1
|
Olsen TC, LaGuardia JS, Chen DR, Lebens RS, Huang KX, Milek D, Noble M, Leckenby JI. Influencing factors and repair advancements in rodent models of peripheral nerve regeneration. Regen Med 2024:1-17. [PMID: 39469920 DOI: 10.1080/17460751.2024.2405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments, with rodent models essential for studying regeneration. This review examines key factors affecting outcomes. Age-related declines, like reduced nerve fiber density and impaired axonal transport of vesicles, hinder recovery. Hormonal differences influence regeneration, with BDNF/trkB critical for testosterone and nerve growth factor for estrogen signaling pathways. Species and strain selection impact outcomes, with C57BL/6 mice and Sprague-Dawley rats exhibiting varying regenerative capacities. Injury models - crush for early regeneration, chronic constriction for neuropathic pain, stretch for traumatic elongation and transection for severe lacerations - provide insights into clinically relevant scenarios. Repair techniques, such as nerve grafts and conduits, show that autografts are the gold standard for gaps over 3 cm, with success influenced by graft type and diameter. Time course analysis highlights crucial early degeneration and regeneration phases within the first month, with functional recovery stabilizing by three to six months. Early intervention optimizes regeneration by reducing scar tissue formation, while later interventions focus on remyelination. Understanding these factors is vital for designing robust preclinical studies and translating research into effective clinical treatments for peripheral nerve injuries.
Collapse
Affiliation(s)
- Timothy C Olsen
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Jonnby S LaGuardia
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - David R Chen
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - Ryan S Lebens
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - Kelly X Huang
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - David Milek
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Jonathan I Leckenby
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| |
Collapse
|
2
|
Zhu Y, Yi D, Wang J, Zhang Y, Li M, Ma J, Ji Y, Peng J, Wang Y, Luo Y. Harnessing three-dimensional porous chitosan microsphere embedded with adipose-derived stem cells to promote nerve regeneration. Stem Cell Res Ther 2024; 15:158. [PMID: 38824568 PMCID: PMC11144330 DOI: 10.1186/s13287-024-03753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China
- Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Dan Yi
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jing Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Rehabilitation Medicine, the Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Molin Li
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jun Ma
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yongjiao Ji
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China.
- Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.
- Department of Orthopaedics, The Fourth Centre of Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yukun Luo
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Deng J, Meng F, Gao J, Zhang K, Liu Z, Li M, Liu X, Li J, Wang Y, Zhang L, Tang P. Early-phase rotator training impairs tissue repair and functional recovery after spinal cord injury. Heliyon 2023; 9:e18158. [PMID: 37519672 PMCID: PMC10372239 DOI: 10.1016/j.heliyon.2023.e18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/27/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder that often results in severe sensorimotor function impairment with limited recovery of function. In recent years, rehabilitation training for spinal cord injury has gradually emerged, and some of them play an important role in the repair of spinal cord injury However, the optimal training regimen for SCI remains to be determined. In this study, we explore the effects of rotarod training (began at 7 days post-injury) on the recovery of motor function after SCI, as well as its possible repair mechanism from the aspects of function and histopathological changes, the behaviors of specific trophic factors and cytokines, and the expression profile of specific genes. Multiple functional assessments showed that rotarod training initiated at 7 days post-injury is unsuitable for promoting neuro-electrophysiological improvement and trunk stability, but impaired functional coordination and motor recovery. In addition, rotarod training has negative effects on spinal cord repair after SCI, which is manifested as an increase of lesion area, a decrease in neuronal viability, a deterioration in immuno-microenvironment and remyelination, a significant reduction in the expression of trophic factors and an increase in the expression of pro-inflammatory factors. RNA sequencing suggested that the genes associated with angiogenesis and synaptogenesis were significantly downregulated and the PI3K-AKT pathway was inhibited, which was detrimental to spinal cord repair and impeded nerve regeneration. These results indicate that immediate rotarod training after SCI is currently unsuitable for rehabilitation in mice.
Collapse
Affiliation(s)
- Junhao Deng
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fanqi Meng
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, 100050, China
| | - Jianpeng Gao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Kexue Zhang
- Department of Pediatric Surgery, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhongyang Liu
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Ming Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao Liu
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiantao Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institue of Orthopaedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Licheng Zhang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peifu Tang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Wang Z, Zhao H, Tang X, Meng T, Khutsishvili D, Xu B, Ma S. CNS Organoid Surpasses Cell-Laden Microgel Assembly to Promote Spinal Cord Injury Repair. Research (Wash D C) 2022; 2022:9832128. [PMID: 36061824 PMCID: PMC9394056 DOI: 10.34133/2022/9832128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
The choice of therapeutic agents remains an unsolved issue in the repair of spinal cord injury. In this work, various agents and configurations were investigated and compared for their performance in promoting nerve regeneration, including bead assembly and bulk gel of collagen and Matrigel, under acellular and cell-laden conditions, and cerebral organoid (CO) as the in vitro preorganized agent. First, in Matrigel-based agents and the CO transplantations, the recipient animal gained more axon regeneration and the higher Basso, Beattie, and Bresnahan (BBB) scoring than the grafted collagen gels. Second, new nerves more uniformly infiltrated into the transplants in bead form assembly than the molded chunks. Third, the materials loaded the neural progenitor cells (NPCs) or the CO implantation groups received more regenerated nerve fibers than their acellular counterparts, suggesting the necessity to transplant exogenous cells for large trauma (e.g., a 5 mm long spinal cord transect). In addition, the activated microglial cells might benefit from neural regeneration after receiving CO transplantation in the recipient animals. The organoid augmentation may suggest that in vitro maturation of a microtissue complex is necessary before transplantation and proposes organoids as the premium therapeutic agents for nerve regeneration.
Collapse
Affiliation(s)
- Zitian Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Haoran Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Xiaowei Tang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Tianyu Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Davit Khutsishvili
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Bing Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Functional tissue-engineered microtissue formed by self-aggregation of cells for peripheral nerve regeneration. Stem Cell Res Ther 2022; 13:3. [PMID: 35012663 PMCID: PMC8744299 DOI: 10.1186/s13287-021-02676-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Peripheral nerve injury (PNI) is one of the essential causes of physical disability with a high incidence rate. The traditional tissue engineering strategy, Top-Down strategy, has some limitations. A new tissue-engineered strategy, Bottom-Up strategy (tissue-engineered microtissue strategy), has emerged and made significant research progress in recent years. However, to the best of our knowledge, microtissues are rarely used in neural tissue engineering; thus, we intended to use microtissues to repair PNI.
Methods We used a low-adhesion cell culture plate to construct adipose-derived mesenchymal stem cells (ASCs) into microtissues in vitro, explored the physicochemical properties and microtissues components, compared the expression of cytokines related to nerve regeneration between microtissues and the same amount of two-dimension (2D)-cultured cells, co-cultured directly microtissues with dorsal root ganglion (DRG) or Schwann cells (SCs) to observe the interaction between them using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA). We used grafts constructed by microtissues and polycaprolactone (PCL) nerve conduit to repair sciatic nerve defects in rats. Results The present study results indicated that compared with the same number of 2D-cultured cells, microtissue could secrete more nerve regeneration related cytokines to promote SCs proliferation and axons growth. Moreover, in the direct co-culture system of microtissue and DRG or SCs, axons of DRG grown in the direction of microtissue, and there seems to be a cytoplasmic exchange between SCs and ASCs around microtissue. Furthermore, microtissues could repair sciatic nerve defects in rat models more effectively than traditional 2D-cultured ASCs. Conclusion Tissue-engineered microtissue is an effective strategy for stem cell culture and therapy in nerve tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02676-0.
Collapse
|
6
|
Talebi A, Labbaf S, Atari M, Parhizkar M. Polymeric Nanocomposite Structures Based on Functionalized Graphene with Tunable Properties for Nervous Tissue Replacement. ACS Biomater Sci Eng 2021; 7:4591-4601. [PMID: 34461017 DOI: 10.1021/acsbiomaterials.1c00744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electroconductive scaffolds can be a promising approach to repair conductive tissues when natural healing fails. Recently, nerve tissue engineering constructs have been widely investigated due to the challenges in creating a structure with optimized physiochemical and mechanical properties close to the native tissue. The goal of the current study was to fabricate graphene-containing polycaprolactone/gelatin/polypyrrole (PCL/gelatin/PPy) and polycaprolactone/polyglycerol-sebacate/polypyrrole (PCL/PGS/PPy) with intrinsic electrical properties through an electrospinning process. The effect of graphene on the properties of PCL/gelatin/PPy and PCL/PGS/PPy were investigated. Results demonstrated that graphene incorporation remarkably modulated the physical and mechanical properties of the scaffolds such that the electrical conductivity increased from 0.1 to 3.9 ± 0.3 S m-1 (from 0 to 3 wt % graphene) and toughness was found to be 76 MPa (PCL/gelatin/PPy 3 wt % graphene) and 143.4 MPa (PCL/PGS/PPy 3 wt % graphene). Also, the elastic moduli of the scaffolds with 0, 1, and 2 wt % graphene were reported as 210, 300, and 340 kPa in the PCL/gelatin/PPy system and 72, 85, and 92 kPa for the PCL/PGS/PPy system. A cell viability study demonstrated the noncytotoxic nature of the resultant scaffolds. The sum of the results presented in this study suggests that both PCL/gelatin/PPy/graphene and PCL/PGS/PPy/graphene compositions could be promising biomaterials for a range of conductive tissue replacement or regeneration applications.
Collapse
Affiliation(s)
- Alireza Talebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mehdi Atari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Parhizkar
- School of Pharmacy, University College London, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
7
|
Corrigendum: A novel tissue engineered nerve graft constructed with autologous vein and nerve microtissue repairs a long-segment sciatic nerve defect. Neural Regen Res 2021; 16:1855. [PMID: 33510099 PMCID: PMC8328789 DOI: 10.4103/1673-5374.303538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|