1
|
Restaino AC, Walz A, Barclay SM, Fettig RR, Vermeer PD. Tumor-associated genetic amplifications impact extracellular vesicle miRNA cargo and their recruitment of nerves in head and neck cancer. FASEB J 2024; 38:e23803. [PMID: 38963404 PMCID: PMC11262563 DOI: 10.1096/fj.202400625rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Cancer neuroscience is an emerging field of cancer biology focused on defining the interactions and relationships between the nervous system, developing malignancies, and their environments. Our previous work demonstrates that small extracellular vesicles (sEVs) released by head and neck squamous cell carcinomas (HNSCCs) recruit loco-regional nerves to the tumor. sEVs contain a diverse collection of biological cargo, including microRNAs (miRNAs). Here, we asked whether two genes commonly amplified in HNSCC, CCND1, and PIK3CA, impact the sEV miRNA cargo and, subsequently, sEV-mediated tumor innervation. To test this, we individually overexpressed these genes in a syngeneic murine HNSCC cell line, purified their sEVs, and tested their neurite outgrowth activity on dorsal root ganglia (DRG) neurons in vitro. sEVs purified from Ccnd1-overexpressing cells significantly increased neurite outgrowth of DRG compared to sEVs from parental or Pik3ca over-expressing cells. When implanted into C57BL/6 mice, Ccnd1 over-expressing tumor cells promoted significantly more tumor innervation in vivo. qPCR analysis of sEVs shows that increased expression of Ccnd1 altered the packaging of miRNAs (miR-15-5p, miR-17-5p, and miR-21-5p), many of which target transcripts important in regulating axonogenesis. These data indicate that genetic amplifications harbored by malignancies impose changes in sEV miRNA cargo, which can influence tumorc innervation.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Sarah M. Barclay
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Robin R. Fettig
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| |
Collapse
|
2
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Role of Post-Transcriptional Regulation in Learning and Memory in Mammals. Genes (Basel) 2024; 15:337. [PMID: 38540396 PMCID: PMC10970538 DOI: 10.3390/genes15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
3
|
de Veij Mestdagh CF, Smit AB, Henning RH, van Kesteren RE. Mitochondrial Targeting against Alzheimer's Disease: Lessons from Hibernation. Cells 2023; 13:12. [PMID: 38201215 PMCID: PMC10778235 DOI: 10.3390/cells13010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and yet remains without effective therapy. Amongst the many proposed causes of AD, the mitochondrial cascade hypothesis is gaining attention. Accumulating evidence shows that mitochondrial dysfunction is a driving force behind synaptic dysfunction and cognitive decline in AD patients. However, therapies targeting the mitochondria in AD have proven unsuccessful so far, and out-of-the-box options, such as hibernation-derived mitochondrial mechanisms, may provide valuable new insights. Hibernators uniquely and rapidly alternate between suppression and re-activation of the mitochondria while maintaining a sufficient energy supply and without acquiring ROS damage. Here, we briefly give an overview of mitochondrial dysfunction in AD, how it affects synaptic function, and why mitochondrial targeting in AD has remained unsuccessful so far. We then discuss mitochondria in hibernation and daily torpor in mice, covering current advancements in hibernation-derived mitochondrial targeting strategies. We conclude with new ideas on how hibernation-derived dual mitochondrial targeting of both the ATP and ROS pathways may boost mitochondrial health and induce local synaptic protein translation to increase synaptic function and plasticity. Further exploration of these mechanisms may provide more effective treatment options for AD in the future.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Alzheimer Center Amsterdam, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ronald E. van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| |
Collapse
|
4
|
Liu T, Liu Y, Peng M, Liu Q, Si G. Slain2 attenuates brain injury following subarachnoid hemorrhage by controlling axonal microtubule structure in mice. Neurosci Lett 2023; 816:137495. [PMID: 37741612 DOI: 10.1016/j.neulet.2023.137495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Neuronal injury is accountable for the poor outcome of SAH patients. In this study, oxyhemoglobin (oxyHb) was used to treat cultured primary neurons to simulate SAH, while the SAH model was established by vascular puncture in mice. First, proteomics analysis and western blot assays showed Slain2 as an increased factor in neurons exposed to oxyHb treatment, which has been reported to play an important role in axonal development by regulating microtubule stability. Upregulation of neuronal Slain2 was also detected in the murine SAH model compared with sham surgery. In addition, there was no sex difference in the protein level of Slain2 in either the sham-operated or SAH groups. Furthermore, Slain2 overexpression rescued SAH-induced sensorimotor impairments in mice, while Slain2 knockdown had the opposite effect. Finally, Slain2 overexpression rescued SAH-induced axonal injury both in vivo and in vitro, which was exacerbated by Slain2 knockdown. Thus, we demonstrate here that Slain2 acts as an endogenous protective factor of neuronal axonal microtubule structure, which plays a key role in the protection against SAH-induced neuronal axonal injury. Facilitated axonal microtubule structure by Slain2 overexpression may reduce SAH-induced axonal injury and neurobehavioral dysfunction.
Collapse
Affiliation(s)
- Ting Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China; Shandong University of Traditional Chinese Medicine, China
| | - Yuan Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Qianqian Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Guomin Si
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China.
| |
Collapse
|
5
|
Dash BP, Freischmidt A, Weishaupt JH, Hermann A. Downstream Effects of Mutations in SOD1 and TARDBP Converge on Gene Expression Impairment in Patient-Derived Motor Neurons. Int J Mol Sci 2022; 23:ijms23179652. [PMID: 36077049 PMCID: PMC9456253 DOI: 10.3390/ijms23179652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease marked by death of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Despite extensive research, the reason for neurodegeneration is still not understood. To generate novel hypotheses of putative underlying molecular mechanisms, we used human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to perform high-throughput RNA-sequencing (RNA-Seq). An integrated bioinformatics approach was employed to identify differentially expressed genes (DEGs) and key pathways underlying these familial forms of the disease (fALS). In TDP43-ALS, we found dysregulation of transcripts encoding components of the transcriptional machinery and transcripts involved in splicing regulation were particularly affected. In contrast, less is known about the role of SOD1 in RNA metabolism in motor neurons. Here, we found that many transcripts relevant for mitochondrial function were specifically altered in SOD1-ALS, indicating that transcriptional signatures and expression patterns can vary significantly depending on the causal gene that is mutated. Surprisingly, however, we identified a clear downregulation of genes involved in protein translation in SOD1-ALS suggesting that ALS-causing SOD1 mutations shift cellular RNA abundance profiles to cause neural dysfunction. Altogether, we provided here an extensive profiling of mRNA expression in two ALS models at the cellular level, corroborating the major role of RNA metabolism and gene expression as a common pathomechanism in ALS.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| | | | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)381-494-9541; Fax: +49-(0)381-494-9542
| |
Collapse
|
6
|
Pomilio AB, Vitale AA, Lazarowski AJ. Uncommon Noninvasive Biomarkers for the Evaluation and Monitoring of the Etiopathogenesis of Alzheimer's Disease. Curr Pharm Des 2022; 28:1152-1169. [DOI: 10.2174/1381612828666220413101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer´s disease (AD) is the most widespread dementia in the world, followed by vascular dementia. Since AD is a heterogeneous disease that shows several varied phenotypes, it is not easy to make an accurate diagnosis, so it arises when the symptoms are clear and the disease is already very advanced. Therefore, it is important to find out biomarkers for AD early diagnosis that facilitate treatment or slow down the disease. Classic biomarkers are obtained from cerebrospinal fluid and plasma, along with brain imaging by positron emission tomography. Attempts have been made to discover uncommon biomarkers from other body fluids, which are addressed in this update.
Objective:
This update aims to describe recent biomarkers from minimally invasive body fluids for the patients, such as saliva, urine, eye fluid or tears.
Methods:
Biomarkers were determined in patients versus controls by single tandem mass spectrometry, and immunoassays. Metabolites were identified by nuclear magnetic resonance, and microRNAs with genome-wide high-throughput real-time polymerase chain reaction-based platforms.
Results:
Biomarkers from urine, saliva, and eye fluid were described, including peptides/proteins, metabolites, and some microRNAs. The association with AD neuroinflammation and neurodegeneration was analyzed, highlighting the contribution of matrix metalloproteinases, the immune system and microglia, as well as the vascular system.
Conclusion:
Unusual biomarkers have been developed, which distinguish each stage and progression of the disease, and are suitable for the early AD diagnosis. An outstanding relationship of biomarkers with neuroinflammation and neurodegeneration was assessed, clearing up concerns of the etiopathogenesis of AD.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
7
|
Nagano S, Araki T. Axonal Transport and Local Translation of mRNA in Neurodegenerative Diseases. Front Mol Neurosci 2021; 14:697973. [PMID: 34194300 PMCID: PMC8236635 DOI: 10.3389/fnmol.2021.697973] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Since neurons have long neurites including axons, it is crucial for the axons to transport many intracellular substances such as proteins and mitochondria in order to maintain their morphology and function. In addition, mRNAs have also been shown to be transported within axons. RNA-binding proteins form complexes with mRNAs, and regulate transport of the mRNAs to axons, as well as locally translate them into proteins. Local translation of mRNAs actively occurs during the development and damage of neurons, and plays an important role in axon elongation, regeneration, and synapse formation. In recent years, it has been reported that impaired axonal transport and local translation of mRNAs may be involved in the pathogenesis of some neurodegenerative diseases. In this review, we discuss the significance of mRNA axonal transport and their local translation in amyotrophic lateral sclerosis/frontotemporal dementia, spinal muscular atrophy, Alzheimer’s disease, and fragile X syndrome.
Collapse
Affiliation(s)
- Seiichi Nagano
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|