1
|
Sun H, Li C, Pu Z, Lu Y, Wu Z, Zhou L, Lin H, Wang Y, Zi T, Mou L, Yang MM. Single-cell RNA sequencing and AlphaFold 3 insights into cytokine signaling and its role in uveal melanoma. Front Immunol 2025; 15:1458041. [PMID: 39916959 PMCID: PMC11798937 DOI: 10.3389/fimmu.2024.1458041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025] Open
Abstract
Background Uveal melanoma (UVM) is a form of eye cancer with a poor prognosis, particularly in metastatic patients. This study aimed to elucidate the cellular heterogeneity within UVM and identify prognostic biomarkers. Methods We performed single-cell RNA sequencing (scRNA-seq) on primary and metastatic UVM samples. A UVM-specific gene signature was constructed using LASSO regression and validated via ROC curve analysis in the TCGA-UVM and GSE84976 cohorts. AlphaFold 3 was used to predict the 3D structures of key proteins. T-cell populations were analyzed using pseudotime trajectory mapping and interaction network visualization. CRISPR-Cas9 screening analysis was conducted to identify hub genes and cytokine pathways that may serve as therapeutic targets. Additionally, we constructed the Dictionary of Immune Responses to Cytokines at single-cell resolution to evaluate cytokine signatures. Results ScRNA-seq revealed five major cell types within UVMs and subdivided them into seven distinct subtypes. Cytokine signaling analysis revealed differential expression of cytokine signaling in immune-related genes (CSIRGs) across these subtypes in primary and metastatic tumors. The UVM-specific gene signature demonstrated high predictive accuracy in ROC curve analysis and was associated with overall survival in Kaplan-Meier survival analyses. Additionally, AlphaFold 3 predicted the 3D structures of key proteins with high confidence. T-cell population analysis revealed complex developmental pathways and interaction networks in UVM. Myeloid-derived suppressor cells (MDSCs) were found to be increased in metastatic UVM, correlating with the enrichment of GM-CSF. CRISPR-Cas9 screening analysis identified hub genes and cytokine pathways with low gene effect scores across cell lines, indicating their potential importance in UVM. Conclusion This study identified critical cellular subtypes and prognostic biomarkers in UVM, shedding light on targeted therapies. The insights into cytokine signaling and T-cell dynamics within the UVM microenvironment provide a foundation for developing personalized therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Cunzi Li
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Ying Lu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zijing Wu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Lan Zhou
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China
| | - Hongzhan Lin
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yumo Wang
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Tao Zi
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lisha Mou
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Ming-ming Yang
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
2
|
Zhao L, Zhao BH, Ruze A, Li QL, Deng AX, Gao XM. Distinct roles of MIF in the pathogenesis of ischemic heart disease. Cytokine Growth Factor Rev 2024; 80:121-137. [PMID: 39438226 DOI: 10.1016/j.cytogfr.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The role of macrophage migration inhibitory factor (MIF) as a multifunctional cytokine in immunomodulation and inflammatory response is increasingly appreciated. Ischemic heart disease (IHD), the leading cause of global mortality, remains a focal point of research owing to its intricate pathophysiology. MIF has been identified as a critical player in IHD, where it exerts distinct roles. On one hand, MIF plays a protective role by enhancing energy metabolism through activation of AMPK, resisting oxidative stress, inhibiting activation of the JNK pathway, and maintaining intracellular calcium ion homeostasis. Additionally, MIF exerts protective effects through mesenchymal stem cells and exosomes. On the other hand, MIF can assume a pro-inflammatory role, which contributes to the exacerbation of IHD's development and progression. Furthermore, MIF levels significantly increase in IHD patients, and its genetic polymorphisms are positively correlated with prevalence and severity. These findings position MIF as a potential biomarker and therapeutic target in the management of IHD. This review summarizes the structure, source, signaling pathways and biological functions of MIF and focuses on its roles and clinical characteristics in IHD. The genetic variants of MIF associated with IHD is also discussed, providing more understandings of its complex interplay in the disease's pathology.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, China.
| |
Collapse
|
3
|
Siddiqui AR, Mushtaq M, Sardar M, Atta L, Nur-e-Alam M, Ahmad A, Ul-Haq Z. Mechanistic insight into the mode of inhibition of dietary flavonoids; targeting macrophage migration inhibitory factor. Front Mol Biosci 2024; 11:1414572. [PMID: 38915940 PMCID: PMC11194440 DOI: 10.3389/fmolb.2024.1414572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction: The Macrophage Migration Inhibitory Factor (MIF), a key pro-inflammatory mediator, is responsible for modulating immune responses. An array of inflammatory and autoimmune diseases has been linked to the dysregulated activity of MIF. The significance in physiological as well as pathophysiological phenomena underscores the potential of MIF as an attractive target with pharmacological relevance. Extensive research in past has uncovered a number of inhibitors, while the ISO-1, or (S, R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester being recognized as a benchmark standard so far. Recent work by Yang and coworkers identified five promising dietary flavonoids, with superior activity compared to the standard ISO-1. Nevertheless, the exact atomic-level inhibitory mechanism is still elusive. Methods: To improve the dynamic research, and rigorously characterize, and compare molecular signatures of MIF complexes with ISO-1 and flavonoids, principal component analysis (PCA) was linked with molecular dynamics (MD) simulations and binding free energy calculations. Results: The results suggest that by blocking the tautomerase site these small molecule inhibitors could modify the MIF activity by disrupting the intrinsic dynamics in particular functional areas. The stability matrices revealed the average deviation values ranging from 0.27-0.32 nm while the residue level fluctuations indicated that binding of the selected flavonoids confer enhanced stability relative to the ISO-1. Furthermore, the gyration values extracted from the simulated trajectories were found in the range of 1.80-1.83 nm. Discussion: Although all the tested flavonoids demonstrated remarkable results, the one obtained for the potent inhibitors, particularly Morin and Amentoflavone exhibited a good correlation with biological activity. The PCA results featured relatively less variance and constricted conformational landscape than others. The stable ensembles and reduced variation in turns might be the possible reasons for their outstanding performance documented previously. The results from the present exploration provide a comprehensive understanding of the molecular complexes formed by flavonoids and MIF, shedding light on their potential roles and impacts. Future studies on MIF inhibitors may benefit from the knowledge gathered from this investigation.
Collapse
Affiliation(s)
- Ali Raza Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Madiha Sardar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Lubna Atta
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mohammad Nur-e-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aftab Ahmad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Wang Z, Chen D, Peng L, Wang X, Ding Q, Li L, Xu T. Exposure to volatile organic compounds is a risk factor for diabetes retinopathy: a cross-sectional study. Front Public Health 2024; 12:1347671. [PMID: 38351959 PMCID: PMC10861660 DOI: 10.3389/fpubh.2024.1347671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction A few past experimental studies have indicated that exposure to volatile organic compounds (VOCs) might be a potential risk factor for diabetes retinopathy (DR). However, these findings lack substantial support from extensive epidemiological research. This large-scale cross-sectional study aimed to examine whether exposure to low levels of VOCs in the general population is associated with diabetes mellitus (DM) and DR. Methods The analytical data was from the National Health and Nutrition Examination Survey (NHANES) dataset (2011-2018). To minimize the potential impact of gender and age on the findings, propensity score matching was utilized to align the data selection. Relationships between blood VOCs and DM and DR were assessed in a sample of 2,932 adults using the logistic regression models. Additionally, Bayesian kernel machine regression (BKMR) models and Weighted Quantile Sum (WQS) were conducted for mixture exposure analysis. Results The result shows VOCs were positive associated with DM and DR in US adults, as assessed by WQS model, and the calculated odd ratios (ORs) [95% confidence interval (C.I)] were 53.91(34.11 ~ 85.22) and 7.38(3.65 ~ 14.92), respectively. Among the components of VOCs, 1,2-Dibromoethane, Carbon Tetrachloride and 2,5-Dimethylfuran were positive related with the DR, and ORs (95%C.I) were 2.91(2.29 ~ 3.70), 2.86(2.25 ~ 3.65) and 2.19(1.79 ~ 2.94), respectively. BKMR model shows that there was a dose-response relationship between combined VOCs and DR, although the relationship was non-linearly. Conclusion This study suggested that exposure to VOCs may increase the risk of DR, which had important public health implications.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Dongjun Chen
- Department of Cardiac Function Examine, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Lingling Peng
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Xian Wang
- Department of Ultrasonography, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Qun Ding
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Liang Li
- Department of Ultrasonography, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Tongdao Xu
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|