1
|
Abd-Elmonsif NM, Gamal S. The implications of atorvastatin administration and the potential protective role of omega-3 on the submandibular salivary gland of albino rats (Histological, Histochemical, Ultrastructure, and Biochemical Study). JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102097. [PMID: 39357807 DOI: 10.1016/j.jormas.2024.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Hyperlipidemia is a risky condition that can lead to atherosclerosis and other cardiovascular problems. Statins are used to treat hyperlipidemia. The most recommended medicine to treat hyperlipidemia is atorvastatin. On the contrary, clinical trials validated statins' negative effects. Omega-3 fatty acids have antioxidant properties and have been shown to improve a variety of disease processes in the general population, including inflammatory and immunological pathways, various cardiovascular diseases, and lipid regulation. The present research aimed to determine how atorvastatin affected the submandibular salivary gland (SMG) and whether omega-3 may have a protective impact. METHODS Thirty adult male albino rats were divided into three equal groups and received drugs orally as a single daily dose for one week. Control group (I): received normal saline. Atorvastatin group (II): received a dose of 80 mg Kg-1 of Atorvastatin. Group III: received Omega-3 before Atorvastatin. All rats were sacrificed 2 h following the last dose, and blood samples were gathered for the biochemical study of fasting blood glucose level (FBGL). Specimens were obtained and processed for histological and histochemical studies. RESULTS Atorvastatin-treated rats showed degeneration of SMG acini. The acinar cells showed cytoplasmic vacuoles with dilated RER. Histochemical results revealed a marked decrease in total proteins. The biochemical study revealed an elevation in FBGL. The administration of Omega-3 with Atorvastatin minimizes these changes. CONCLUSION Atorvastatin has been proven to induce histological changes in SMG, and these changes can be attenuated by Omega-3. However, Omega-3 has no effect on FBGL.
Collapse
Affiliation(s)
- Nehad M Abd-Elmonsif
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
| | - Sherif Gamal
- Research Labs Supervisor, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
2
|
Salimi A, Khezri S, Vahabzadeh Z, Rajabi P, Samimi R, Adhami V. Hesperidin, vanillic acid, and sinapic acid attenuate atorvastatin-induced mitochondrial dysfunction via inhibition of mitochondrial swelling and maintenance of mitochondrial function in pancreas isolated mitochondria. Drug Dev Res 2024; 85:e22199. [PMID: 38812443 DOI: 10.1002/ddr.22199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
It has been reported that lipophilic statins such as atorvastatin can more readily penetrate into β-cells and reach the mitochondria, resulting in mitochondrial dysfunction, oxidative stress, decrease in insulin release. Many studies have shown that natural products can protect mitochondrial dysfunction induced by drug in different tissue. We aimed to explore mitochondrial protection potency of hesperidin, vanillic acid, and sinapic acid as natural compounds against mitochondrial dysfunction induced by atorvastatin in pancreas isolated mitochondria. Mitochondria were isolated form rat pancreas and directly treated with toxic concentration of atorvastatin (500 µM) in presence of various concentrations hesperidin, vanillic acid, and sinapic acid (1, 10, and 100 µM) separately. Mitochondrial toxicity parameters such as the reactive oxygen species (ROS) formation, succinate dehydrogenases (SDH) activity, mitochondrial swelling, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) collapse, and malondialdehyde (MDA) production were measured. Our findings demonstrated that atorvastatin directly induced mitochondrial toxicity at concentration of 500 μM and higher in pancreatic mitochondria. Except MDA, atorvastatin caused significantly reduction in SDH activity, mitochondrial swelling, ROS formation, depletion of GSH, and collapse of MMP. While, our data showed that all three protective compounds at low concentrations ameliorated atorvastatin-induced mitochondrial dysfunction with the increase of SDH activity, improvement of mitochondrial swelling, MMP collapse and mitochondrial GSH, and reduction of ROS formation. We can conclude that hesperidin, vanillic acid, and sinapic acid can directly reverse the toxic of atorvastatin in rat pancreas isolated mitochondria, which may be beneficial for protection against diabetogenic-induced mitochondrial dysfunction in pancreatic β-cells.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zoleikhah Vahabzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Paria Rajabi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rojin Samimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahed Adhami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Fan FX, Li PT, Xia ZG, Xie CQ, Xu JG, Xu Q. [Effects and molecular mechanism of exogenous L-carnitine on excessive endoplasmic reticulum stress-mediated hepatic pyroptosis in severely scald rats]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:667-676. [PMID: 35899334 DOI: 10.3760/cma.j.cn501225-20220120-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objective: To investigate the effects and molecular mechanism of exogenous L-carnitine on hepatic pyroptosis mediated by excessive endoplasmic reticulum stress in severely scald rats. Methods: The experimental research method was adopted. According to the random number table (the same group method below), fifteen female Sprague Dawley rats aged 6-8 weeks were divided into sham-injury group, scald alone group, and scald+carnitine group (with 5 rats in each group), and full-thickness scald of 30% total body surface area were made on the back of rats in scald alone group and scald+carnitine group, and rats in scald+carnitine group were additionally given intraperitoneal injection of L-carnitine. At post injury hour (PIH) 72, The levels of aspartate aminotransferase (AST) and alanine dehydrogenase (ALT) of biochemical indicators of liver injury were detected by automatic biochemical analyzer with the sample number of 5. At PIH 72, liver tissue damage was detected by hematoxylin-eosin staining. At PIH 72, The mRNA levels of nucleotide-binding oligomerization domain-containing protein-like receptor family pyrin domain containing 3 (NLRP3), cysteine aspartic acid specific protease 1 (caspase-1), gasderminD (GSDMD), and interleukin 1β(IL-1β) in liver tissue as pyroptosis-related markers and glucose regulatory protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP) in liver tissue as endoplasmic reticulum stress-related markers were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR). Protein expression levels of GRP78, CHOP, NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue were detected by Western blotting, and the sample numbers were all 5. HepG2 cells as human liver cancer cells were divided into dimethyl sulfoxide (DMSO) group, 0.1 μmol/L tunicamycin (TM) group, 0.2 μmol/L TM group, 0.4 μmol/L TM group, and 0.8 μmol/L TM group and were treated accordingly. After 24 h of culture, cell viability was detected by cell counting kit 8, and the intervention concentration of TM was screened, and the sample number was 5. HepG2 cells were divided into DMSO group, TM alone group, and TM+carnitine group, and treated accordingly. After 24 h of culture, the protein expression levels of GRP78, CHOP, NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in cells were detected by Western blotting, and the sample numbers were all 3. Data were statistically analyzed with one-way analysis of variance and least significant difference-t test. Results: At PIH 72, the AST and ALT levels of serum in scald alone group were (640±22) and (157±8) U/L, which were significantly higher than (106±13) and (42±6) U/L in sham-injury group, respectively, with t values of -46.78 and -25.98, respectively, P<0.01. The AST and ALT levels of serum in scald+carnitine group were (519±50) and (121±10) U/L, which were significantly lower than those in scald alone group, respectively, with t values of 4.93 and 6.06, respectively, P<0.01. At PIH 72, the morphology of liver tissue of rats in sham-injury group were basically normal with no obvious inflammatory cell infiltration; compared with those in sham-injury group, the liver tissue of rats in scald alone group showed a large number of inflammatory cell infiltration and disturbed cell arrangement; compared with that in scald alone group, the liver tissue of rats in scald+carnitine group showed a small amount of inflammatory cell infiltration. At PIH 72, the mRNA expression on levels of NLRP3, caspase-1, GSDMD, and IL-1β in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 34.42, 41.93, 30.17, and 15.68, respectively, P<0.01); the mRNA levels of NLRP3, caspase-1, GSDMD, and IL-1β in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 34.40, 37.20, 19.95, and 7.88, respectively, P<0.01). At PIH 72, the protein expression levels of NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 12.28, 26.92, 5.20, 10.02, and 24.78, respectively, P<0.01); compared with those in scald alone group, the protein expression levels of NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue of rats in scald+carnitine group were significantly decreased (with t values of 10.99, 27.96, 12.69, 8.96, and 12.27, respectively, P<0.01). At PIH 72, the mRNA levels of GRP78 and CHOP in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 21.00 and 16.52, respectively, P<0.01), and the mRNA levels of GRP78 and CHOP in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 8.92 and 8.21, respectively, P<0.01); the protein expression levels of GRP78 and CHOP in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 22.50 and 14.29, respectively, P<0.01), and the protein expression levels of GRP78 and CHOP in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 14.29 and 5.33 respectively, P<0.01). After 24 h of culture, the cell survival rates of 0.1 μmol/L TM group, 0.2 μmol/L TM group, 0.4 μmol/L TM group, and 0.8 μmol/L TM group were significantly decreased than that in DMSO group (with t values of 4.90, 9.35, 18.64, and 25.09, respectively, P<0.01). Then 0.8 μmol/L was selected as the intervention concentration of TM. After 24 h of culture, compared with that in DMSO group, the protein expression levels of GRP78 and CHOP in cells in TM alone group were significantly increased (with t values of 10.48 and 17.67, respectively, P<0.01), and the protein expression levels of GRP78 and CHOP in TM+carnitine group were significantly lower than those in TM alone group (with t values of 8.08 and 13.23, respectively, P<0.05 or P<0.01). After 24 h of culture, compared with those in DMSO group, the protein expression levels of NLRP3 and GSDMD-N in cells in TM alone group were significantly increased (with t values of 13.44 and 27.51, respectively, P<0.01), but the protein expression levels of caspase-1, caspase-1/p20, and cleaved IL-1β in cells were not significantly changed (P>0.05); compared with that in TM alone group, the protein expression levels of NLRP3 and GSDMD-N in cells in TM+carnitine group were significantly decreased (with t values of 20.49 and 21.95, respectively, P<0.01), but the protein expression levels of caspase-1, caspase-1/p20, and cleaved IL-1β in cells were not significantly changed (P>0.05). Conclusions: In severely scald rats, exogenous L-carnitine may play a protective role against liver injury by inhibiting the pathways related to excessive endoplasmic reticulum stress-mediated pyroptosis.
Collapse
Affiliation(s)
- F X Fan
- Department of Burn Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - P T Li
- Department of Plastic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Z G Xia
- Department of Burns and Plastic Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - C Q Xie
- Department of Burn Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - J G Xu
- Department of Immunology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Qinglian Xu
- Department of Burn Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
4
|
Ito S, Nakashima M, Ishikiriyama T, Nakashima H, Yamagata A, Imakiire T, Kinoshita M, Seki S, Kumagai H, Oshima N. Effects of L-Carnitine Treatment on Kidney Mitochondria and Macrophages in Mice with Diabetic Nephropathy. Kidney Blood Press Res 2022; 47:277-290. [PMID: 35104825 DOI: 10.1159/000522013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION In diabetic nephropathy (DN), mitochondrial dysfunction and leakage of mitochondrial DNA (mtDNA) are caused by the downregulation of superoxide dismutase 2 (SOD2). mtDNA induces the activation of Toll-like receptor (TLR) 9, which is present in macrophages (Mφs), and triggers their activation. METHODS We orally administered L-carnitine, which exerts protective effects on the mitochondria, to obesity-induced DN (db/db) mice for 8 weeks. We then investigated the effects of L-carnitine on kidney mitochondrial reactive oxygen species (mtROS) production, circulating mtDNA content, and kidney CD11bhigh/CD11blow Mφ functions. RESULTS In db/db mice, mtROS production increased in proximal tubular cells and kidney CD11blow Mφs; both Mφ types showed enhanced TLR9 expression. L-Carnitine treatment suppressed mtROS production in both proximal tubular cells and CD11blow Mφs (p < 0.01), with improved SOD2 expression in the kidney (p < 0.01), decreased circulating mtDNA content, and reduced albuminuria. Moreover, it suppressed Mφ infiltration into kidneys and reduced TLR9 expression in Mφs (p < 0.01), thereby lowering tumor necrosis factor-α production in CD11bhigh Mφs (p < 0.05) and ROS production by CD11blow Mφs (p < 0.01). Collectively, these changes alleviated DN symptoms. CONCLUSION The positive effects of L-carnitine on DN suggest its potential as a novel therapeutic agent against obesity-linked DN.
Collapse
Affiliation(s)
- Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Takuya Ishikiriyama
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Akira Yamagata
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
5
|
Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, von Haehling S, Jamialahmadi T, Sahebkar A. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle 2021; 12:237-251. [PMID: 33511728 PMCID: PMC8061391 DOI: 10.1002/jcsm.12654] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Statins are a family of drugs that are used for treating hyperlipidaemia with a recognized capacity to prevent cardiovascular disease events. They inhibit β-hydroxy β-methylglutaryl-coenzyme A reductase, i.e. the rate-limiting enzyme in mevalonate pathway, reduce endogenous cholesterol synthesis, and increase low-density lipoprotein clearance by promoting low-density lipoprotein receptor expression mainly in the hepatocytes. Statins have pleiotropic effects including stabilization of atherosclerotic plaques, immunomodulation, anti-inflammatory properties, improvement of endothelial function, antioxidant, and anti-thrombotic action. Despite all beneficial effects, statins may elicit adverse reactions such as myopathy. Studies have shown that mitochondria play an important role in statin-induced myopathies. In this review, we aim to report the mechanisms of action of statins on mitochondrial function. Results have shown that statins have several effects on mitochondria including reduction of coenzyme Q10 level, inhibition of respiratory chain complexes, induction of mitochondrial apoptosis, dysregulation of Ca2+ metabolism, and carnitine palmitoyltransferase-2 expression. The use of statins has been associated with the onset of additional pathological conditions like diabetes and dementia as a result of interference with mitochondrial pathways by various mechanisms, such as reduction in mitochondrial oxidative phosphorylation, increase in oxidative stress, decrease in uncoupling protein 3 concentration, and interference in amyloid-β metabolism. Overall, data reported in this review suggest that statins may have major effects on mitochondrial function, and some of their adverse effects might be mediated through mitochondrial pathways.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical SciencesBojnurdIran
| | - Erfan Tavana
- Student Research Committee, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Giovanni Fanni
- Department of Medical SciencesUniversity of TurinTurinItaly
| | - Simona Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di TorinoUniversity of TurinTurinItaly
| | - Maciej Banach
- Department of HypertensionWAM University Hospital in LodzMedical University of Lodz, LodzPoland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), LodzPoland
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of MedicineUniversity of PerugiaPerugiaItaly
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Tannaz Jamialahmadi
- Department of Food Science and TechnologyIslamic Azad UniversityQuchanQuchanIran
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
- Halal Research Center of IRIFDATehranIran
| |
Collapse
|
6
|
Salimi A, Alyan N, Akbari N, Jamali Z, Pourahmad J. Selenium and L-carnitine protects from valproic acid-Induced oxidative stress and mitochondrial damages in rat cortical neurons. Drug Chem Toxicol 2020; 45:1150-1157. [PMID: 32885679 DOI: 10.1080/01480545.2020.1810259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been associated with valproic acid (VPA) induced neurotoxicity. Mitochondria are vulnerable to oxidative damage and are also a major source of superoxide free radicals. Therefore, the need for mitochondrial protective and antioxidant agents for reducing valporic acid toxicity in central nerve system (CNS) is essential. In the present study, we investigated the potential beneficial effects of sodium selenite (SS) and L-carnitine (LC) against valproic acid -induced oxidative stress and mitochondrial dysfunction in isolated rat cortical neurons. Valproic acid (50, 100 and 200 µM) treatment caused a significant decrease in cellular viability, which was accompanied by increases in reactive oxygen species (ROS) generation, GSSG and GSH content, lipid peroxidation and lysosomal and mitochondrial damages. Sodium selenite (1 µM) and L-carnitine (1 mM) pretreatment attenuated valproic acid-induced decrease in cell viability. In addition, sodium selenite (1 µM) and L-carnitine (1 mM) pretreatment significantly protected against valproic acid-induced raise in oxidative stress, mitochondrial and lysosomal dysfunction, lipid peroxidation levels and depletion of GSH content. Our results in the current study provided insights into the protective mechanism by L-carnitine and sodium selenite, which is liked, to neuronal ROS generation and mitochondrial and lysosomal damages.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasrin Alyan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Akbari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
L-Carnitine different doses affect serum and pancreas tissue Antioxidative defense and histopathology in STZ-induced diabetic rats. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00432-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Carnitine effects on serum and pancreas inflammatory response in diabetic rats. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
9
|
Zhu K, Qian L, Lin Y, An L, Mu G, Ma G, Ren L. Pioglitazone Ameliorates Atorvastatin-Induced Islet Cell Dysfunction through Activation of FFA1 in INS-1 Cells. J Diabetes Res 2019; 2019:5245063. [PMID: 30863781 PMCID: PMC6378042 DOI: 10.1155/2019/5245063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/14/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence shows that statins increase the risk of new-onset diabetes mellitus, but the exact mechanism is not clearly known. Free fatty acid receptor 1 (FFA1) has been recognized to mediate insulin secretion, and pioglitazone has direct effects on glucose-stimulated insulin secretion in addition to the reversion of insulin resistance. In this study, we found that atorvastatin decreased potassium-stimulated insulin secretion and inhibited the expression of FFA1, PDX-1, and BETA2/NeuroD in INS-1 cells. Further study demonstrated that pioglitazone prevented the impairment of insulin secretion induced by atorvastatin and enhanced the expression of FFA1, PDX-1, and BETA2/NeuroD reduced by atorvastatin in INS-1 cells. In addition, the preventive effect of pioglitazone on atorvastatin-induced impairment of insulin secretion and the enhancement of the expression of PDX-1 and BETA2/NeuroD was abolished by knockdown of FFA1 using siRNA or the PLC inhibitor, U-73122, respectively. Ultimately, FFA1 may mediate the atorvastatin-induced pancreatic β-cell dysfunction and pioglitazone may ameliorate this deleterious effect through the upregulation of FFA1 expression.
Collapse
Affiliation(s)
- Kongbo Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Linglin Qian
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yanshan Lin
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Li An
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Guangjian Mu
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Liqun Ren
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| |
Collapse
|
10
|
Kuhlman AB, Morville T, Dohlmann TL, Hansen M, Kelly B, Helge JW, Dela F. Coenzyme Q10 does not improve peripheral insulin sensitivity in statin-treated men and women: the LIFESTAT study. Appl Physiol Nutr Metab 2018; 44:485-492. [PMID: 30273493 DOI: 10.1139/apnm-2018-0488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Simvastatin is a cholesterol-lowering drug that is prescribed to lower the risk of cardiovascular disease following high levels of blood cholesterol. There is a possible risk of new-onset diabetes mellitus with statin treatment but the mechanisms behind are unknown. Coenzyme Q10 (CoQ10) supplementation has been found to improve glucose homeostasis in various patient populations and may increase muscle glucose transporter type 4 content. Our aim was to investigate if 8 weeks of CoQ10 supplementation can improve glucose homeostasis in simvastatin-treated subjects. Thirty-five men and women in treatment with a minimum of 40 mg of simvastatin daily were randomized to receive either 2 × 200 mg/day of CoQ10 supplementation or placebo for 8 weeks. Glucose homeostasis was investigated with fasting blood samples, oral glucose tolerance test (OGTT) and intravenous glucose tolerance test. Insulin sensitivity was assessed with the hyperinsulinemic-euglycemic clamp. Different indices were calculated from fasting samples and OGTT as secondary measures of insulin sensitivity. A muscle biopsy was obtained from the vastus lateralis muscle for muscle protein analyzes. There were no changes in body composition, fasting plasma insulin, fasting plasma glucose, or 3-h glucose with intervention, but glycated hemoglobin decreased with time. Glucose homeostasis measured as the area under the curve for glucose, insulin, and C-peptide during OGTT was unchanged after intervention. Insulin secretory capacity was also unaltered after CoQ10 supplementation. Insulin sensitivity was unchanged but hepatic insulin sensitivity increased. No changes in muscle GLUT4 content was observed after intervention. CoQ10 supplementation does not change muscle GLUT4 content, insulin sensitivity, or secretory capacity, but hepatic insulin sensitivity may improve.
Collapse
Affiliation(s)
- Anja Birk Kuhlman
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Morville
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tine Lovsø Dohlmann
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Hansen
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bo Kelly
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørn Wulff Helge
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,b Department of Geriatrics, Bispebjerg University Hospital, 2400 Copenhagen, Denmark
| |
Collapse
|
11
|
Marques AC, Busanello ENB, de Oliveira DN, Catharino RR, Oliveira HCF, Vercesi AE. Coenzyme Q10 or Creatine Counteract Pravastatin-Induced Liver Redox Changes in Hypercholesterolemic Mice. Front Pharmacol 2018; 9:685. [PMID: 29997512 PMCID: PMC6030358 DOI: 10.3389/fphar.2018.00685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023] Open
Abstract
Statins are the preferred therapy to treat hypercholesterolemia. Their main action consists of inhibiting the cholesterol biosynthesis pathway. Previous studies report mitochondrial oxidative stress and membrane permeability transition (MPT) of several experimental models submitted to diverse statins treatments. The aim of the present study was to investigate whether chronic treatment with the hydrophilic pravastatin induces hepatotoxicity in LDL receptor knockout mice (LDLr-/-), a model for human familial hypercholesterolemia. We evaluated respiration and reactive oxygen production rates, cyclosporine-A sensitive mitochondrial calcium release, antioxidant enzyme activities in liver mitochondria or homogenates obtained from LDLr-/- mice treated with pravastatin for 3 months. We observed that pravastatin induced higher H2O2 production rate (40%), decreased activity of aconitase (28%), a superoxide-sensitive Krebs cycle enzyme, and increased susceptibility to Ca2+-induced MPT (32%) in liver mitochondria. Among several antioxidant enzymes, only glucose-6-phosphate dehydrogenase (G6PD) activity was increased (44%) in the liver of treated mice. Reduced glutathione content and reduced to oxidized glutathione ratio were increased in livers of pravastatin treated mice (1.5- and 2-fold, respectively). The presence of oxidized lipid species were detected in pravastatin group but protein oxidation markers (carbonyl and SH- groups) were not altered. Diet supplementation with the antioxidants CoQ10 or creatine fully reversed all pravastatin effects (reduced H2O2 generation, susceptibility to MPT and normalized aconitase and G6PD activity). Taken together, these results suggest that 1- pravastatin induces liver mitochondrial redox imbalance that may explain the hepatic side effects reported in a small number of patients, and 2- the co-treatment with safe antioxidants neutralize these side effects.
Collapse
Affiliation(s)
- Ana C. Marques
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Estela N. B. Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Diogo N. de Oliveira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rodrigo R. Catharino
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Helena C. F. Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Anibal E. Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|