1
|
de Alcântara FF, Sant’Anna CDC, Alcântara DDFÁ, Cohen-Paes ADN, Soares PC, de Assumpção PP, Imbiriba MMBG, Burbano RMR. Homocystein, Vitamin B12 and Folic Acid as Screening Biomarkers in Early Diagnosis and Gastric Cancer Monitoring. Med Sci (Basel) 2024; 12:24. [PMID: 38804380 PMCID: PMC11130919 DOI: 10.3390/medsci12020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024] Open
Abstract
Gastric cancer has been demonstrating a reduction in the number of cases over the past decades, largely attributed to advancements in public health practices and increased accessibility to educational initiatives for the general population. Nevertheless, it persists as the third leading cause of mortality globally among both men and women. These fatalities are typically associated with delayed disease detection. The current study assessed the levels of homocysteine, vitamin B12, and folic acid as a means of establishing a screening biomarker profile that could be integrated into routine testing protocols to facilitate swift diagnosis of the illness. A total of 207 control subjects and 207 individuals with gastric cancer were scrutinized, with biochemical measurements conducted using chemiluminescence for homocysteine, folic acid, and vitamin B12. The two groups were matched based on age, tumor location, subtype, tumor classification, presence of Epstein-Barr Virus infection (EBV), and Helicobacter pylori (H. pylori). Significant statistical variances were identified in the mean levels of the triad of substances among cancer patients when compared to the control group for all corresponding variables. In conclusion, our study indicated that analyzing the triad of homocysteine, vitamin B12, and folic acid holds diagnostic value for gastric cancer and could potentially serve as an effective screening marker for this type of cancer in the future.
Collapse
Affiliation(s)
- Fernanda Farias de Alcântara
- Ophir Loyola Hospital, Belém 66063-240, Brazil; (F.F.d.A.); (C.d.C.S.); (D.D.F.Á.A.); (P.C.S.); (M.M.B.G.I.); (R.M.R.B.)
| | - Carla de Castro Sant’Anna
- Ophir Loyola Hospital, Belém 66063-240, Brazil; (F.F.d.A.); (C.d.C.S.); (D.D.F.Á.A.); (P.C.S.); (M.M.B.G.I.); (R.M.R.B.)
| | | | - Amanda de Nazaré Cohen-Paes
- Ophir Loyola Hospital, Belém 66063-240, Brazil; (F.F.d.A.); (C.d.C.S.); (D.D.F.Á.A.); (P.C.S.); (M.M.B.G.I.); (R.M.R.B.)
| | - Paulo Cardoso Soares
- Ophir Loyola Hospital, Belém 66063-240, Brazil; (F.F.d.A.); (C.d.C.S.); (D.D.F.Á.A.); (P.C.S.); (M.M.B.G.I.); (R.M.R.B.)
| | | | | | - Rommel Mario Rodriguez Burbano
- Ophir Loyola Hospital, Belém 66063-240, Brazil; (F.F.d.A.); (C.d.C.S.); (D.D.F.Á.A.); (P.C.S.); (M.M.B.G.I.); (R.M.R.B.)
- Oncology Research Center, Federal University of Pará, Belém 66073-000, Brazil;
| |
Collapse
|
2
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
3
|
Taher I, El-Masry E, Abouelkheir M, Taha AE. Anti‑inflammatory effect of metformin against an experimental model of LPS‑induced cytokine storm. Exp Ther Med 2023; 26:415. [PMID: 37559933 PMCID: PMC10407980 DOI: 10.3892/etm.2023.12114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Cytokine storm is one of the leading causes of death in patients with COVID-19. Metformin has been shown to inhibit the action of a wide range of proinflammatory cytokines such as IL-6, and TNF-α which may ultimately affect cytokine storm due to Covid-19. The present study analyzed the anti-inflammatory effect of oral and intraperitoneal (IP) metformin administration routes in a mouse model of lipopolysaccharide (LPS)-induced cytokine storm. A total of 60 female BALB/c mice were randomly assigned to one of six groups: i) Control; ii) LPS model; iii) oral saline + LPS; iv) oral metformin + LPS; v) IP saline + LPS; and vi) IP metformin + LPS. Metformin or saline were administered to the mice for 30 days, after which an IP injection of 0.5 mg/kg LPS induced a cytokine storm in the five treatment groups. Mice were sacrificed and serum cytokine levels were measured. Pretreatment of mice with either oral or IP metformin significantly reduced the increase in IL-1, IL-6 and TNF-α following LPS injection. Both metformin administration routes significantly reduced IL-1 and TNF-α levels, although IP metformin appeared to be significantly more effective at reducing IL-6 levels compared with oral metformin. Neither the oral or IP route of administration of metformin demonstrated a significant effect on IL-17 levels. Based on its ability to suppress the proinflammatory LPS-induced cytokine storm, metformin may have future potential benefits in ameliorating human diseases caused by elevated cytokine levels.
Collapse
Affiliation(s)
- Ibrahim Taher
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Eman El-Masry
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Menoufia University, Shebin El Koum 32511, Egypt
| | - Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Abstract
Long COVID refers to the lingering symptoms which persist or appear after the acute illness. The dominant long COVID symptoms in the two years since the pandemic began (2020-2021) have been depression, anxiety, fatigue, concentration and cognitive impairments with few reports of psychosis. Whether other symptoms will appear later on is not yet known. For example, dopamine-dependent movement disorders generally take many years before first symptoms are seen. Post-stroke depression and anxiety may explain many of the early long COVID cases. Hemorrhagic, hypoxic and inflammatory damages of the central nervous system, unresolved systematic inflammation, metabolic impairment, cerebral vascular accidents such as stroke, hypoxia from pulmonary damages and fibrotic changes are among the major causes of long COVID. Glucose metabolic and hypoxic brain issues likely predispose subjects with pre-existing diabetes, cardiovascular or lung problems to long COVID as well. Preliminary data suggest that psychotropic medications may not be a danger but could instead be beneficial in combating COVID-19 infection. The same is true for diabetes medications such as metformin. Thus, a focus on sigma-1 receptor ligands and glucose metabolism is expected to be useful for new drug development as well as the repurposing of current drugs. The reported protective effects of psychotropics and antihistamines against COVID-19, the earlier reports of reduced number of sigma-1 receptors in post-mortem schizophrenic brains, with many antidepressant and antipsychotic drugs being antihistamines with significant affinity for the sigma-1 receptor, support the role of sigma and histamine receptors in neuroinflammation and viral infections. Literature and data in all these areas are accumulating at a fast rate. We reviewed and discussed the relevant and important literature.
Collapse
|
5
|
Metformin reduces oxandrolone- induced depression-like behavior in rats via modulating the expression of IL-1β, IL-6, IL-10 and TNF-α. Behav Brain Res 2021; 414:113475. [PMID: 34280460 DOI: 10.1016/j.bbr.2021.113475] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/22/2023]
Abstract
Oxandrolone (OXA) is an androgen and anabolic steroid (AAS) that is used to reverse weight loss associated with some medical conditions. One of the side effects of OXA is its potential to induce depressive symptoms. Growing evidence suggested that neuroinflammation and cytokines play crucial roles in sickness behavioral and associated mood disturbances. Previous studies showed that metformin attenuated neuroinflammation. This study investigated the potential protective role of metformin against OXA-induced depression-like behavior and neuroinflammation. Twenty- four Wistar male rats were randomly grouped into four groups: the control group (Control) received only vehicle; the oxandrolone group (OXA) received oxandrolone (0.28 mg/kg, i.p); the metformin group (MET) received metformin (100 mg/kg, i.p); and the oxandrolone / metformin group (OXA + MET) received both oxandrolone (0.28 mg/kg, i.p) and metformin (100 mg/kg, i.p). These treatments were administered for fourteen consecutive days. Behavioral tests to measure depression-like behavior were conducted before and after treatments. qRT-PCR was used to measure the relative expression of proinflammatory and anti-inflammatory cytokines in the hippocampus and hypothalamus. The results showed that oxandrolone induced depression-like behavior and dysregulated pro-/anti-inflammatory cytokines, while metformin attenuated these effects. These findings suggest that metformin is a potential treatment to reverse the depressive effects induced by oxandrolone that involve neuroinflammatory effects.
Collapse
|
6
|
Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Appl Microbiol Biotechnol 2020; 104:3331-3337. [PMID: 32112134 DOI: 10.1007/s00253-020-10487-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that inflammatory diseases are becoming more frequent throughout the world. The causes of these disorders are multifactorial and include genetic, immunological, and environmental factors, and intestinal microbiota dysbiosis. The use of beneficial microorganisms has shown to be useful in the prevention and treatment of disorders such as colitis, mucositis, and even colon cancer by their immune-stimulating properties. It has also been shown that certain vitamins, especially riboflavin and folate derivatives, have proven to be helpful in the treatment of these diseases. The application of vitamin-producing lactic acid bacteria, especially strains that produce folate and riboflavin together with immune-stimulating strains, could be used as adjunct treatments in patients suffering from a wide range of inflammatory diseases since they could improve treatment efficiency and prevent undesirable side effects in addition to their nutrition values. In this review, the most up to date information on the current knowledge and uses of vitamin-producing lactic acid bacteria is discussed in order to stimulate further studies in this field.
Collapse
|
7
|
Pereira CA, Carneiro FS, Matsumoto T, Tostes RC. Bonus Effects of Antidiabetic Drugs: Possible Beneficial Effects on Endothelial Dysfunction, Vascular Inflammation and Atherosclerosis. Basic Clin Pharmacol Toxicol 2018; 123:523-538. [DOI: 10.1111/bcpt.13054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Camila A. Pereira
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| | - Fernando S. Carneiro
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| | - Takayuki Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Rita C. Tostes
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| |
Collapse
|
8
|
Majumder A, Behera J, Jeremic N, Tyagi SC. Hypermethylation: Causes and Consequences in Skeletal Muscle Myopathy. J Cell Biochem 2017; 118:2108-2117. [PMID: 27982479 DOI: 10.1002/jcb.25841] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
A detrimental consequence of hypermethylation is hyperhomocysteinemia (HHcy), that causes oxidative stress, inflammation, and matrix degradation, which leads to multi-pathology in different organs. Although, it is well known that hypermethylation leads to overall gene silencing and hypomethylation leads to overall gene activation, the role of such process in skeletal muscle dysfunction during HHcy condition is unclear. In this study, we emphasized the multiple mechanisms including epigenetic alteration by which HHcy causes skeletal muscle myopathy. This review also highlights possible role of methylation, histone modification, and RNA interference in skeletal muscle dysfunction during HHcy condition and potential therapeutic molecules, putative challenges, and methodologies to deal with HHcy mediated skeletal muscle dysfunction. We also highlighted that B vitamins (mainly B12 and B6), with folic acid supplementation, could be useful as an adjuvant therapy to reverse these consequences associated with this HHcy conditions in skeletal muscle. However, we would recommend to further study involving long-term trials could help to assess efficacy of the use of these therapeutic agents. J. Cell. Biochem. 118: 2108-2117, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, 40202.,Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Jyotirmaya Behera
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Nevena Jeremic
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Suresh C Tyagi
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, 40202.,Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| |
Collapse
|