1
|
Xiao Y, Gao M, He Z, Zheng J, Bai H, Rao JS, Song G, Song W, Li X. Passive activity enhances residual control ability in patients with complete spinal cord injury. Neural Regen Res 2025; 20:2337-2347. [PMID: 39359092 DOI: 10.4103/nrr.nrr-d-23-01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/02/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00024/figure1/v/2024-09-30T120553Z/r/image-tiff Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level. However, because of prolonged inactivity, initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway. A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation, as measured by surface electromyography. In this study, we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury. Eleven patients with chronic complete thoracic spinal cord injury were recruited. Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol. The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation. Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity, the difference was not statistically significant. These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
Collapse
Affiliation(s)
- Yanqing Xiao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mingming Gao
- Department of Rehabilitation Evaluation, China Rehabilitation Research Center, Beijing, China
| | - Zejia He
- Department of Rehabilitation Evaluation, China Rehabilitation Research Center, Beijing, China
| | - Jia Zheng
- Cardiac Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hongming Bai
- The State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guiyun Song
- Department of Rehabilitation Evaluation, China Rehabilitation Research Center, Beijing, China
| | - Wei Song
- Department of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Araujo TPF, Cristante AF, Marcon RM, Santos GBD, Nicola MHA, Araujo AOD, Sanchez FB, Barros Filho TEPD. Improvement of motor function in mice after implantation of mononuclear stem cells from human umbilical cord and placenta blood after 3 and 6 weeks of experimental spinal cord injury. Clinics (Sao Paulo) 2024; 79:100509. [PMID: 39393277 DOI: 10.1016/j.clinsp.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/04/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
STUDY DESIGN Experimental study utilizing with a standardized model (MASCIS Impactor) of Spinal Cord Injury (SCI) in Balb C mouse model with implantation of mononuclear stem cells derived from the human umbilical cord and placenta blood in the early chronic phase of SCI. OBJECTIVES The aim of this study was to evaluate the nerve regeneration and motor functional recovery in Balb C mice with surgically induced paraplegia in response to the use of mononuclear stem cells, in early chronic phase (> 2 weeks and < 6 months), because there is yet potential of neuronal and functional recovery as the neuronal scar is not still completely established. METHODS Forty-eight mice were randomly assigned to 6 groups of 8 animals. Group 1 received the stem cells 3 weeks after the trauma, and Group 2 received them six weeks later. In Group 3, saline solution was injected at the site of the lesion 3 weeks after the trauma, and in Group 4, 6 weeks later. Group 5 underwent only spinal cord injury and Group 6 underwent laminectomy only. The scales used for motor assessment were BMS and MFS for 12 weeks. RESULTS The intervention groups showed statistically significant motor improvement. In the histopathological analysis, the intervention groups had a lower degree of injury (p < 0.05). Regarding axonal budding, the intervention groups showed increasing in axonal budding in the caudal portion (p < 0.05). CONCLUSIONS The use of stem cells in mice in the chronic phase after 3 and 6 weeks of SCI brings functional and histopathological benefits to them.
Collapse
Affiliation(s)
| | - Alexandre Fogaça Cristante
- Department of Orthopedic Surgery, Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raphael Martus Marcon
- Department of Orthopedic Surgery, Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Bispo Dos Santos
- Department of Orthopedic Surgery, Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Alex Oliveira de Araujo
- Department of Orthopedic Surgery, Rede SARAH de Hospitais de Reabilitação, SMHS - Área Especial, Brasília, DF, Brazil
| | - Fernando Barbosa Sanchez
- Department of Orthopedic Surgery, Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Xiang YY, Won JH, Lee SJ, Baek KW. The Effect of Exercise on Mesenchymal Stem Cells and their Application in Obesity Treatment. Stem Cell Rev Rep 2024; 20:1732-1751. [PMID: 38954390 DOI: 10.1007/s12015-024-10755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated considerable potential in tissue repair and the treatment of immune-related diseases, but there are problems with homing efficiency during MSCs transplantation. Exercise, as an intervention, has been shown to have an important impact on the properties of MSCs. This review summarizes the effects of exercise on the properties (including proliferation, apoptosis, differentiation, and homing) of bone marrow-derived MSCs and adipose-derived MSCs. Studies indicated that exercise enhances bone marrow-derived MSCs proliferation, osteogenic differentiation, and homing while reducing adipogenic differentiation. For adipose-derived MSCs, exercise enhances proliferation and reduces adipogenic differentiation. In addition, studies have investigated the therapeutic effects of combined therapy of MSCs transplantation with exercise on diseases of the bone, cardiac, and nervous systems. The combined therapy improves tissue repair by increasing the homing of transplanted MSCs and cytokine secretion (such as neurotrophin 4). Furthermore, MSCs transplantation also has potential for the treatment of obesity. Although the effect is not significant in weight loss, MSCs transplantation shows effects in controlling blood glucose, improving dyslipidemia, reducing inflammation, and improving liver disease. Finally, the potential role of combined MSCs transplantation and exercise therapy in addressing obesity is discussed.
Collapse
Affiliation(s)
- Ying-Ying Xiang
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong-Hwa Won
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabilitation, College of Health, Tongmyong University, Welfare, and Education, Busan, 48520, Korea
| | - Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
4
|
Ma Z, Liu T, Liu L, Pei Y, Wang T, Wang Z, Guan Y, Zhang X, Zhang Y, Chen X. Epidermal Neural Crest Stem Cell Conditioned Medium Enhances Spinal Cord Injury Recovery via PI3K/AKT-Mediated Neuronal Apoptosis Suppression. Neurochem Res 2024; 49:2854-2870. [PMID: 39023805 PMCID: PMC11365850 DOI: 10.1007/s11064-024-04207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
This study aimed to assess the impact of conditioned medium from epidermal neural crest stem cells (EPI-NCSCs-CM) on functional recovery following spinal cord injury (SCI), while also exploring the involvement of the PI3K-AKT signaling pathway in regulating neuronal apoptosis. EPI-NCSCs were isolated from 10-day-old Sprague-Dawley rats and cultured for 48 h to obtain EPI-NCSC-CM. SHSY-5Y cells were subjected with H2O2 treatment to induce apoptosis. Cell viability and survival rates were evaluated using the CCK-8 assay and calcein-AM/PI staining. SCI contusion model was established in adult Sprague-Dawley rats to assess functional recovery, utilizing the Basso, Beattie and Bresnahan (BBB) scoring system, inclined test, and footprint observation. Neurological restoration after SCI was analyzed through electrophysiological recordings. Histological analysis included hematoxylin and eosin (H&E) staining and Nissl staining to evaluate tissue organization. Apoptosis and oxidative stress levels were assessed using TUNEL staining and ROS detection methods. Additionally, western blotting was performed to examine the expression of apoptotic markers and proteins related to the PI3K/AKT signaling pathway. EPI-NCSC-CM significantly facilitated functional and histological recovery in SCI rats by inhibiting neuronal apoptosis through modulation of the PI3K/AKT pathway. Administration of EPI-NCSCs-CM alleviated H2O2-induced neurotoxicity in SHSY-5Y cells in vitro. The use of LY294002, a PI3K inhibitor, underscored the crucial role of the PI3K/AKT signaling pathway in regulating neuronal apoptosis. This study contributes to the ongoing exploration of molecular pathways involved in spinal cord injury (SCI) repair, focusing on the therapeutic potential of EPI-NCSC-CM. The research findings indicate that EPI-NCSC-CM exerts a neuroprotective effect by suppressing neuronal apoptosis through activation of the PI3K/AKT pathway in SCI rats. These results highlight the promising role of EPI-NCSC-CM as a potential treatment strategy for SCI, emphasizing the significance of the PI3K/AKT pathway in mediating its beneficial effects.
Collapse
Affiliation(s)
- Ziqian Ma
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Tao Liu
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liang Liu
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yilun Pei
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, 067000, Hebei Province, P.R. China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinwei Zhang
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Xueming Chen
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Peng B, Hu J, Sun Y, Huang Y, Peng Q, Zhao W, Xu W, Zhu L. Tangeretin alleviates inflammation and oxidative response induced by spinal cord injury by activating the Sesn2/Keap1/Nrf2 pathway. Phytother Res 2024; 38:4555-4569. [PMID: 39054118 DOI: 10.1002/ptr.8294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/29/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling disease that is characterized by inflammation and oxidative reactions. Tangeretin has been shown to possess significant antioxidant and anti-inflammatory activities. The Keap1/Nrf2 pathway, downstream of the Sesn2 gene, is involved in regulating the inflammation and oxidative response. The main objective of this study was to investigate the effect of tangeretin on SCI and its possible mechanism through cell and animal models. A T9 clamp injury was used for the mouse model and the LPS-induced stimulation of BV-2 cells was used for the cell model. The improvement of motor function after SCI was assessed by open field, swimming, and footprint experiments. The morphological characteristics of mouse spinal cord tissue and the levels of INOS, Sesn2, TNF-α, Keap1, Nrf2, IL-10, and reactive oxygen species (ROS) in vivo and in vitro were measured by several methods including western blotting, qPCR, immunofluorescence, HE, and Nissl staining. In vivo data showed that tangeretin can improve motor function recovery and reduce neuron loss and injury size in mice with SCI. Simultaneously, the in vitro findings suggested that treatment of BV-2 cells with tangeretin after LPS stimulation reduced the production of inflammatory factors and ROS, and could convert BV-2 cells from the M1 to the M2 type. Furthermore, Sesn2 knockout suppressed Keap1/Nrf2, inflammatory factors, ROS levels, and the M1 to M2 transition. Tangeretin can alleviate the inflammation and oxidative response induced by SCI by activating the Sesn2/Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Birong Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinwei Hu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanfang Sun
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yating Huang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingshan Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwen Zhao
- Department of Orthopedics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan Province, China
| | - Wenning Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Ju D, Dong C. The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury. Neural Regen Res 2024; 19:1751-1758. [PMID: 38103241 PMCID: PMC10960285 DOI: 10.4103/1673-5374.385842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system. Following surgery, the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality. Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord. Consequently, there is a critical need to develop new treatments to promote functional repair after spinal cord injury. Over recent years, there have been several developments in the use of stem cell therapy for the treatment of spinal cord injury. Alongside significant developments in the field of tissue engineering, three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures. This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization. These three-dimensional bioprinting scaffolds could repair damaged neural circuits and had the potential to repair the damaged spinal cord. In this review, we discuss the mechanisms underlying simple stem cell therapy, the application of different types of stem cells for the treatment of spinal cord injury, and the different manufacturing methods for three-dimensional bioprinting scaffolds. In particular, we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Dingyue Ju
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
7
|
Weng J, Wang L, Wang K, Su H, Luo D, Yang H, Wen Y, Wu Q, Li X. Tauroursodeoxycholic Acid Inhibited Apoptosis and Oxidative Stress in H 2O 2-Induced BMSC Death via Modulating the Nrf-2 Signaling Pathway: the Therapeutic Implications in a Rat Model of Spinal Cord Injury. Mol Neurobiol 2024; 61:3753-3768. [PMID: 38015303 PMCID: PMC11236931 DOI: 10.1007/s12035-023-03754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Spinal cord injury (SCI) is a prevalent and significant injury to the central nervous system, resulting in severe consequences. This injury is characterized by motor, sensory, and excretory dysfunctions below the affected spinal segment. Transplantation of bone marrow mesenchymal stem cells (BMSCs) has emerged as a potential treatment for SCI. However, the low survival as well as the differentiation rates of BMSCs within the spinal cord microenvironment significantly limit their therapeutic efficiency. Tauroursodeoxycholic acid (TUDCA), an active ingredient found in bear bile, has demonstrated its neuroprotective, antioxidant, and antiapoptotic effects on SCI. Thus, the present study was aimed to study the possible benefits of combining TUDCA with BMSC transplantation using an animal model of SCI. The results showed that TUDCA significantly enhanced BMSC viability and reduced apoptosis (assessed by Annexin V-FITC, TUNEL, Bax, Bcl-2, and Caspase-3) as well as oxidative stress (assessed by ROS, GSH, SOD, and MDA) both in vitro and in vivo. Additionally, TUDCA accelerated tissue regeneration (assessed by HE, Nissl, MAP2, MBP, TUJ1, and GFAP) and improved functional recovery (assessed by BBB score) following BMSC transplantation in SCI. These effects were mediated via the Nrf-2 signaling pathway, as evidenced by the upregulation of Nrf-2, NQO-1, and HO-1 expression levels. Overall, these results indicate that TUDCA could serve as a valuable adjunct to BMSC transplantation therapy for SCI, potentially enhancing its therapeutic efficacy.
Collapse
Affiliation(s)
- Jiaxian Weng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Le Wang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Kai Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Haitao Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery,, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dan Luo
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery,, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Haimei Yang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaqian Wen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiduan Wu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery,, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Li Z, Xia Q, He Y, Li L, Yin P. MDSCs in bone metastasis: Mechanisms and therapeutic potential. Cancer Lett 2024; 592:216906. [PMID: 38649108 DOI: 10.1016/j.canlet.2024.216906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
9
|
Zhang RG, Zheng BW, Zhang J, Hao MY, Diao YH, Hu XJ, Liu YF, Liu XH, Zhu T, Zhao ZL, Rong HT. Spinal Lymphatic Dysfunction Aggravates the Recovery Process After Spinal Cord Injury. Neuroscience 2024; 549:84-91. [PMID: 38460904 DOI: 10.1016/j.neuroscience.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
We aimed to evaluate the role of the spinal lymphatic system in spinal cord injury and whether it has an impact on recovery after spinal cord injury. Flow cytometry was used to evaluate the changes in the number of microvesicles after spinal cord injury. Evans blue extravasation was used to evaluate the function of the lymphatic system. Evans blue extravasation and immunofluorescence were used to evaluate the permeability of blood spinal cord barrier. The spinal cord edema was evaluated by dry and wet weight.Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was used to evaluate apoptosis after spinal cord injury. Nuclear factor-kappa B pathway was detected by Western blot. Behavioral tests were used to evaluate limb function. Microvesicles released after spinal cord injury can enter the thoracic duct and then enter the blood through the lymph around the spine. After ligation of the thoracic duct, it can aggravate the neuropathological manifestations and limb function after spinal cord injury. The potential mechanism may involve nuclear factor-kappa B pathway.
Collapse
Affiliation(s)
- Rui-Guang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo-Wen Zheng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming-Yu Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Hang Diao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Jun Hu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya-Fan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuan-Hui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zi-Long Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Hong-Tao Rong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
10
|
Lana JF, Navani A, Jeyaraman M, Santos N, Pires L, Santos GS, Rodrigues IJ, Santos D, Mosaner T, Azzini G, da Fonseca LF, de Macedo AP, Huber SC, de Moraes Ferreira Jorge D, Purita J. Sacral Bioneuromodulation: The Role of Bone Marrow Aspirate in Spinal Cord Injuries. Bioengineering (Basel) 2024; 11:461. [PMID: 38790327 PMCID: PMC11118755 DOI: 10.3390/bioengineering11050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Spinal cord injury (SCI) represents a severe trauma to the nervous system, leading to significant neurological damage, chronic inflammation, and persistent neuropathic pain. Current treatments, including pharmacotherapy, immobilization, physical therapy, and surgical interventions, often fall short in fully addressing the underlying pathophysiology and resultant disabilities. Emerging research in the field of regenerative medicine has introduced innovative approaches such as autologous orthobiologic therapies, with bone marrow aspirate (BMA) being particularly notable for its regenerative and anti-inflammatory properties. This review focuses on the potential of BMA to modulate inflammatory pathways, enhance tissue regeneration, and restore neurological function disrupted by SCI. We hypothesize that BMA's bioactive components may stimulate reparative processes at the cellular level, particularly when applied at strategic sites like the sacral hiatus to influence lumbar centers and higher neurological structures. By exploring the mechanisms through which BMA influences spinal repair, this review aims to establish a foundation for its application in clinical settings, potentially offering a transformative approach to SCI management that extends beyond symptomatic relief to promoting functional recovery.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | - Annu Navani
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Comprehensive Spine & Sports Center, Campbell, CA 95008, USA
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Department of Orthopaedics, ACS Medical College and Hospital, Chennai 600077, Tamil Nadu, India
| | - Napoliane Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Izair Jefthé Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Douglas Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Tomas Mosaner
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Gabriel Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Federal University of São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil
| | - Alex Pontes de Macedo
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Stephany Cares Huber
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Daniel de Moraes Ferreira Jorge
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| |
Collapse
|
11
|
Agosti E, Zeppieri M, Pagnoni A, Fontanella MM, Fiorindi A, Ius T, Panciani PP. Current status and future perspectives on stem cell transplantation for spinal cord injury. World J Transplant 2024; 14:89674. [PMID: 38576751 PMCID: PMC10989472 DOI: 10.5500/wjt.v14.i1.89674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Previous assessments of stem cell therapy for spinal cord injuries (SCI) have encountered challenges and constraints. Current research primarily emphasizes safety in early-phase clinical trials, while systematic reviews prioritize effectiveness, often overlooking safety and translational feasibility. This situation prompts inquiries regarding the readiness for clinical adoption. AIM To offer an up-to-date systematic literature review of clinical trial results con cerning stem cell therapy for SCI. METHODS A systematic search was conducted across major medical databases [PubMed, Embase, Reference Citation Analysis (RCA), and Cochrane Library] up to October 14, 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "spinal cord", "injury", "clinical trials", "stem cells", "functional outcomes", and "adverse events". Studies included in this review consisted of randomized controlled trials and non-randomized controlled trials reporting on the use of stem cell therapies for the treatment of SCI. RESULTS In a comprehensive review of 66 studies on stem cell therapies for SCI, 496 papers were initially identified, with 237 chosen for full-text analysis. Among them, 236 were deemed eligible after excluding 170 for various reasons. These studies encompassed 1086 patients with varying SCI levels, with cervical injuries being the most common (42.2%). Bone marrow stem cells were the predominant stem cell type used (71.1%), with various administration methods. Follow-up durations averaged around 84.4 months. The 32.7% of patients showed functional impro vement from American spinal injury association Impairment Scale (AIS) A to B, 40.8% from AIS A to C, 5.3% from AIS A to D, and 2.1% from AIS B to C. Sensory improvements were observed in 30.9% of patients. A relatively small number of adverse events were recorded, including fever (15.1%), headaches (4.3%), muscle tension (3.1%), and dizziness (2.6%), highlighting the potential for SCI recovery with stem cell therapy. CONCLUSION In the realm of SCI treatment, stem cell-based therapies show promise, but clinical trials reveal potential adverse events and limitations, underscoring the need for meticulous optimization of transplantation conditions and parameters, caution against swift clinical implementation, a deeper understanding of SCI pathophysiology, and addressing ethical, tumorigenicity, immunogenicity, and immunotoxicity concerns before gradual and careful adoption in clinical practice.
Collapse
Affiliation(s)
- Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Andrea Pagnoni
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia 25123, BS, Italy
| | - Alessandro Fiorindi
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine 33100, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
12
|
Chen B, Tan Q, Zhang H, Chu W, Wen H, Tian X, Yang Y, Li W, Li W, Chen Y, Feng H. Contralesional Anodal Transcranial Direct Current Stimulation Promotes Intact Corticospinal Tract Axonal Sprouting and Functional Recovery After Traumatic Brain Injury in Mice. Neurorehabil Neural Repair 2024; 38:214-228. [PMID: 38385458 DOI: 10.1177/15459683241233261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Anodal transcranial direct current stimulation (AtDCS), a neuromodulatory technique, has been applied to treat traumatic brain injury (TBI) in patients and was reported to promote functional improvement. We evaluated the effect of contralesional AtDCS on axonal sprouting of the intact corticospinal tract (CST) and the underlying mechanism in a TBI mouse model to provide more preclinical evidence for the use of AtDCS to treat TBI. METHODS TBI was induced in mice by a contusion device. Then, the mice were subjected to contralesional AtDCS 5 days per week followed by a 2-day interval for 7 weeks. After AtDCS, motor function was evaluated by the irregular ladder walking, narrow beam walking, and open field tests. CST sprouting was assessed by anterograde and retrograde labeling of corticospinal neurons (CSNs), and the effect of AtDCS was further validated by pharmacogenetic inhibition of axonal sprouting using clozapine-N-oxide (CNO). RESULTS TBI resulted in damage to the ipsilesional cortex, while the contralesional CST remained intact. AtDCS improved the skilled motor functions of the impaired hindlimb in TBI mice by promoting CST axon sprouting, specifically from the intact hemicord to the denervated hemicord. Furthermore, electrical stimulation of CSNs significantly increased the excitability of neurons and thus activated the mechanistic target of rapamycin (mTOR) pathway. CONCLUSIONS Contralesional AtDCS improved skilled motor following TBI, partly by promoting axonal sprouting through increased neuronal activity and thus activation of the mTOR pathway.
Collapse
Affiliation(s)
- Beike Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Tan
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Blood Transfusion, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Hongyan Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihua Chu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuelong Tian
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Yang Yang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Weina Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
Qi G, Li S, Jiang Q, Yu Z, Peng Z, Li Q, Qi W, Guo M. Network pharmacology analysis and experimental validation to explore the effect and mechanism of tetramethylpyrazine for spinal cord injury. J Chem Neuroanat 2024; 136:102386. [PMID: 38176475 DOI: 10.1016/j.jchemneu.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To investigate the effect and mechanism of Tetramethylpyrazine (TMP) in treating Spinal Cord Injury (SCI) using network pharmacology analysis and animal experiments. METHODS This study was based on public databases, including PharmMapper, BATMAN-TCM, and STRING, as well as KEGG pathway analysis and other methods of network pharmacology were used to preliminarily explore the molecular mechanism of TMP in the treatment of SCI. Using a mouse SCI compression injury model, the efficacy of TMP was evaluated, and the expression of predictive targets on the PI3K/AKT and MAPK signaling pathways was measured using Western blotting and q-PCR. RESULTS Network pharmacology analysis showed that TMP may exert therapeutic effects through the MAPK and PI3K/AKT signaling pathways. In animal experimental validation studies, it was shown that after treatment with TMP, the hind limb motor function scores and ramp test scores of the TMP-treated mice improved significantly. HE staining showed that after treatment with TMP, cavities decreased, fewer glial cells proliferated, and fewer inflammatory cells infiltrated; Nielsen staining showed less neuronal loss. Western blot studies showed that compared with the model group, expression of RAS, ERK1/2, RAF1, PI3K, and p-AKT proteins in the spinal cord tissue of mice treated with high-dose TMP was significantly lower. Accordingly, q-PCR studies showed that compared with the model group, the expression levels of RAS, ERK1/2, RAF1, PI3K, and p-AKT genes in the spinal cords of mice in the high-dose TMP group were significantly lower. CONCLUSION TMP exhibits a good neuroprotective effect after SCI, which may be related to inhibition of the MAPK and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Guodong Qi
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China
| | - Shujun Li
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Qiong Jiang
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Zhijuan Yu
- Chongqing Erlang Community Health Service Center, Clinical Laboratory, Chongqing, China
| | - Zhenggang Peng
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China
| | - Qiurui Li
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Wei Qi
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China.
| | - Mingjun Guo
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China.
| |
Collapse
|
14
|
Zhang J, Zhang X, Jiang Q, Qu D, Hu Y, Qi C, Fu H. [Experimental study of M2 microglia transplantation promoting spinal cord injury repair in mice]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:198-205. [PMID: 38385233 PMCID: PMC10882233 DOI: 10.7507/1002-1892.202311093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To investigate the effect of M2 microglia (M2-MG) transplantation on spinal cord injury (SCI) repair in mice. Methods Primary MG were obtained from the cerebral cortex of 15 C57BL/6 mice born 2-3 days old by pancreatic enzyme digestion and identified by immunofluorescence staining of Iba1. Then the primary MG were co-cultured with interleukin 4 for 48 hours (experimental group) to induce into M2 phenotype and identified by immunofluorescence staining of Arginase 1 (Arg-1) and Iba1. The normal MG were harvested as control (control group). The dorsal root ganglion (DRG) of 5 C57BL/6 mice born 1 week old were co-cultured with M2-MG for 5 days to observe the axon length, the DRG alone was used as control. Forty-two 6-week-old female C57BL/6 mice were randomly divided into sham group ( n=6), SCI group ( n=18), and SCI+M2-MG group ( n=18). In sham group, only the laminae of T 10 level were removed; SCI group and SCI+M2-MG group underwent SCI modeling, and SCI+M2-MG group was simultaneously injected with M2-MG. The survival of mice in each group was observed after operation. At immediate (0), 3, 7, 14, 21, and 28 days after operation, the motor function of mice was evaluated by Basso Mouse Scale (BMS) score, and the gait was evaluated by footprint experiment at 28 days. The spinal cord tissue was taken after operation for immunofluorescence staining, in which glial fibrillary acidic protein (GFAP) staining at 7, 14, and 28 days was used to observe the injured area of the spinal cord, neuronal nuclei antigen staining at 28 days was used to observe the survival of neurons, and GFAP/C3 double staining at 7 and 14 days was used to observe the changes in the number of A1 astrocytes. Results The purity of MG in vitro reached 90%, and the most of the cells were polarized into M2 phenotype identified by Arg-1 immunofluorescence staining. M2-MG promoted the axon growth when co-cultured with DRGs in vitro ( P<0.05). All groups of mice survived until the experiment was completed. The hind limb motor function of SCI group and SCI+M2-MG group gradually recovered over time. Among them, the SCI+M2-MG group had significantly higher BMS scores than the SCI group at 21 and 28 days ( P<0.05), and the dragging gait significantly improved at 28 days, but it did not reach the level of the sham group. Immunofluorescence staining showed that compared with the SCI group, the SCI+M2-MG group had a smaller injury area at 7, 14, and 28 days, an increase in neuronal survival at 28 days, and a decrease in the number of A1 astrocytes at 7 and 14 days, with significant differences ( P<0.05). Conclusion M2-MG transplantation improves the motor function of the hind limbs of SCI mice by promoting neuron survival and axon regeneration. This neuroprotective effect is related to the inhibition of A1 astrocytes polarization.
Collapse
Affiliation(s)
- Jing Zhang
- Qingdao Medical College of Qingdao University, Qingdao Shandong, 266073, P. R. China
| | - Xiaoyue Zhang
- Qingdao Medical College of Qingdao University, Qingdao Shandong, 266073, P. R. China
| | - Qi Jiang
- Qingdao Medical College of Qingdao University, Qingdao Shandong, 266073, P. R. China
| | - Di Qu
- Qingdao Medical College of Qingdao University, Qingdao Shandong, 266073, P. R. China
| | - Yusheng Hu
- Qingdao Medical College of Qingdao University, Qingdao Shandong, 266073, P. R. China
| | - Chao Qi
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao Shandong, 266103, P. R. China
| | - Haitao Fu
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao Shandong, 266103, P. R. China
| |
Collapse
|
15
|
Wang G, Wang W, Zhang Y, Gou X, Zhang Q, Huang Y, Zhang K, Zhang H, Yang J, Li Y. Ethanol changes Nestin-promoter induced neural stem cells to disturb newborn dendritic spine remodeling in the hippocampus of mice. Neural Regen Res 2024; 19:416-424. [PMID: 37488906 PMCID: PMC10503613 DOI: 10.4103/1673-5374.379051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system, particularly aberrant hippocampal neurogenesis. In this study, we applied in vivo fluorescent tracing using NestinCreERT2::Rosa26-tdTomato mice and analyzed the endogenous neurogenesis lineage progression of neural stem cells (NSCs) and dendritic spine formation of newborn neurons in the subgranular zone of the dentate gyrus. We found abnormal orientation of tamoxifen-induced tdTomato+ (tdTom+) NSCs in adult mice 2 months after treatment with EtOH (5.0 g/kg, i.p.) for 7 consecutive days. EtOH markedly inhibited tdTom+ NSCs activation and hippocampal neurogenesis in mouse dentate gyrus from adolescence to adulthood. EtOH (100 mM) also significantly inhibited the proliferation to 39.2% and differentiation of primary NSCs in vitro. Adult mice exposed to EtOH also exhibited marked inhibitions in dendritic spine growth and newborn neuron maturation in the dentate gyrus, which was partially reversed by voluntary running or inhibition of the mammalian target of rapamycin-enhancer of zeste homolog 2 pathway. In vivo tracing revealed that EtOH induced abnormal orientation of tdTom+ NSCs and spatial misposition defects of newborn neurons, thus causing the disturbance of hippocampal neurogenesis and dendritic spine remodeling in mice.
Collapse
Affiliation(s)
- Guixiang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Wenjia Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Ye Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Xiaoying Gou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Qingqing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yanmiao Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yuting Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
16
|
Huang HY, Xiong MJ, Pu FQ, Liao JX, Zhu FQ, Zhang WJ. Application and challenges of olfactory ensheathing cells in clinical trials of spinal cord injury. Eur J Pharmacol 2024; 963:176238. [PMID: 38072039 DOI: 10.1016/j.ejphar.2023.176238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Spinal cord injury (SCI) can lead to severe motor, sensory and autonomic nervous dysfunction, cause serious psychosomatic injury to patients. There is no effective treatment for SCI at present. In recent years, exciting evidence has been obtained in the application of cell-based therapy in basic research. These studies have revealed the fact that cells transplanted into the host can exert the pharmacological properties of treating and repairing SCI. Olfactory ensheathing cells (OECs) are a kind of special glial cells. The application value of OECs in the study of SCI lies in their unique biological characteristics, that is, they can survive and renew for life, give full play to neuroprotection, immune regulation, promoting axonal regeneration and myelination formation. The function of producing secretory group and improving microenvironment. This provides an irreplaceable treatment strategy for the repair of SCI. At present, some researchers have explored the possibility of treatment of OECs in clinical trials of SCI. Although OECs transplantation shows excellent safety and effectiveness in animal models, there is still lack of sufficient evidence to prove the effectiveness of their clinical application in clinical trials. There has been an obvious stagnation in the transformation of OECs transplantation into routine clinical practice, and clinical trials of cell therapy in this field are still facing major challenges and many problems that need to be solved. Therefore, this paper summarized and analyzed the clinical trials of OECs transplantation in the treatment of SCI, and discussed the problems and challenges of OECs transplantation in clinical trials.
Collapse
Affiliation(s)
- Hao-Yu Huang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Mei-Juan Xiong
- Department of Pharmacy, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fan-Qing Pu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
17
|
Modi AD, Parekh A, Patel ZH. Methods for evaluating gait associated dynamic balance and coordination in rodents. Behav Brain Res 2024; 456:114695. [PMID: 37783346 DOI: 10.1016/j.bbr.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/04/2023]
Abstract
Balance is the dynamic and unconscious control of the body's centre of mass to maintain postural equilibrium. Regulated by the vestibular system, head movement and acceleration are processed by the brain to adjust joints. Several conditions result in a loss of balance, including Alzheimer's Disease, Parkinson's Disease, Menière's Disease and cervical spondylosis, all of which are caused by damage to certain parts of the vestibular pathways. Studies about the impairment of the vestibular system are challenging to carry out in human trials due to smaller study sizes limiting applications of the results and a lacking understanding of the human balance control mechanism. In contrast, more controlled research can be performed in animal studies which have fewer confounding factors than human models and allow specific conditions that affect balance to be replicated. Balance control can be studied using rodent balance-related behavioural tests after spinal or brain lesions, such as the Basso, Beattie and Bresnahan (BBB) Locomotor Scale, Foot Fault Scoring System, Ledged Beam Test, Beam Walking Test, and Ladder Beam Test, which are discussed in this review article along with their advantages and disadvantages. These tests can be performed in preclinical rodent models of femoral nerve injury, stroke, spinal cord injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Anavi Parekh
- Department of Neuroscience, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Zeenal H Patel
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Biochemistry, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
18
|
Maugeri G, D'Agata V, Musumeci G. Role of exercise in the brain: focus on oligodendrocytes and remyelination. Neural Regen Res 2023; 18:2645-2646. [PMID: 37449603 DOI: 10.4103/1673-5374.373683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences; Research Center on Motor Activities (CRAM), University of Catania, Catania, Italy; Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Xu Y, Fan P, Xu X, Liu L, Zhang L, Li X, Wang J, Tao Y, Li X, Xu D, Wang X, Zhou Y, Wang Y. Tert-butyl hydroperoxide induces ferroptosis of bone mesenchymal stem cells by repressing the prominin2/BACH1/ROS axis. Am J Physiol Cell Physiol 2023; 325:C1212-C1227. [PMID: 37721001 DOI: 10.1152/ajpcell.00224.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Ferroptosis has been proven critical for survival following bone marrow mesenchymal stem cells (BMSCs) explantation. Suppression of ferroptosis in BMSCs will be a valid tactic to elevate the therapeutic potential of engrafted BMSCs. Prominin2 is a pentaspanin protein involved in mediating iron efflux and thus modulates resistance to ferroptosis, but its role in tert-butyl hydroperoxide (TBHP)-induced BMSCs ferroptosis remains elusive. We examined the biological effect of prominin2 in vitro and in vivo by using cell proliferation assay, iron assay, reactive oxygen species (ROS) examination, malondialdehyde assay, glutathione (GSH) examination, Western blot, quantitative reverse transcription-PCR, immunofluorescence staining assay, gene expression inhibition and activation, co-immunoprecipitation (CO-IP) assay, radiographic analysis, and histopathological analysis. Our study demonstrated that prominin2 activity was impaired in TBHP-induced BMSCs ferroptosis. We found that PROM2 (encoding the protein prominin2) activation delayed the onset of ferroptosis and PROM2 knockdown deteriorated the course of ferroptosis. CO-IP, Western blot, and immunofluorescence demonstrated that prominin2 exerts antiferroptosis effects by inhibiting BTB and CNC homology 1 (BACH1) that promotes ROS generation, and thus exerts potent antioxidant effects in oxidative stress (OS)-induced BMSCs ferroptosis, including elevating BMSCs' survival rate and enhancing GSH contents. BMSCs with PROM2 overexpression also partially delayed the progression of intervertebral disk degeneration in vivo, as illustrated by less loss of disk height and lower histological scores. Our findings revealed a mechanism that the prominin2/BACH1/ROS axis participates in BMSCs ferroptosis and the strengthening of this axis is promising to maintain BMSCs' survival after explantation.NEW & NOTEWORTHY We found that prominin2 might be a potential biomarker and is expected to be utilized to augment engrafted bone marrow mesenchymal stem cells (BMSCs) survival rate. The prominin2/BTB and CNC homology 1 (BACH1)/reactive oxygen species (ROS) axis, which participates in the regulation of BMSCs ferroptosis induced by tert-butyl hydroperoxide (TBHP), is uncovered in our study. The therapeutic targeting of the prominin2/BACH1/ROS axis components is promising to elevate the survival of transplanted BMSCs in clinical practice.
Collapse
Affiliation(s)
- Yuzhu Xu
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Pan Fan
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xuanfei Xu
- Department of Nuclear Medicine, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Liu
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lele Zhang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xi Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Jiadong Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Yuao Tao
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xiaolong Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Dandan Xu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xiaohui Wang
- Department of Plastic and Reconstruction Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Yan Zhou
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Yuntao Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Li H, Yu S, Chen L, Liu H, Shen C. Immunomodulatory Role of Mesenchymal Stem Cells in Liver Transplantation: Status and Prospects. Dig Dis 2023; 42:41-52. [PMID: 37729883 DOI: 10.1159/000534003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/03/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Liver transplantation (LT) is the only effective therapy for end-stage liver diseases, but some patients usually present with serious infection and immune rejection. Those with immune rejection require long-term administration of immunosuppressants, leading to serious adverse effects. Mesenchymal stem cells (MSCs) have various advantages in immune regulation and are promising drugs most likely to replace immunosuppressants. SUMMARY This study summarized the application of MSCs monotherapy, its combination with immunosuppressants, MSCs genetic modification, and MSCs derivative therapy (cell-free therapy) in LT. This may deepen the understanding of immunomodulatory role of MSCs and promote the application of MSCs in immune rejection treatment after LT. KEY MESSAGES MSCs could attenuate ischemia-reperfusion injury and immune rejection. There is no consensus on the effects of types and concentrations of immunosuppressants on MSCs. Although genetically modified MSCs have contributed to better outcomes to some extent, the best modification is still unclear. Besides, multiple clinical complications developed frequently after LT. Unfortunately, there are still few studies on the polygenic modification of MSCs for the simultaneous treatment of these complications. Therefore, more studies should be performed to investigate the potency of multi-gene modified MSCs in treating complications after LT. Additionally, MSC derivatives mainly include exosomes, extracellular vesicles, and conditioned medium. Despite therapeutic effects, these three therapies still have some limitations such as heterogeneity between generations and that they cannot be quantified accurately.
Collapse
Affiliation(s)
- Haitao Li
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Saihua Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongzhi Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Conglong Shen
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
22
|
Liu C, Wu X, Vulugundam G, Gokulnath P, Li G, Xiao J. Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. SPORTS MEDICINE - OPEN 2023; 9:27. [PMID: 37149504 PMCID: PMC10164224 DOI: 10.1186/s40798-023-00573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinying Wu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | | | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
23
|
Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front Immunol 2023; 14:1141601. [PMID: 36911700 PMCID: PMC9999104 DOI: 10.3389/fimmu.2023.1141601] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) has considerable impact on patient physical, mental, and financial health. Secondary SCI is associated with inflammation, vascular destruction, and subsequent permanent damage to the nervous system. Mesenchymal stem cells (MSCs) have anti-inflammatory properties, promoting vascular regeneration and the release neuro-nutrients, and are a promising strategy for the treatment of SCI. Preclinical studies have shown that MSCs promote sensory and motor function recovery in rats. In clinical trials, MSCs have been reported to improve the American Spinal Injury Association (ASIA) sensory and motor scores. However, the effectiveness of MSCs in treating patients with SCI remains controversial. MSCs promote tumorigenesis and ensuring the survival of MSCs in the hostile environment of SCI is challenging. In this article we examine the evidence on the pathophysiological changes occurring after SCI. We then review the underlying mechanisms of MSCs in the treatment of SCI and summarize the potential application of MSCs in clinical practice. Finally, we highlight the challenges surrounding the use of MSCs in the treatment of SCI and discuss future applications.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| |
Collapse
|