest that dietary intake of LPC-DHA may upregulate Mfsd2a expression as a novel therapeutic strategy for BBB dysfunction and survival in HIBD patients.
Collapse
|
13
|
Luo L, Deng L, Chen Y, Ding R, Li X. Identification of Lipocalin 2 as a Ferroptosis-Related Key Gene Associated with Hypoxic-Ischemic Brain Damage via STAT3/NF-κB Signaling Pathway. Antioxidants (Basel) 2023; 12:186. [PMID: 36671050 PMCID: PMC9854551 DOI: 10.3390/antiox12010186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Hypoxic-ischemic brain damage (HIBD) is a common cause of death or mental retardation in newborns. Ferroptosis is a novel form of iron-dependent cell death driven by lipid peroxidation, and recent studies have confirmed that ferroptosis plays an important role in the development of HIBD. However, HIBD ferroptosis-related biomarkers remain to be discovered. An artificial neural network (ANN) was established base on differentially expressed genes (DEGs) related to HIBD and ferroptosis and validated by external dataset. The protein-protein interaction (PPI) network, support vector machine-recursive feature elimination (SVM-RFE) algorithms, and random forest (RF) algorithm were utilized to identify core genes of HIBD. An in vitro model of glutamate-stimulated HT22 cell HIBD was constructed, and glutamate-induced ferroptosis and mitochondrial structure and function in HT22 cells were examined by propidium iodide (PI) staining, flow cytometry, Fe2+ assay, Western blot, JC-1 kit, and transmission electron microscopy (TEM). In addition, Western blot and immunofluorescence assays were used to detect the NF-κB/STAT3 pathway. An HIBD classification model was constructed and presented excellent performance. The PPI network and two machine learning algorithms indicated two hub genes in HIBD. Lipocalin 2 (LCN2) was the core gene correlated with the risk of HIBD according to the results of differential expression analysis and logistic regression diagnostics. Subsequently, we verified in an in vitro model that LCN2 is highly expressed in glutamate-induced ferroptosis in HT22 cells. More importantly, LCN2 silencing significantly inhibited glutamate-stimulated ferroptosis in HT22 cells. We also found that glutamate-stimulated HT22 cells produced mitochondrial dysfunction. Furthermore, in vitro experiments confirmed that NF-κB and STAT3 were activated and that silencing LCN2 could have the effect of inhibiting their activation. In short, our findings reveal a molecular mechanism by which LCN2 may promote ferroptosis in HIBD through activation of the NF-κB/STAT3 pathway, providing new and unique insights into LCN2 as a biomarker for HIBD and suggesting new preventive and therapeutic strategies for HIBD.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Yongtong Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Rui Ding
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
14
|
Lin Q, Hu DW, Hao XH, Zhang G, Lin L. Effect of Hypoxia-Ischemia on the Expression of Iron-Related Proteins in Neonatal Rat Brains. Neural Plast 2023; 2023:4226139. [PMID: 37124874 PMCID: PMC10139812 DOI: 10.1155/2023/4226139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Hypoxic-ischemic white matter injury (WMI) pathogenesis in preterm infants is not well established, and iron-related proteins in the brain may play an important role in imbalanced iron metabolism. We aimed to investigate the iron-related protein changes in neonatal rats after hypoxia-ischemia (HI), clarify the role of iron-related proteins in hypoxic-ischemic WMI, and potentially provide a new target for the clinical treatment of hypoxic-ischemic WMI in preterm infants. We adopted a WMI animal model of bilateral common carotid artery electrocoagulation combined with hypoxia in neonatal 3-day-old Sprague-Dawley rats. We observed basic myelin protein (MBP) and iron-related protein expression in the brain (ferritin, transferrin receptor [TfR], and membrane iron transporter 1 [FPN1]) via Western blot and double immunofluorescence staining. The expression of MBP in the WMI group was significantly downregulated on postoperative days (PODs) 14, 28, and 56. Ferritin levels were significantly increased on PODs 3, 7, 14, and 28 and were most significant on POD 28, returning to the sham group level on POD 56. FPN1 levels were significantly increased on PODs 7, 28, and 56 and were still higher than those in the sham group on POD 56. TfR expression was significantly upregulated on PODs 1, 7, and 28 and returned to the sham group level on POD 56. Immunofluorescence staining showed that ferritin, TfR, and FPN1 were expressed in neurons, blood vessels, and oligodendrocytes in the cortex and corpus callosum on POD 28. Compared with the sham group, the immune-positive markers of three proteins in the WMI group were significantly increased. The expression of iron-related proteins in the brain (ferritin, FPN1, and TfR) showed spatiotemporal dynamic changes and may play an important role in hypoxic-ischemic WMI.
Collapse
Affiliation(s)
- Qing Lin
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Ding-Wang Hu
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Xin-Hui Hao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Geng Zhang
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
15
|
Li Z, Bai H, Zhang R, Chen B, Wang J, Xue B, Ren X, Wang J, Jia Y, Zang W, Wang J, Chen X. Systematic analysis of critical genes and pathways identified a signature of neuropathic pain after spinal cord injury. Eur J Neurosci 2022; 56:3991-4008. [PMID: 35560852 DOI: 10.1111/ejn.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022]
Abstract
Spinal cord injury (SCI) damages sensory systems, producing chronic neuropathic pain that is resistant to medical treatment. The specific mechanisms underlying SCI-induced neuropathic pain (SCI-NP) remain unclear, and protein biomarkers have not yet been integrated into diagnostic screening. To better understand the host molecular pathways involved in SCI-NP, we used the bioinformatics method, the PubMed database, and bioinformatics methods to identify target genes and their associated pathways. We reviewed 2504 articles on the regulation of SCI-NP and used the text mining of PubMed database abstracts to determine associations among 12 pathways and networks. Based on this method, we identified two central genes in SCI-NP: interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Adult male Sprague-Dawley rats were used to build the SCI-NP models. The threshold for paw withdrawal was significantly reduced in the SCI group and TLR4 was activated in microglia after SCI. ELISA analysis of TNF-α and IL-6 levels was significantly higher in the SCI group than in the sham group. Western blot showed that expressions of the TLR4/MyD88/NF-κB inflammatory pathway protein increased dramatically in the SCI group. Using the TLR4 inhibitor TAK-242, the pain threshold and expressions of inflammatory factors and proteins of the proteins of the inflammatory signal pathway were reversed, TLR4 in microglia was suppressed, suggesting that SCI-NP was related to neuroinflammation mediated by the TLR4 signaling pathway. In conclusion, we found TNF-α and IL-6 were the neuroinflammation-related genes involved in SCI-NP that can be alleviated by inhibiting the inflammatory pathway upstream of the TLR4/MyD88/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Zefu Li
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiying Bai
- Outpatient Surgery, Zhengzhou University Hospital, Zhengzhou, Henan Province, China
| | - Ruoyu Zhang
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bohan Chen
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Junmin Wang
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bohan Xue
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiuhua Ren
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, Maryland, USA
| | - Yanjie Jia
- Department of Neurology, the first affiliated Hospital Zhengzhou University, Zhengzhou, Henan Province, China
| | - Weidong Zang
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Basic Medical College of Human Anatomy of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
16
|
Li TT, Wan Q, Zhang X, Xiao Y, Sun LY, Zhang YR, Liu XN, Yang WC. Stellate ganglion block reduces inflammation and improves neurological function in diabetic rats during ischemic stroke. Neural Regen Res 2022; 17:1991-1997. [PMID: 35142688 PMCID: PMC8848600 DOI: 10.4103/1673-5374.335162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diabetes mellitus is an independent risk factor for ischemic stroke. Both diabetes mellitus and stroke are linked to systemic inflammation that aggravates patient outcomes. Stellate ganglion block can effectively regulate the inflammatory response. Therefore, it is hypothesized that stellate ganglion block could be a potential therapy for ischemic stroke in diabetic subjects. In this study, we induced diabetes mellitus in rats by feeding them a high-fat diet for 4 successive weeks. The left middle cerebral artery was occluded to establish models of ischemic stroke in diabetic rats. Subsequently, we performed left stellate ganglion block with 1% lidocaine using the percutaneous posterior approach 15 minutes before reperfusion and again 20 and 44 hours after reperfusion. Our results showed that stellate ganglion block did not decrease the blood glucose level in diabetic rats with diabetes mellitus but did reduce the cerebral infarct volume and the cerebral water content. It also improved the recovery of neurological function, increased 28-day survival rate, inhibited Toll like receptor 4/nuclear factor kappa B signaling pathway and reduced inflammatory response in the plasma of rats. However, injection of Toll like receptor 4 agonist lipopolysaccharide 5 minutes before stellate ganglion block inhibited the effect of stellate ganglion block, whereas injection of Toll like receptor 4 inhibitor TAK242 had no such effect. We also found that stellate ganglion block performed at night had no positive effect on diabetic ischemic stroke. These findings suggest that stellate ganglion block is a potential therapy for diabetic ischemic stroke and that it may be mediated through the Toll like receptor 4/nuclear factor kappa B signaling pathway. We also found that the therapeutic effect of stellate ganglion block is affected by circadian rhythm.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qiang Wan
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Zhang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuan Xiao
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Li-Ying Sun
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu-Rong Zhang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiang-Nan Liu
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan-Chao Yang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
17
|
Gao H, Zhang Y, Xue H, Zhang Q, Zhang Y, Shen Y, Bing X. Long Non-coding RNA Peg13 Alleviates Hypoxic-Ischemic Brain Damage in Neonatal Mice via miR-20a-5p/XIAP Axis. Neurochem Res 2022; 47:656-666. [PMID: 35043374 DOI: 10.1007/s11064-021-03474-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Long noncoding RNA (LncRNA) Peg13 has been demonstrated to protect against neurological diseases. However, its underlying mechanism in the progression of hypoxic-ischemic brain damage (HIBD) has not been well investigated. The expression of target genes was determined in neonatal mice with HIBD and in mouse hippocampal neurons during oxygen-glucose deprivation (OGD) using quantitative real-time PCR (qRT-PCR) and immunoblotting. Functional assays, including CCK-8 cell viability and apoptotic cell detection using TdT mediated dUTP nick ending labeling (TUNEL) assay were used to examine the neuroprotective role of Peg13 in mouse hippocampal neurons. Luciferase assays were performed to determine the regulatory mechanism of Peg13 in OGD-induced neuronal apoptosis. Peg13 was reduced in HIBD mice and OGD-treated mouse hippocampal neurons. Altered Peg13 expression relieved OGD-induced neuronal apoptosis. Mechanistically, Peg13 may serve as a sponge for miR-20a-5p to increase the expression of X chromosome-linked inhibitor of apoptosis (XIAP), a downstream target of miR-20a-5p. Our study showed that Peg13 fulfilled its anti-apoptotic function in neurons through suppressing XIAP expression by sponging miR-20a-5p. Together, Peg13 binds to miR-20a-5p to upregulate XIAP and alleviate HIBD in neonatal mice. The Peg13/miR-20a-5p/XIAP competing endogenous RNA (ceRNA) axis could be a potential therapeutic target for HIBD.
Collapse
Affiliation(s)
- Huan Gao
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yue Zhang
- Department of Ophthalmonogy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Huijing Xue
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qifei Zhang
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Zhang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yusi Shen
- Second Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaosan Bing
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
18
|
Zhu K, Zhu X, Sun S, Yang W, Liu S, Tang Z, Zhang R, Li J, Shen T, Hei M. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats. Exp Neurol 2021; 345:113828. [PMID: 34343528 DOI: 10.1016/j.expneurol.2021.113828] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
Inflammation and cell death play important roles in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Toll-like receptor 4 (TLR4) triggers the activation of the inflammatory pathway. Ferroptosis, a newly identified type of regulated cell death, is implicated in various diseases involving neuronal injury. However, the role of ferroptosis in HIBD has not been elucidated. The objectives of this study were to explore the function and mechanism of TLR4 in neuronal ferroptosis in the context of HIBD. A neonatal rat model of hypoxia-ischemia (HI) and a cell model of oxygen-glucose deprivation (OGD) were employed. TAK-242, a TLR4-specific antagonist, was used to evaluate the effect of TLR4 on neuronal ferroptosis in vivo. A TAK-242 inhibitor and a p38 inhibitor (SB203580) were administered to HT22 hippocampal neurons to explore the association between TLR4 in inflammation and ferroptosis in vitro. The effects of TLR4 on ferroptosis were assessed by the Western blot, real-time PCR, immunofluorescence staining, cell viability and transmission electron microscopy (TEM) assays. HI insult significantly upregulated the TLR4, increased the p53 level, reduced the SLC7A11 and GPX4 levels, and caused mitochondrial damage, thereby inducing neuronal ferroptosis in the hippocampus. Inhibition of TLR4 inhibited the expression of ferroptosis-related proteins, decreased the expression of ferroptosis-related genes and the proinflammatory milieu, attenuated oxidative stress and mitochondrial injury and, finally, ameliorated the activation of hippocampal neuronal ferroptosis following HIBD. Consistent with the results of these in vivo experiments, TLR4 inhibition also attenuated OGD-induced ferroptosis by suppressing oxidative stress and p38MAPK signaling, ultimately increasing neuronal cell viability. Finally, the in vitro and in vivo results demonstrated that TAK-242 exerted neuroprotective and antiferroptotic effects by suppressing TLR4-p38 MAPK signaling. TLR4 activation induced neuronal ferroptosis following both HIBD and OGD. Inhibition of TLR4 attenuated oxidative stress-induced damage, decreased the activation of ferroptosis, and attenuated neuroinflammation following HIBD. In this study, we demonstrated that the inhibition of TLR4-p38 MAPK signaling modulates HIBD- or OGD-induced ferroptosis in neuronal cells and may play a novel role in brain homeostasis.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xing Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Shenghui Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Shiqi Liu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Zhen Tang
- Department of Neonatology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Rong Zhang
- Department of Pediatric Intensive Care Unit, Shanxi Children's Hospital, Taiyuan 030000, China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Shen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Mingyan Hei
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
19
|
Sha N, Wang HW, Sun B, Gong M, Miao P, Jiang XL, Yang XF, Li M, Xu LX, Feng CX, Yang YY, Zhang J, Zhu WJ, Gao YY, Feng X, Ding X. The role of pineal microRNA-325 in regulating circadian rhythms after neonatal hypoxic-ischemic brain damage. Neural Regen Res 2021; 16:2071-2077. [PMID: 33642396 PMCID: PMC8343300 DOI: 10.4103/1673-5374.308101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Circadian rhythm disorder is a common, but often neglected, consequence of neonatal hypoxic-ischemic brain damage (HIBD). However, the underlying molecular mechanisms remain largely unknown. We previously showed that, in a rat model of HIBD, up-regulation of microRNA-325 (miR-325) in the pineal gland is responsible for the suppression of Aanat, a key enzyme involved in melatonin synthesis and circadian rhythm regulation. To better understand the mechanism by which miR-325 affects circadian rhythms in neonates with HIBD, we compared clinical samples from neonates with HIBD and samples from healthy neonates recruited from the First Affiliated Hospital of Soochow University (Dushuhu Branch) in 2019. We found that circulating miR-325 levels correlated positively with the severity of sleep and circadian rhythm disorders in neonates with HIBD. Furthermore, a luciferase reporter gene assay revealed that LIM homeobox 3 (LHX3) is a novel downstream target of miR-325. In addition, in miR-325 knock-down mice, the transcription factor LHX3 exhibited an miR-325-dependent circadian pattern of expression in the pineal gland. We established a neonatal mouse model of HIBD by performing double-layer ligation of the left common carotid artery and exposing the pups to a low-oxygen environment for 2 hours. Lhx3 mRNA expression was significantly down-regulated in these mice and partially rescued in miR-325 knockout mice subjected to the same conditions. Finally, we showed that improvement in circadian rhythm-related behaviors in animals with HIBD was dependent on both miR-325 and LHX3. Taken together, our findings suggest that the miR-325-LHX3 axis is responsible for regulating circadian rhythms and provide novel insights into the identification of potential therapeutic targets for circadian rhythm disorders in patients with neonatal HIBD. The clinical trial was approved by Institutional Review Board of Children's Hospital of Soochow University (approval No. 2015028) on July 20, 2015. Animal experiments were approved by Animal Care and Use Committee, School of Medicine, Soochow University, China (approval No. XD-2016-1) on January 15, 2016.
Collapse
Affiliation(s)
- Ning Sha
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou; Department of Pediatrics, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu Province, China
| | - Hua-Wei Wang
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bin Sun
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Min Gong
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Po Miao
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Lu Jiang
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Feng Yang
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li-Xiao Xu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chen-Xi Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yuan-Yuan Yang
- Department of Pediatrics, The First Affiliated Hospital of Soochow University (Dushuhu Branch), Suzhou, Jiangsu Province, China
| | - Jie Zhang
- Cambridge-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen-Jing Zhu
- Cambridge-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuan-Yuan Gao
- Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Ding
- Soochow Key Laboratory of Prevention and Treatment of Child Brain injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
20
|
Tan LL, Jiang XL, Xu LX, Li G, Feng CX, Ding X, Sun B, Qin ZH, Zhang ZB, Feng X, Li M. TP53-induced glycolysis and apoptosis regulator alleviates hypoxia/ischemia-induced microglial pyroptosis and ischemic brain damage. Neural Regen Res 2021; 16:1037-1043. [PMID: 33269748 PMCID: PMC8224121 DOI: 10.4103/1673-5374.300453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator (TIGAR) can protect neurons after cerebral ischemia/reperfusion. However, the role of TIGAR in neonatal hypoxic-ischemic brain damage (HIBD) remains unknown. In the present study, 7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia. At 6 days before induction of HIBD, a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D (LV-sh_TIGAR or LV-sh_GSDMD) was injected into the left lateral ventricle and striatum. Highly aggressively proliferating immortalized (HAPI) microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation. Three days before in vitro HIBD induction, HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD. Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Lentivirus-mediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro. Application of exogenous nicotinamide adenine dinucleotide phosphate (NADPH) increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Additionally, exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro. These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD. The study was approved by the Animal Ethics Committee of Soochow University of China (approval No. 2017LW003) in 2017.
Collapse
Affiliation(s)
- Lan-Lan Tan
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Lu Jiang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li-Xiao Xu
- Department of Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gen Li
- Department of Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chen-Xi Feng
- Department of Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zheng-Hong Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Zu-Bin Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei Li
- Department of Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
21
|
Sun C, Zhang AD, Chen HH, Bian J, Liu ZJ. Magnet-targeted delivery of bone marrow-derived mesenchymal stem cells improves therapeutic efficacy following hypoxic-ischemic brain injury. Neural Regen Res 2021; 16:2324-2329. [PMID: 33818519 PMCID: PMC8354132 DOI: 10.4103/1673-5374.310942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stem cell transplantation may represent a feasible therapeutic option for the recovery of neurological function in children with hypoxic-ischemic brain injury; however, the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target. Magnet-targeted drug delivery systems can use a specific magnetic field to attract the drug to the target site, increasing the drug concentration. In this study, we found that the double-labeling using superparamagnetic iron oxide nanoparticle and poly-L-lysine (SPIO-PLL) of bone marrow-derived mesenchymal stem cells had no effect on cell survival but decreased cell proliferation 48 hours after labeling. Rat models of hypoxic-ischemic brain injury were established by ligating the left common carotid artery. One day after modeling, intraventricular and caudal vein injections of 1 × 105 SPIO-PLL-labeled bone marrow-derived mesenchymal stem cells were performed. Twenty-four hours after the intraventricular injection, magnets were fixed to the left side of the rats’ heads for 2 hours. Intravoxel incoherent motion magnetic resonance imaging revealed that the perfusion fraction and the diffusion coefficient of rat brain tissue were significantly increased in rats treated with SPIO-PLL-labeled cells through intraventricular injection combined with magnetic guidance, compared with those treated with SPIO-PLL-labeled cells through intraventricular or tail vein injections without magnetic guidance. Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining revealed that in rats treated with SPIO-PLL-labeled cells through intraventricular injection under magnetic guidance, cerebral edema was alleviated, and apoptosis was decreased. These findings suggest that targeted magnetic guidance can be used to improve the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for hypoxic-ischemic brain injury. This study was approved by the Animal Care and Use Committee of The Second Hospital of Dalian Medical University, China (approval No. 2016-060) on March 2, 2016.
Collapse
Affiliation(s)
- Chuang Sun
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ao-Dan Zhang
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Hong-Hai Chen
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jie Bian
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zheng-Juan Liu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
22
|
Xiong LL, Chen J, Du RL, Liu J, Chen YJ, Hawwas MA, Zhou XF, Wang TH, Yang SJ, Bai X. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage. Neural Regen Res 2021; 16:1453-1459. [PMID: 33433458 PMCID: PMC8323702 DOI: 10.4103/1673-5374.303033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates many neurological functions and plays a vital role during the recovery from central nervous system injuries. However, the changes in BDNF expression and associated factors following hypoxia-ischemia induced neonatal brain damage, and the significance of these changes are not fully understood. In the present study, a rat model of hypoxic-ischemic brain damage was established through the occlusion of the right common carotid artery, followed by 2 hours in a hypoxic-ischemic environment. Rats with hypoxic-ischemic brain damage presented deficits in both sensory and motor functions, and obvious pathological changes could be detected in brain tissues. The mRNA expression levels of BDNF and its processing enzymes and receptors (Furin, matrix metallopeptidase 9, tissue-type plasminogen activator, tyrosine Kinase receptor B, plasminogen activator inhibitor-1, and Sortilin) were upregulated in the ipsilateral hippocampus and cerebral cortex 6 hours after injury; however, the expression levels of these mRNAs were found to be downregulated in the contralateral hippocampus and cerebral cortex. These findings suggest that BDNF and its processing enzymes and receptors may play important roles in the pathogenesis and recovery from neonatal hypoxic-ischemic brain damage. This study was approved by the Animal Ethics Committee of the University of South Australia (approval No. U12-18) on July 30, 2018.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jie Chen
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ruo-Lan Du
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yan-Jun Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mohammed Al Hawwas
- Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Xin-Fu Zhou
- Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ting-Hua Wang
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province; Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Si-Jin Yang
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xue Bai
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
23
|
Zhang MB, Song CC, Li GZ, Chen LF, Ma R, Yu XH, Gong P, Wang XL. Transplantation of umbilical cord blood mononuclear cells attenuates the expression of IL-1β via the TLR4/NF-κB pathway in hypoxic-ischemic neonatal rats. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: This study aims to observe the effects of transplantation of umbilical cord blood mononuclear cells (UCBMCs) on the expression of interleukin (IL)-1β and explore the mechanism via the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway in hypoxic-ischemic neonatal rats. Methods: Seven-day-old Sprague-Dawley neonatal rats were randomly divided into Sham, hypoxic-ischemic brain damage (HIBD), and UCBMC groups. The HIBD model was prepared by Rice-Vannucci method, and UCBMC were transplanted 24 h after HIBD in the UCBMC group. At 7 days after transplantation, changes in neurons and the TLR4 protein were examined by neuronal nuclei (NeuN)/TLR4 immunofluorescence staining. The expression of pNF-κB and IL-1β proteins was detected by immunohistochemical staining and enzyme linked immunosorbent assay (ELISA). Results: The percentage of NeuN+DAPI+ cells in the injured cortex in the UCBMC group was significantly higher than that in the HIBD group and lower than that in the Sham group (P < 0.05). The number of NeuN+TLR4+DAPI+cells in the UCBMC group was significantly lower than that in the HIBD group (P < 0.05) but higher than that in the Sham group (P < 0.05). More pNF-κB+ cells were observed in the HIBD group than in Sham and UCBMC groups (P < 0.05), and more pNF-κB+ cells were observed in the UCBMC group than in the Sham group (P < 0.05). ELISA results showed that the IL-1β expression in the injured cerebral cortex in the UCMBC group was significantly lower than that in the HIBD group but remained higher than that in the Sham group (P < 0.05). Conclusions: UCBMC transplantation could inhibit the IL-1β protein expression in the injured cortex, thereby alleviating HIBD in neonatal rats. The underlying mechanism might be associated with the down- regulation of TLR4 and pNF-κB proteins.
Collapse
|