1
|
Kong Q, Han X, Cheng H, Liu J, Zhang H, Dong T, Chen J, So KF, Mi X, Xu Y, Tang S. Lycium barbarum glycopeptide (wolfberry extract) slows N-methyl-N-nitrosourea-induced degradation of photoreceptors. Neural Regen Res 2024; 19:2290-2298. [PMID: 38488563 PMCID: PMC11034605 DOI: 10.4103/1673-5374.390958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2023] [Accepted: 09/16/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00030/figure1/v/2024-02-06T055622Z/r/image-tiff Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum (L. barbarum) polysaccharide (LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide (LbGP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of LbGP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of LbGP as a protective pre-treatment on days 1-7; intraperitoneal administration of 40 mg/kg N-methyl-N-nitrosourea to induce photoreceptor injury on day 7; and continuation of orally administered LbGP on days 8-14. Treatment with LbGP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. LbGP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, LbGP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.
Collapse
Affiliation(s)
- Qihang Kong
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiu Han
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Haiyang Cheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Jiayu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Huijun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Department of Ophthalmology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Tangrong Dong
- School of Stomatology, Jinan University, Guangzhou, Guangdong Province, China
| | - Jiansu Chen
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- State Key Laboratory of Brain and Cognitive Sciences, Hong Kong Special Administrative Region, China
| | - Xuesong Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shibo Tang
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Bai M, Zhou Z, Yin M, Wang M, Gao X, Zhao J. The use of metagenomic and untargeted metabolomics in the analysis of the effects of the Lycium barbarum glycopeptide on allergic airway inflammation induced by Artemesia annua pollen. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118816. [PMID: 39270881 DOI: 10.1016/j.jep.2024.118816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of allergic airway inflammation (AAI) worldwide is high. Artemisia annua L. pollen is spread worldwide, and allergic diseases caused by its plant polysaccharides, which are closely related to the intestinal microbiota, have anti-inflammatory effects. Further isolation and purification of Lycium barbarum L. yielded its most effective component Lycium barbarum L. glycopeptide (LbGP), which can inhibit inflammation in animal models. However, its therapeutic effect on AAI and its mechanism of regulating the intestinal flora have not been fully investigated. AIM OF THE STUDY To explore LbGP in APE-induced immunological mechanisms of AAI and the interaction mechanism of the intestinal flora and metabolites. METHODS A mouse model of AAI generated from Artemisia annua pollen was constructed, and immunological indices related to the disease were examined. A combination of macrogenomic and metabolomic analyses was used to investigate the effects of LbGP on the gut microbial and metabolite profiles of mice with airway inflammation. RESULTS LbGP effectively alleviated Artemisia. annua pollen extract (APE)-induced AAI, corrected Th1/Th2 immune dysregulation, decreased Th17 cells, increased Treg cells, and altered the composition and function of the intestinal microbiota. LbGP treatment increased the number of OdoribacterandDuncaniella in the intestines of the mice, but the numble of Alistipes and Ruminococcus decreased. Metabolite pathway enrichment analysis were used to determine the effects of taurine and hypotaurine metabolism, bile acid secretion, and pyrimidine metabolism pathways on disease. CONCLUSION Our results revealed significant changes in the macrogenome and metabolome following APE and LbGP intervention, revealed potential correlations between gut microbial species and metabolites, and highlighted the beneficial effects of LbGP on AAI through the modulation of the gut microbiome and host metabolism.
Collapse
Affiliation(s)
- Min Bai
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China; Department of Rheumatology and Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Zhichao Zhou
- School of Inspection, Ningxia Medical University, Yinchuan, China; Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China
| | - Mei Yin
- Department of Respiratory and Critical Care Medicine, Hospital of Cardiovascular and Cerebrovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Mei Wang
- Ningxia Institute of Medical Science, Yinchuan, China; Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China.
| | - Xiaoping Gao
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Jiaqing Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China; Ningxia Institute of Medical Science, Yinchuan, China; Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
3
|
Li X, Liu T, Mo X, Wang R, Kong X, Shao R, McIntyre RS, So KF, Lin K. Effects of Lycium barbarum polysaccharide on cytokines in adolescents with subthreshold depression: a randomized controlled study. Neural Regen Res 2024; 19:2036-2040. [PMID: 38227533 DOI: 10.4103/1673-5374.389360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00036/figure1/v/2024-01-16T170235Z/r/image-tiff Strong evidence has accumulated to show a correlation between depression symptoms and inflammatory responses. Moreover, anti-inflammatory treatment has shown partial effectiveness in alleviating depression symptoms. Lycium barbarum polysaccharide (LBP), derived from Goji berries, exhibits notable antioxidative and anti-inflammatory properties. In our recent double-blinded randomized placebo-controlled trial, we found that LBP significantly reduced depressive symptoms in adolescents with subthreshold depression. It is presumed that the antidepressant effect of LBP may be associated with its influence on inflammatory cytokines. In the double-blinded randomized controlled trial, we enrolled 29 adolescents with subthreshold depression and randomly divided them into an LBP group and a placebo group. In the LBP group, adolescents were given 300 mg/d LBP. A 6-week follow up was completed by 24 adolescents, comprising 14 adolescents from the LBP group (15.36 ± 2.06 years, 3 men and 11 women) and 10 adolescents from the placebo group (14.9 ± 1.6 years, 2 men and 8 women). Our results showed that after 6 weeks of treatment, the interleukin-17A level in the LBP group was lower than that in the placebo group. Network analysis showed that LBP reduced the correlations and connectivity between inflammatory factors, which were associated with the improvement in depressive symptoms. These findings suggest that 6-week administration of LBP suppresses the immune response by reducing interleukin-17A level, thereby exerting an antidepressant effect.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tao Liu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xuan Mo
- Department of Psychiatry, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Runhua Wang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueyan Kong
- Department of Psychiatry, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Robin Shao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Kwok-Fai So
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
4
|
Liang H, Ren Y, Huang Y, Xie X, Zhang M. Treatment of diabetic retinopathy with herbs for tonifying kidney and activating blood circulation: A review of pharmacological studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118078. [PMID: 38513781 DOI: 10.1016/j.jep.2024.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.
Collapse
Affiliation(s)
- Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Gao J, Liang Y, Liu P. Along the microbiota-gut-brain axis: Use of plant polysaccharides to improve mental disorders. Int J Biol Macromol 2024; 265:130903. [PMID: 38508549 DOI: 10.1016/j.ijbiomac.2024.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
With the development of gut microbiota-specific interventions for mental disorders, the interactions between plant polysaccharides and microbiota in the intestinal and their consequent effects are becoming increasingly important. In this review, we discussed the role of plant polysaccharides in improving various mental disorders via the microbiota-gut-brain axis. The chemical and structural characteristics and metabolites of these plant polysaccharides were summarised. Plant polysaccharides and their metabolites have great potential for reshaping gut microbiota profiles through gut microbiota-dependent fermentation. Along the microbiota-gut-brain axis, the consequent pharmacological processes that lead to the elimination of the symptoms of mental disorders include 1) regulation of the central monoamine neurotransmitters, amino acid transmitters and cholinergic signalling system; 2) alleviation of central and peripheral inflammation mainly through the NLRP3/NF-κB-related signalling pathway; 3) inhibition of neuronal apoptosis; and 4) enhancement of antioxidant activities. According to this review, monosaccharide glucose and structure -4-α-Glcp-(1→ are the most potent compositions of the most reported plant polysaccharides. However, the causal structure-activity relationship remains to be extensively explored. Moreover, mechanistic elucidation, safety verification, and additional rigorous human studies are expected to advance plant polysaccharide-based product development targeting the microbiota-gut-brain axis for people with mental disorders.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, Peking University, Beijing, China.
| | - Pu Liu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
6
|
Yang YH, Li CX, Zhang RB, Shen Y, Xu XJ, Yu QM. A review of the pharmacological action and mechanism of natural plant polysaccharides in depression. Front Pharmacol 2024; 15:1348019. [PMID: 38389919 PMCID: PMC10883385 DOI: 10.3389/fphar.2024.1348019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Depression is a prevalent mental disorder. However, clinical treatment options primarily based on chemical drugs have demonstrated varying degrees of adverse reactions and drug resistance, including somnolence, nausea, and cognitive impairment. Therefore, the development of novel antidepressant medications that effectively reduce suffering and side effects has become a prominent area of research. Polysaccharides are bioactive compounds extracted from natural plants that possess diverse pharmacological activities and medicinal values. It has been discovered that polysaccharides can effectively mitigate depression symptoms. This paper provides an overview of the pharmacological action and mechanisms, intervention approaches, and experimental models regarding the antidepressant effects of polysaccharides derived from various natural sources. Additionally, we summarize the roles and potential mechanisms through which these polysaccharides prevent depression by regulating neurotransmitters, HPA axis, neurotrophic factors, neuroinflammation, oxidative stress, tryptophan metabolism, and gut microbiota. Natural plant polysaccharides hold promise as adjunctive antidepressants for prevention, reduction, and treatment of depression by exerting their therapeutic effects through multiple pathways and targets. Therefore, this review aims to provide scientific evidence for developing polysaccharide resources as effective antidepressant drugs.
Collapse
Affiliation(s)
- Yu-He Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen-Xue Li
- Harbin University of Commerce, Harbin, China
| | | | - Ying Shen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue-Jiao Xu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin-Ming Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
9
|
Liu X, Zheng R, Radani Y, Gao H, Yue S, Fan W, Tang J, Shi J, Zhu J. Transcriptional deciphering of the metabolic pathways associated with the bioactive ingredients of wolfberry species with different quality characteristics. BMC Genomics 2023; 24:658. [PMID: 37919673 PMCID: PMC10621208 DOI: 10.1186/s12864-023-09755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Wolfberry is rich in carotenoids, flavonoids, vitamins, alkaloids, betaines and other bioactive ingredients. For over 2,000 years, wolfberry has been used in China as a medicinal and edible plant resource. Nevertheless, the content of bioactive ingredients varies by cultivars, resulting in uneven quality across wolfberry cultivars and species. To date, research has revealed little about the underlying molecular mechanism of the metabolism of flavonoids, carotenoids, and other bioactive ingredients in wolfberry. RESULTS In this context, the transcriptomes of the Lycium barbarum L. cultivar 'Ningqi No. 1' and Lycium chinense Miller were compared during the fruit maturity stage using the Illumina NovaSeq 6000 sequencing platform, and subsequently, the changes of the gene expression profiles in two types of wolfberries were analysed. In total, 256,228,924 clean reads were obtained, and 8817 differentially expressed genes (DEGs) were identified, then assembled by Basic Local Alignment Search Tool (BLAST) similarity searches and annotated using Gene Ontology (GO), Clusters of Orthologous Groups of proteins (KOG), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). By combining these transcriptome data with data from the PubMed database, 36 DEGs related to the metabolism of bioactive ingredients and implicated in the metabolic pathway of carotenoids, flavonoids, terpenoids, alkaloids, vitamins, etc., were identified. In addition, among the 9 differentially expressed transcription factors, LbAPL, LbPHL11 and LbKAN4 have raised concerns. The protein physicochemical properties, structure prediction and phylogenetic analysis indicated that LbAPL and LbPHL11 may be good candidate genes involved in regulating the flavonoid metabolism pathway in wolfberry. CONCLUSIONS This study provides preliminary evidence for the differences in bioactive ingredient content at the transcription level among different wolfberry species, as well as a research and theoretical basis for the screening, cloning and functional analysis of key genes involved in the metabolism of bioactive ingredients in wolfberry.
Collapse
Affiliation(s)
- Xuexia Liu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Rui Zheng
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China.
| | - Yasmina Radani
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Han Gao
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Sijun Yue
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China.
| | - Wenqiang Fan
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianning Tang
- Ningxia Wolfberry Industry Development Center, Yinchuan, 750021, China.
| | - Jing Shi
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jinzhong Zhu
- Qixin Wolfberry Seedling Professional Cooperatives, Zhongning, 755100, China
| |
Collapse
|
10
|
Yao J, Hui JW, Chen YJ, Luo DY, Yan JS, Zhang YF, Lan YX, Yan XR, Wang ZH, Fan H, Xia HC. Lycium barbarum glycopeptide targets PER2 to inhibit lipogenesis in glioblastoma by downregulating SREBP1c. Cancer Gene Ther 2023; 30:1084-1093. [PMID: 37069338 PMCID: PMC10425286 DOI: 10.1038/s41417-023-00611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 04/19/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is a substance with various biological activities extracted from Lycium barbarum. LbGPs are peptidoglycans with a short peptide backbone and a complex, branched glycan moiety, which is further extracted and isolated from LBPs. Previous studies have shown that LbGP can inhibit cancer cell growth, but its specific mechanism is not completely clear. In this study, we found that LbGP could inhibit the proliferation of glioma cells and promote the expression of period 2 (PER2) through the PKA-CREB pathway. In addition, LbGP could inhibit the de novo synthesis of lipids by downregulating SREBP1c and its target genes, which depended on the expression of PER2. Moreover, PER2 negatively regulated the expression of SREBP1c via suppressing PI3K/AKT/mTOR pathway. In summary, LbGP may upregulate the expression of PER2 to reduce the expression of SREBP1c, inhibit lipid synthesis in glioblastoma, and inhibit glioblastoma cell proliferation. This study provides an alternative drug for the treatment of glioma and elucidates its potential mechanism.
Collapse
Affiliation(s)
- Jian Yao
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Jian-Wen Hui
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Yan-Jun Chen
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Dong-Yang Luo
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Jiang-Shu Yan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Yi-Fan Zhang
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Yuan-Xiang Lan
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Xiu-Rui Yan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, Autonomous Region, 750004, China
| | - Zhi-Hua Wang
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, Autonomous Region, 750004, China.
| | - He-Chun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China.
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, Autonomous Region, 750004, China.
| |
Collapse
|
11
|
Dai Y, Guo J, Zhang B, Chen J, Ou H, He RR, So KF, Zhang L. Lycium barbarum (Wolfberry) glycopeptide prevents stress-induced anxiety disorders by regulating oxidative stress and ferroptosis in the medial prefrontal cortex. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154864. [PMID: 37182278 DOI: 10.1016/j.phymed.2023.154864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/15/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Lycium barbarum (Wolfberry) extract has been shown to be effective in neuroprotection against aging or neural injury. Knowledge of its potential roles and biological mechanisms in relieving mental disorders, however, remains limited. PURPOSE To investigate the potency of Lycium barbarum glycopeptide (LbGp) in alleviating anxiety disorders and the related biological mechanisms. METHODS LbGp was administrated to mice subjected to 14 days of chronic restrain stress (CRS) via the intragastric route. The anxiolytic effect was evaluated by a battery of behavioral assays. The morphology of neurons and glial cells was evaluated, and cortical neuronal calcium transients were recorded in vivo. The molecular mechanism of LbGp was also investigated. RESULTS LbGp effectively relieved anxiety-like and depressive behaviors under CRS. Mechanistic studies further showed that LbGp treatment relieved oxidative stress and lipid peroxidation in the medial prefrontal cortex (mPFC). In particular, the ferroptosis pathway was inhibited by LbGp, revealing a previously unrecognized mechanism of the anxiolytic role of wolfberry extract. CONCLUSION In summary, our results supported the future development of LbGp to prevent or ameliorate stress-induced anxiety disorders. Our work provides a promising strategy for early intervention for pateitents with mental disorders by applying natural plant extracts.
Collapse
Affiliation(s)
- Yelin Dai
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junxiu Guo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Borui Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junlin Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Haibin Ou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
12
|
Wang J, Gao H, Xie Y, Wang P, Li Y, Zhao J, Wang C, Ma X, Wang Y, Mao Q, Xia H. Lycium barbarum polysaccharide alleviates dextran sodium sulfate-induced inflammatory bowel disease by regulating M1/M2 macrophage polarization via the STAT1 and STAT6 pathways. Front Pharmacol 2023; 14:1044576. [PMID: 37144216 PMCID: PMC10151498 DOI: 10.3389/fphar.2023.1044576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization contributes to the development of inflammatory bowel disease (IBD). Lycium barbarum polysaccharide (LBP) is the primary active constituent of traditional Chinese herbal Lycium barbarum L., which has been widely demonstrated to have important functions in regulating immune activity and anti-inflammatory. Thus, LBP may protect against IBD. To test this hypothesis, the DSS-induced colitis model was established in mice, then the mice were treated with LBP. The results indicated that LBP attenuated the weight loss, colon shortening, disease activity index (DAI), and histopathological scores of colon tissues in colitis mice, suggesting that LBP could protect against IBD. Besides, LBP decreased the number of M1 macrophages and the protein level of Nitric oxide synthase 2(NOS2) as a marker of M1 macrophages and enhanced the number of M2 macrophages and the protein level of Arginase 1(Arg-1) as a marker of M2 macrophages in colon tissues from mice with colitis, suggesting that LBP may protect against IBD by regulating macrophage polarization. Next, the mechanistic studies in RAW264.7 cells showed that LBP inhibited M1-like phenotype by inhibiting the phosphorylation of STAT1, and promoted M2-like phenotype by promoting the phosphorylation of STAT6. Finally, immunofluorescence double-staining results of colon tissues showed that LBP regulated STAT1 and STAT6 pathways in vivo. The results in the study demonstrated that LBP could protect against IBD by regulating macrophage polarization through the STAT1 and STAT6 pathways.
Collapse
Affiliation(s)
- Juan Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huiying Gao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuan Xie
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Peng Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yu Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chunlin Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xin Ma
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuwen Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qinwen Mao
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Haibin Xia, ,
| |
Collapse
|
13
|
Lycium barbarum polysaccharide modulates gut microbiota to alleviate rheumatoid arthritis in a rat model. NPJ Sci Food 2022; 6:34. [PMID: 35864275 PMCID: PMC9304368 DOI: 10.1038/s41538-022-00149-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Rheumatoid arthritis (RA) seriously impairs the quality of life of sufferers. It has been shown that Lycium barbarum polysaccharide (LBP), a natural active indigestible ingredient with medicinal and edible functions, can effectively relieve RA, however, whether this effect is related to gut microbiota is not known. This study aimed to explore the RA alleviating mechanism of LBP mediated by gut microbiota using a collagen-induced arthritis rat model. The results showed that LBP significantly changed the gut microflora structure accompanied with the RA alleviation. Specifically, a LBP intervention reduced the relative abundance of Lachnospiraceae_NK4A136_group and uncultured_bacterium_f_Ruminococcaceae and significantly increased the abundance of Romboutsia, Lactobacillus, Dubosiella and Faecalibaculum. The mRNA contents of several colonic epithelial genes including Dpep3, Gstm6, Slc27a2, Col11a2, Sycp2, SNORA22, Tnni1, Gpnmb, Mypn and Acsl6, which are potentially associated to RA, were down-regulated due to the DNA hypermethylation, possibly caused by the elevating content of a bacterial metabolite S-adenosyl methionine (SAM). In conclusion, our current study suggests that LBP alleviated RA by reshaping the composition of intestinal microflora which may generate SAM, inducing DNA hypermethylation of RA-related genes in the host intestinal epithelium and subsequently reducing their expression.
Collapse
|
14
|
Zhu S, Li X, Dang B, Wu F, Wang C, Lin C. Lycium Barbarum polysaccharide protects HaCaT cells from PM2.5-induced apoptosis via inhibiting oxidative stress, ER stress and autophagy. Redox Rep 2022; 27:32-44. [PMID: 35130817 PMCID: PMC8843200 DOI: 10.1080/13510002.2022.2036507] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objectives: Lycium barbarum polysaccharide (LBP) is a natural polysaccharide extracted from Lycium barbarum that has anti-inflammatory, anti-apoptotic and anti-aging effects, and plays a role in the prevention and treatment of various diseases. In this study, we investigated the therapeutic effect of LBP on particulate matter 2.5 (PM2.5)-induced skin damage. Methods: Cell viability was analyzed by MTT and LDH assays. Apoptosis was analyzed by Annexin V-FITC/PI staining. Oxidative stress/damage were assessed by intracellular ROS levels, MDA content and SOD activity. The intracellular protein expression was analyzed by Western blot. Mitochondrial damage was assayed by mitochondrial membrane potential with JC-1 probe. LC3-GFP adenovirus was transfected into HaCaT cells to analyze intracellular autophagosome levels. Results: In PM2.5-treated HaCaT cells, LBP pretreatment reduced PM2.5-induced cytotoxicity, ameliorated cell morphology and reduced cell apoptosis. LBP also inhibited the expression levels of GRP78 and CHOP, reduced the conversion of LC3I to LC3II, inhibited Bax protein and activated Bcl-2 protein. Furthermore, LBP inhibited PM2.5-induced mitochondrial autophagy (mitophagy) and mitochondrial damage. PM2.5-induced autophagy was regulated by endoplasmic reticulum (ER) stress. Conclusion: LBP protects skin cells from PM2.5-induced cytotoxicity by regulating the oxidative stress-ER stress-autophagy-apoptosis signaling axis, revealing that LBP has a great potential for the skin protection.
Collapse
Affiliation(s)
- Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xuan Li
- Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
15
|
Zhang GM, Wu HY, Cui WQ, Peng W. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence. Front Psychiatry 2022; 13:1043846. [PMID: 36386995 PMCID: PMC9649931 DOI: 10.3389/fpsyt.2022.1043846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in recent decades, knowledge of the pathophysiology of depression in neural circuits remains limited. Recently, the lateral habenula (LHb) has been extensively reported to undergo a series of adaptive changes at multiple levels during the depression state. As a crucial relay in brain networks associated with emotion regulation, LHb receives excitatory or inhibitory projections from upstream brain regions related to stress and cognition and interacts with brain regions involved in emotion regulation. A series of pathological alterations induced by aberrant inputs cause abnormal function of the LHb, resulting in dysregulation of mood and motivation, which present with depressive-like phenotypes in rodents. Herein, we systematically combed advances from rodents, summarized changes in the LHb and related neural circuits in depression, and attempted to analyze the intrinsic logical relationship among these pathological alterations. We expect that this summary will greatly enhance our understanding of the pathological processes of depression. This is advantageous for fostering the understanding and screening of potential antidepressant targets against LHb.
Collapse
Affiliation(s)
- Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Li X, Mo X, Liu T, Shao R, Teopiz K, McIntyre RS, So KF, Lin K. Efficacy of Lycium barbarum polysaccharide in adolescents with subthreshold depression: interim analysis of a randomized controlled study. Neural Regen Res 2021; 17:1582-1587. [PMID: 34916444 PMCID: PMC8771081 DOI: 10.4103/1673-5374.330618] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Subthreshold depression is a highly prevalent condition in adolescents who are at high risk for developing major depressive disorder. In preclinical models of neurological and psychiatric diseases, Lycium barbarum polysaccharide (LBP) extracted from Goji berries had anti-depressant effects including but not limited to anti-oxidative and anti-inflammatory properties. However, the effect of LBP on subthreshold depression is unclear. To investigate the clinical efficacy and safety of LBP for treating subthreshold depression in adolescents, we conducted a randomized, double-blind, placebo-controlled trial (RCT) with 29 adolescents with subthreshold depression recruited at The Fifth Affiliated Hospital of Guangzhou Medical University. The participants were randomly assigned to groups where they received either 300 mg LBP (LBP group, n = 15, 3 boys and 12 girls aged 15.13 ± 2.17 years) or a placebo (placebo group, n = 14, 2 boys and 12 girls aged 15 ± 1.71 years) for 6 successive weeks. Interim analyses revealed that the LBP group exhibited a greater change in Hamilton Depression Scale (HAMD-24) scores relative to the baseline and a higher remission rate (HAMD-24 total score ≤ 7) at 6 weeks compared with the placebo group. Scores on the Beck Depression Inventory-II (BDI-II), Pittsburgh Sleep Quality Index (PSQI), Kessler Psychological Distress Scale (Kessler), and Screen for Child Anxiety-Related Emotional Disorders (SCARED) were similar between the LBP and placebo groups. No side effects related to the intervention were reported in either group. These results indicate that LBP administration reduced depressive symptoms in adolescents with subthreshold depression. Furthermore, LBP was well tolerated with no treatment-limiting adverse events. Clinical trials involving a larger sample size are needed to further confirm the anti-depressive effects of LBP in adolescents with subthreshold depression. This study was approved by the Medical Ethics Committee of the Fifth Affiliated Hospital of Guangzhou Medical University (Guangzhou, China; approval No. L2019-08) on April 4, 2019 and was registered on ClinicalTrials.gov (identifier: NCT04032795) on July 25, 2019.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital); Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Xuan Mo
- Department of Psychiatry, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tao Liu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital); Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Robin Shao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Kayla Teopiz
- Canadian Rapid Treatment Center of Excellence, Mississauga; Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University, Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University, Health Network; Department of Psychiatry, University of Toronto; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Kwok-Fai So
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital); Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital); Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
17
|
Ren AQ, Wang HJ, Zhu HY, Ye G, Li K, Chen DF, Zeng T, Li H. Glycoproteins From Rabdosia japonica var. glaucocalyx Regulate Macrophage Polarization and Alleviate Lipopolysaccharide-Induced Acute Lung Injury in Mice via TLR4/NF-κB Pathway. Front Pharmacol 2021; 12:693298. [PMID: 34366849 PMCID: PMC8333617 DOI: 10.3389/fphar.2021.693298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background and Aims:Rabdosia japonica var. glaucocalyx is a traditional Chinese medicine (TCM) for various inflammatory diseases. This present work aimed to investigate the protective effects of R. japonica var. glaucocalyx glycoproteins on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the potential mechanism. Methods: Glycoproteins (XPS) were isolated from R. japonica var. glaucocalyx, and homogeneous glycoprotein (XPS5-1) was purified from XPS. ANA-1 cells were used to observe the effect of glycoproteins on the secretion of inflammatory mediators by enzyme-linked immunosorbent assay (ELISA). Flow cytometry assay, immunofluorescence assay, and Western blot analysis were performed to detect macrophage polarization in vitro. The ALI model was induced by LPS via intratracheal instillation, and XPS (20, 40, and 80 mg/kg) was administered intragastrically 2 h later. The mechanisms of XPS against ALI were investigated by Western blot, ELISA, and immunohistochemistry. Results:In vitro, XPS and XPS5-1 downregulated LPS-induced proinflammatory mediators production including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and nitric oxide (NO) and upregulated LPS-induced IL-10 secretion. The LPS-stimulated macrophage polarization was also modulated from M1 to M2. In vivo, XPS maintained pulmonary histology with significantly reducing protein concentration and numbers of mononuclear cells in bronchoalveolar lavage fluid (BALF). The level of IL-10 in BALF was upregulated by XPS treatment. The level of cytokines including TNF-α, IL-1β, and IL-6 was downregulated. XPS also decreased infiltration of macrophages and polymorphonuclear leukocytes (PMNs) in lung. XPS suppressed the expression of key proteins in the TLR4/NF-κB signal pathway. Conclusion: XPS was demonstrated to be a potential agent for treating ALI. Our findings might provide evidence supporting the traditional application of R. japonica var. glaucocalyx in inflammation-linked diseases.
Collapse
Affiliation(s)
- An-Qi Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui-Jun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Yan Zhu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immuno Therapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Kun Li
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Dao-Feng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Zeng
- Clinical Trial Institution, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|