1
|
Liu Y, Przysucha E, Klarner T, Zerpa C, Maransinghe MK. Bimanual Coordination in Individuals Post-stroke: Constraints, Rehabilitation Approaches and Measures: Systematic Review. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2024; 17:831-851. [PMID: 39050674 PMCID: PMC11268929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
To couple or not to couple is a dilemma for the CNS when performing bimanual goal-directed actions. Numerous interacting individual and task-related constraints contribute to the issue of effective movement coordination, and their impact on the emerging actions must be inferred from valid methodologies. This is particularly important when examining coordination in individuals with stroke undergoing rehabilitation. The purpose of this review was to identify the different constraints that may impact inter-limb coupling, and the rehabilitation approaches implemented to enhance those actions. Also, the measures incorporated to examine the effects of rehabilitation methods were reviewed. A literature search was conducted using CINAHL, PubMed and PsycINFO. Following the PRISMA 2020 guidelines, 789 relevant studies were identified, with 20 articles fulfilling the established criteria. Results showed that the impact of sex, time after stroke, type of stroke, and age were not examined in any studies reviewed. In terms of task constraints, most did not examine bimanual coordination explicitly. Bimanual movement training was the most prevalent. Regarding the dependent variables, clinician-reported and performance based scales were frequently used, while only eight studies implemented kinematic analysis, and only three examined inter-limb organization. None made explicit inferences to the existing theories of inter-limb coordination. In conclusion, important individual and task constraints on inter-limb coordination were scarcely examined. Also, majority of the studies did not involve bimanual tasks, or any measures of inter-limb coupling, thus the inferences should be treated with caution. Conceptually, all studies were data driven.
Collapse
Affiliation(s)
- Yutong Liu
- School of Kinesiology, Lakehead University, ON, CANADA
| | | | - Taryn Klarner
- School of Kinesiology, Lakehead University, ON, CANADA
| | - Carlos Zerpa
- School of Kinesiology, Lakehead University, ON, CANADA
| | | |
Collapse
|
2
|
Soleimani M, Ghazisaeedi M, Heydari S. The efficacy of virtual reality for upper limb rehabilitation in stroke patients: a systematic review and meta-analysis. BMC Med Inform Decis Mak 2024; 24:135. [PMID: 38790042 PMCID: PMC11127427 DOI: 10.1186/s12911-024-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Stroke frequently gives rise to incapacitating motor impairments in the upper limb. Virtual reality (VR) rehabilitation has exhibited potential for augmenting upper extremity recovery; nonetheless, the optimal techniques for such interventions remain a topic of uncertainty. The present systematic review and meta-analysis were undertaken to comprehensively compare VR-based rehabilitation with conventional occupational therapy across a spectrum of immersion levels and outcome domains. METHODS A systematic search was conducted in PubMed, IEEE, Scopus, Web of Science, and PsycNET databases to identify randomized controlled trials about upper limb rehabilitation in stroke patients utilizing VR interventions. The search encompassed studies published in the English language up to March 2023. The identified studies were stratified into different categories based on the degree of immersion employed: non-immersive, semi-immersive, and fully-immersive settings. Subsequent meta-analyses were executed to assess the impact of VR interventions on various outcome measures. RESULTS Of the 11,834 studies screened, 55 studies with 2142 patients met the predefined inclusion criteria. VR conferred benefits over conventional therapy for upper limb motor function, functional independence, Quality of life, Spasticity, and dexterity. Fully immersive VR showed the greatest gains in gross motor function, while non-immersive approaches enhanced fine dexterity. Interventions exceeding six weeks elicited superior results, and initiating VR within six months post-stroke optimized outcomes. CONCLUSIONS This systematic review and meta-analysis demonstrates that adjunctive VR-based rehabilitation enhances upper limb motor recovery across multiple functional domains compared to conventional occupational therapy alone after stroke. Optimal paradigms likely integrate VR's immersive capacity with conventional techniques. TRIAL REGISTRATION This systematic review and meta-analysis retrospectively registered in the OSF registry under the identifier [ https://doi.org/10.17605/OSF.IO/YK2RJ ].
Collapse
Affiliation(s)
- Mohsen Soleimani
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Ghazisaeedi
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Heydari
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rogalewski A, Schäbitz W. [Therapies for the Improvement of Stroke Recovery - Assessment of Clinical Trial Results]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:516-522. [PMID: 38081165 DOI: 10.1055/a-2181-1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recovery processes after stroke include restoration or compensation of function initially lost or newly acquired after injury. Therapeutic interventions can either directly improve these processes and/or inhibit processes that impede regeneration. Numerous experimental studies suggested a great opportunity for such treatments, but the results from recent large clinical trials with neuromodulators such as dopamine and fluoxetine have been rather disappointing. The reasons for this are manifold and involve the extrapolation of results from animal models to humans. Given the differences between animals and humans in genetic and epigenetic background, brain size and anatomy, cerebral vascular anatomy, immune system, as well as clinical function, and behavior, direct extrapolation is unlikely to work. Backward blockades include the incompatible adaption of clinical trial objectives and outcomes in clinical trials with regard to previous preclinical findings. For example, the clinical recovery trial design widely varies and has been characterized by the selection of different clinical endpoints, the inclusion a wide spectrum of stroke subtypes and clinical syndromes, and different time windows for treatment initiation after onset of infarction. This review will discuss these aspects based on the results of the recent stroke recovery trials with the aim to contributing to the development of a therapy that improves the functional outcome of a chronic stroke patient.
Collapse
Affiliation(s)
- Andreas Rogalewski
- Klinik für Neurologie, Sankt Elisabeth-Hospital Gütersloh, Gütersloh, Germany
| | - Wolf Schäbitz
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Universitätsklinikum OWL der Universität Bielefeld, Campus Bielefeld-Bethel, Bielefeld, Germany
| |
Collapse
|
4
|
Hascher S, Shuster A, Mukamel R, Ossmy O. The power of multivariate approach in identifying EEG correlates of interlimb coupling. Front Hum Neurosci 2023; 17:1256497. [PMID: 37900731 PMCID: PMC10603300 DOI: 10.3389/fnhum.2023.1256497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Interlimb coupling refers to the interaction between movements of one limb and movements of other limbs. Understanding mechanisms underlying this effect is important to real life because it reflects the level of interdependence between the limbs that plays a role in daily activities including tool use, cooking, or playing musical instruments. Interlimb coupling involves multiple brain regions working together, including coordination of neural activity in sensory and motor regions across the two hemispheres. Traditional neuroscience research took a univariate approach to identify neural features that correspond to behavioural coupling measures. Yet, this approach reduces the complexity of the neural activity during interlimb tasks to one value. In this brief research report, we argue that identifying neural correlates of interlimb coupling would benefit from a multivariate approach in which full patterns from multiple sources are used to predict behavioural coupling. We demonstrate the feasibility of this approach in an exploratory EEG study where participants (n = 10) completed 240 trials of a well-established drawing paradigm that involves interlimb coupling. Using artificial neural network (ANN), we show that multivariate representation of the EEG signal significantly captures the interlimb coupling during bimanual drawing whereas univariate analyses failed to identify such correlates. Our findings demonstrate that analysing distributed patterns of multiple EEG channels is more sensitive than single-value techniques in uncovering subtle differences between multiple neural signals. Using such techniques can improve identification of neural correlates of complex motor behaviours.
Collapse
Affiliation(s)
- Sophie Hascher
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Anastasia Shuster
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Roy Mukamel
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ori Ossmy
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
5
|
Kim H, Kim J, Kim J, Oh S, Choi K, Yoon J. Magnetothermal-based non-invasive focused magnetic stimulation for functional recovery in chronic stroke treatment. Sci Rep 2023; 13:4988. [PMID: 36973390 PMCID: PMC10042827 DOI: 10.1038/s41598-023-31979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Magnetic heat-based brain stimulation of specific lesions could promote the restoration of impaired motor function caused by chronic stroke. We delivered localized stimulation by nanoparticle-mediated heat generation within the targeted brain area via focused magnetic stimulation. The middle cerebral artery occlusion model was prepared, and functional recovery in the chronic-phase stroke rat model was demonstrated by the therapeutic application of focused magnetic stimulation. We observed a transient increase in blood-brain barrier permeability at the target site of < 4 mm and metabolic brain activation at the target lesion. After focused magnetic stimulation, the rotarod score increased by 390 ± 28% (p < 0.05) compared to the control group. Standardized uptake value in the focused magnetic stimulation group increased by 2063 ± 748% (p < 0.01) compared to the control group. Moreover, an increase by 24 ± 5% (p < 0.05) was observed in the sham group as well. Our results show that non-invasive focused magnetic stimulation can safely modulate BBB permeability and enhance neural activation for chronic-phase stroke treatment in the targeted deep brain area.
Collapse
Affiliation(s)
- Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jihye Kim
- Department of Neurology, Chonnam National University Hospital and Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, South Korea
| | - Jahae Kim
- Department of Nuclear Medicines, Chonnam National University Hospital and Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, South Korea
| | - Seungjun Oh
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Kangho Choi
- Department of Neurology, Chonnam National University Hospital and Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, South Korea.
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
6
|
Rodríguez-Pérez MP, Sánchez-Herrera-Baeza P, Montes-Montes R, Cano-de-la-Cuerda R, Martínez-Piédrola RM, Serrada-Tejeda S, Obeso-Benítez P, Pérez-de-Heredia-Torres M. How Do Motor and Sensory Function Correlate with Daily Performance Recovery after Post-Stroke Robotic Intervention? A Secondary Analysis of a Non-Randomized Controlled Trial. Biomedicines 2023; 11:biomedicines11030853. [PMID: 36979832 PMCID: PMC10045811 DOI: 10.3390/biomedicines11030853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
New technologies have been developed to complement conventional interventions to better target the specific needs of people with stroke, and they have been shown to improve both function and performance. However, it is unknown whether the baseline levels of sensorimotor function and performance interrelate with the improvement in upper limb and daily performance. Thus, the aim of this study was to examine the relationship between baseline levels of sensorimotor function and daily performance and its impact on post-intervention improvement in people with stroke following a robotic intervention. A single-blind, non-randomized, controlled clinical trial was conducted. Participants in the experimental group (n = 9) received a robotic intervention in addition to conventional treatment. Sensorimotor function was measured with Semmes-Weinstein Monofilaments® and the Fugl-Meyer Assessment Upper Extremity Scale. Upper limb and daily performance were measured with the MAL and SIS-16 scales. The multivariate regression models showed that baseline levels of upper limb performance and motor function predicted >95% of the variance in upper limb performance (p < 0.001), while pre-intervention levels of daily performance explained >75% of the post-intervention variance (p < 0.05). These findings indicate that basal upper limb motor function is associated with improved performance following a combined intervention of conventional treatment and robotic intervention.
Collapse
|
7
|
Bressi F, Cricenti L, Campagnola B, Bravi M, Miccinilli S, Santacaterina F, Sterzi S, Straudi S, Agostini M, Paci M, Casanova E, Marino D, La Rosa G, Giansanti D, Perrero L, Battistini A, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Morone G, Gallotti M, Germanotta M, Aprile I. Effects of robotic upper limb treatment after stroke on cognitive patterns: A systematic review. NeuroRehabilitation 2022; 51:541-558. [PMID: 36530099 PMCID: PMC9837692 DOI: 10.3233/nre-220149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb. Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive deficits has been considered only in a few recent studies. OBJECTIVE To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients. METHODS The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through PubMed/MEDLINE and Web of Science from inception to March 2021. RESULTS Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes. CONCLUSION Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation.
Collapse
Affiliation(s)
- Federica Bressi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Laura Cricenti
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Benedetta Campagnola
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy,Address for correspondence: Benedetta Campagnola, Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy. E-mail:
| | - Marco Bravi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Sandra Miccinilli
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Fabio Santacaterina
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Silvia Sterzi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | | | - Matteo Paci
- AUSL (Unique Sanitary Local Company) District of Central Tuscany, Florence, Italy
| | - Emanuela Casanova
- Unità Operativa di Medicina Riabilitativa e Neuroriabilitazione (SC), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Dario Marino
- IRCCS Neurolysis Center “Bonino Pulejo”, Messina, Italy
| | | | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Luca Perrero
- Neurorehabilitation Unit, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Alberto Battistini
- Unità Operativa di Medicina Riabilitativa e Neuroriabilitazione (SC), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Serena Filoni
- Padre Pio Onlus Rehabilitation Centers Foundation, San Giovanni Rotondo, Italy
| | - Monica Sicari
- A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | | | | | | | - Paolo Boldrini
- Società Italiana di Medicina Fisica e Riabilitativa (SIMFER), Rome, Italy
| | | | - Enrico Castelli
- Department of Paediatric Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (Faip Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Stefano Mazzon
- AULSS6 (Unique Sanitary Local Company) Euganea Padova – Distretto 4 “Alta Padovana”, Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital – AUSL12, Viareggio, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | | | | | | | - Irene Aprile
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | |
Collapse
|
8
|
Jiang YC, Ma R, Qi S, Ge S, Sun Z, Li Y, Song J, Zhang M. Characterization of Bimanual Cyclical Tasks from Single-trial EEG-fNIRS Measurements. IEEE Trans Neural Syst Rehabil Eng 2022; 30:146-156. [PMID: 35041608 DOI: 10.1109/tnsre.2022.3144216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Robot-assisted bimanual training is promising to improve motor function and cortical reorganization for hemiparetic stroke patients. Closing the rehabilitation training loop with neurofeedback can help refine training protocols in time for better engagements and outcomes. However, due to the low signal-to- noise ratio (SNR) and non-stationary properties of neural signals, reliable characterization of bimanual training-induced neural activities from single-trial measurement is challenging. In this study, ten human participants were recruited conducting robot-assisted bimanual cyclical tasks (in-phase, 90° out-of-phase, and anti-phase) when concurrent electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were recorded. A unified EEG-fNIRS bimodal signal processing framework was proposed to characterize neural activities induced by three types of bimanual cyclical tasks. In this framework, novel artifact removal methods were used to improve the SNR and the task-related component analysis (TRCA) was introduced to increase the reproducibility of EEG-fNIRS bimodal features. The optimized features were transformed into low-dimensional indicators to reliably characterize bimanual training-induced neural activation. The SVM classification results of three bimanual cyclical tasks revealed a good discrimination ability of EEG-fNIRS bimodal indicators (90.1%), which was higher than that using EEG (74.8%) or fNIRS (82.2%) alone, supporting the proposed method as a feasible technique to characterize neural activities during robot-assisted bimanual training.
Collapse
|
9
|
The Efficacy of Interlimb-Coordinated Intervention on Gait and Motor Function Recovery in Patients with Acute Stroke: A Multi-Center Randomized Controlled Trial Study Protocol. Brain Sci 2021; 11:brainsci11111495. [PMID: 34827494 PMCID: PMC8615375 DOI: 10.3390/brainsci11111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The efficacy of interlimb-coordinated training on gait and upper limb functional improvement remains unclear. The latest published randomized controlled trials have supported the potential benefits of interlimb-coordinated training to enhance gait function. Upper limb functional recovery may also benefit from interlimb-coordinated training since most everyday activities require the coordinated use of both hands to complete a task. This study investigates the efficacy of interlimb-coordinated training on gait and upper limb functional recovery over a short-medium term period. METHODS A total of 226 acute stroke patients will be recruited from four centres over four years. Patients will be randomly allocated to either conventional therapy or conventional therapy plus interlimb-coordinated training. Outcomes will be recorded at baseline, after 2 weeks of intervention, and at 3- and 6-months post-intervention. Gait speed is the primary outcome measure. Secondary outcome measures include Fugl-Meyer Assessment of Motor Recovery, Berg Balance Scale, Timed Up and Go test, Action Research Arm Test, electroencephalography, and magnetic resonance imaging. CONCLUSION The results of this trial will provide an in-depth understanding of the efficacy of early interlimb-coordinated intervention on gait and upper functional rehabilitation and how it may relate to the neural plasticity process.
Collapse
|
10
|
Wang X, Liu G, Feng Y, Li W, Niu J, Gan Z. Measurement Method of Human Lower Limb Joint Range of Motion Through Human-Machine Interaction Based on Machine Vision. Front Neurorobot 2021; 15:753924. [PMID: 34720913 PMCID: PMC8554162 DOI: 10.3389/fnbot.2021.753924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
To provide stroke patients with good rehabilitation training, the rehabilitation robot should ensure that each joint of the limb of the patient does not exceed its joint range of motion. Based on the machine vision combined with an RGB-Depth (RGB-D) camera, a convenient and quick human-machine interaction method to measure the lower limb joint range of motion of the stroke patient is proposed. By analyzing the principle of the RGB-D camera, the transformation relationship between the camera coordinate system and the pixel coordinate system in the image is established. Through the markers on the human body and chair on the rehabilitation robot, an RGB-D camera is used to obtain their image data with relative position. The threshold segmentation method is used to process the image. Through the analysis of the image data with the least square method and the vector product method, the range of motion of the hip joint, knee joint in the sagittal plane, and hip joint in the coronal plane could be obtained. Finally, to verify the effectiveness of the proposed method for measuring the lower limb joint range of motion of human, the mechanical leg joint range of motion from a lower limb rehabilitation robot, which will be measured by the angular transducers and the RGB-D camera, was used as the control group and experiment group for comparison. The angle difference in the sagittal plane measured by the proposed detection method and angle sensor is relatively conservative, and the maximum measurement error is not more than 2.2 degrees. The angle difference in the coronal plane between the angle at the peak obtained by the designed detection system and the angle sensor is not more than 2.65 degrees. This paper provides an important and valuable reference for the future rehabilitation robot to set each joint range of motion limited in the safe workspace of the patient.
Collapse
Affiliation(s)
- Xusheng Wang
- Academy for Engineering & Technology, Fudan University, Shanghai, China
| | - Guowei Liu
- Parallel Robot and Mechatronic System Laboratory of Hebei Province and Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao, China
| | - Yongfei Feng
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, China
| | - Wei Li
- Academy for Engineering & Technology, Fudan University, Shanghai, China
| | - Jianye Niu
- Parallel Robot and Mechatronic System Laboratory of Hebei Province and Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao, China
| | - Zhongxue Gan
- Academy for Engineering & Technology, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Design and Analysis of a Lower Limb Rehabilitation Training Component for Bedridden Stroke Patients. MACHINES 2021. [DOI: 10.3390/machines9100224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carrying out the immediate rehabilitation interventional therapy will better improve the curative effect of rehabilitation therapy, after the condition of bedridden stroke patients becomes stable. A new lower limb rehabilitation training module, as a component of a synchronous rehabilitation robot for bedridden stroke patients’ upper and lower limbs, is proposed. It can electrically adjust the body shape of patients with a different weight and height. Firstly, the innovative mechanism design of the lower limb rehabilitation training module is studied. Then, the mechanism of the lower limb rehabilitation module is simplified and the geometric relationship of the human–machine linkage mechanism is deduced. Next, the trajectory planning and dynamic modeling of the human–machine linkage mechanism are carried out. Based on the analysis of the static moment safety protection of the human–machine linkage model, the motor driving force required in the rehabilitation process is calculated to achieve the purpose of rationalizing the rehabilitation movement of the patient’s lower limb. To reconstruct the patient’s motor functions, an active training control strategy based on the sandy soil model is proposed. Finally, the experimental platform of the proposed robot is constructed, and the preliminary physical experiment proves the feasibility of the lower limb rehabilitation component.
Collapse
|
12
|
Cardoso LRL, Pedro LM, Forner-Cordero A. Handlebar Robotic System for Bimanual Motor Control and Learning Research. SENSORS (BASEL, SWITZERLAND) 2021; 21:5991. [PMID: 34577199 PMCID: PMC8472032 DOI: 10.3390/s21185991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Robotic devices can be used for motor control and learning research. In this work, we present the construction, modeling and experimental validation of a bimanual robotic device. We tested some hypotheses that may help to better understand the motor learning processes involved in the interlimb coordination function. The system emulates a bicycle handlebar with rotational motion, thus requiring bilateral upper limb control and a coordinated sequence of joint sub-movements. The robotic handlebar is compact and portable and can register in a fast rate both position and forces independently from arms, including prehension forces. An impedance control system was implemented in order to promote a safer environment for human interaction and the system is able to generate force fields, suitable for implementing motor learning paradigms. The novelty of the system is the decoupling of prehension and manipulation forces of each hand, thus paving the way for the investigation of hand dominance function in a bimanual task. Experiments were conducted with ten healthy subjects, kinematic and dynamic variables were measured during a rotational set of movements. Statistical analyses showed that movement velocity decreased with practice along with an increase in reaction time. This suggests an increase of the task planning time. Prehension force decreased with practice. However, an unexpected result was that the dominant hand did not lead the bimanual task, but helped to correct the movement, suggesting different roles for each hand during a cooperative bimanual task.
Collapse
Affiliation(s)
- Lucas R. L. Cardoso
- Programa de Pós-Graduação Interunidades em Bioengenharia (EESC/FMRP/IQSC), University of São Paulo, São Carlos 13566-590, Brazil
| | - Leonardo M. Pedro
- Department of Mechanical Engineering, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| | - Arturo Forner-Cordero
- Biomechatronics Laboratory—Escola Politecnica, University of São Paulo, São Paulo 05508-010, Brazil;
| |
Collapse
|
13
|
Rogalewski A, Schäbitz WR. Stroke recovery enhancing therapies: lessons from recent clinical trials. Neural Regen Res 2021; 17:717-720. [PMID: 34472456 PMCID: PMC8530130 DOI: 10.4103/1673-5374.314287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Poststroke recovery processes include restoration or compensation of function, respectively functions initially lost or new functions acquired after an injury. Therapeutic interventions can enhance these processes and/or reduce processes impeding regeneration. Numerous experimental studies suggest great opportunities for such treatments, but the results from recent large clinical trials using neuromodulators such as dopamine and fluoxetine are disappointing. The reasons for this are manifold affecting forward translation of results from animals models into the human situation. This “translational road block” is defined by differences between animals and humans with regard to the genetic and epigenetic background, size and anatomy of the brain, cerebral vascular anatomy, immune system, as well as clinical function and behavior. Backward blockade includes the incompatible adaption of targets and outcomes in clinical trials with regard to prior preclinical findings. For example, the design of clinical recovery trials varies widely and was characterized by the selection of different clinical endpoints, the inclusion a broad spectrum of stroke subtypes and clinical syndromes as well as different time windows for treatment initiation after infarct onset. This review will discuss these aspects based on the results of the recent stroke recovery trials with the goal to contribute to the currently biggest unmet need in stroke research - the development of a recovery enhancing therapy that improves the functional outcome of a chronic stroke patient.
Collapse
Affiliation(s)
- Andreas Rogalewski
- Department of Neurology, Bethel - EVKB, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|