1
|
Abdel-Rahman DM, Messiha BAS, Ali FEM, Azouz AA. Regulation of renal nitric oxide and eNOS/iNOS expression by tadalafil participates in the mitigation of amphotericin B-induced renal injury: Down-regulation of NF-κB/iNOS/caspase-3 signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3141-3153. [PMID: 37891258 PMCID: PMC11074040 DOI: 10.1007/s00210-023-02787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Amphotericin B (AmB)-induced acute kidney injury (AKI) is a common health problem having an undesirable impact on its urgent therapeutic utility for fatal systemic fungal infections. Tadalafil (TAD), a phosphodiesterase-5 (PDE-5) inhibitor, has been observed to have a wide range of pharmacological actions, including nephroprotection. The study's objective was to examine the possible underlying protective mechanism of TAD against AmB-induced nephrotoxicity. Experimentally, animals were divided randomly into four groups: control, TAD (5 mg/kg/day; p.o.), AmB (18.5 mg/kg/day; i.p.), and TAD+AmB groups. Sera and tissue samples were processed for biochemical, molecular, and histological analyses. The biochemical investigations showed that TAD significantly ameliorated the increase of kidney function biomarkers (creatinine, urea, CysC, KIM-1) in serum, renal nitric oxide (NO), lipid peroxidation (MDA), and inflammatory cytokines (TNF-α, IL-6) in AmB-treated rats. Meanwhile, TAD significantly retarded AmB-induced decrease in serum magnesium, sodium, potassium, and renal glutathione content. Molecular analysis revealed that TAD reduced AmB-induced imbalance in the protein expression of eNOS/iNOS, which explains its regulatory effect on renal NO content. These results were also supported by the down-regulation of nuclear NF-κB p65 and cleaved caspase-3 protein expressions, as well as the improvement of histological features by TAD in AmB-treated rats. Therefore, it can be suggested that TAD could be a promising candidate for renoprotection against AmB-induced AKI. That could be partly attributed to its regulatory effect on renal eNOS/iNOS balance and NO, the inhibition of NF-κB p65 nuclear translocation, its downstream inflammatory cytokines and iNOS, and ultimately the inhibition of caspase-3-induced renal apoptosis.
Collapse
Affiliation(s)
- Doaa M Abdel-Rahman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
2
|
Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, Gogos C, Dimopoulos G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi (Basel) 2024; 10:278. [PMID: 38667949 PMCID: PMC11051097 DOI: 10.3390/jof10040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | | | - Despoina Papageorgiou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | | | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
3
|
Tashiro M, Obata Y, Takazono T, Ota Y, Wakamura T, Shiozawa Y, Tsuyuki A, Miyazaki T, Nishino T, Izumikawa K. Association between fluid infusions and the recovery from acute kidney injury in patients administered liposomal amphotericin B: a nationwide observational study. Ren Fail 2022; 44:282-292. [PMID: 35172680 PMCID: PMC8856109 DOI: 10.1080/0886022x.2022.2036618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Acute kidney injury (AKI) often develops during the administration of liposomal amphotericin B (L-AMB), a broad-spectrum antifungal drug. However, clinical recovery approaches for AKI patients administered L-AMB are not well established. This retrospective analysis used the data obtained from hospitals throughout Japan. AKI was defined as a ≥ 1.5-fold increase within 7 days or ≥0.3 mg/dL increase within 2 days in serum creatinine. AKI recovery was defined as a return to creatinine levels below or equal to those recorded before AKI onset. Ninety patients were assessed for recovery from AKI as per the three stages. The incidence of recovery from AKI regardless of its stage was higher, though not significant, in patients administered ≥10 mL/kg/day fluid for 7 consecutive days from AKI onset (63%) than in those who did not (35%, p = 0.053). However, if limited to AKI stage 1 patients, the former group had a significantly higher incidence of recovery (91%) than the latter group (50%, p = 0.017), even after adjusting for confounding factors (odds ratio: 10.135, 95% confidence interval: 1.148–89.513, p = 0.037). The daily fluid volume administered during the 7 consecutive days from AKI onset positively correlated with the recovery from AKI of all stages (p = 0.043). Daily consecutive fluid infusion from AKI onset may be associated with recovery from stage 1 AKI in patients administered L-AMB, with daily fluid volume positively correlating with the incidence of AKI recovery.
Collapse
Affiliation(s)
- Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Nagasaki University Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoko Obata
- Department of Nephrology, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yuki Ota
- Department of Nephrology, Nagasaki University Hospital, Nagasaki, Japan.,Department of Nephrology, Sasebo City General Hospital, Nagasaki, Japan
| | - Tomotaro Wakamura
- Medical Affairs Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | | | - Ai Tsuyuki
- Deloitte Tohmatsu Consulting LLC, Tokyo, Japan
| | - Taiga Miyazaki
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Nagasaki University Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|