1
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
2
|
Al‐kuraishy HM, Hussien NR, Al‐Niemi MS, Fahad EH, Al‐Buhadily AK, Al‐Gareeb AI, Al‐Hamash SM, Tsagkaris C, Papadakis M, Alexiou A, Batiha GE. SARS-CoV-2 induced HDL dysfunction may affect the host's response to and recovery from COVID-19. Immun Inflamm Dis 2023; 11:e861. [PMID: 37249296 PMCID: PMC10187021 DOI: 10.1002/iid3.861] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia, dysregulation of high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Furthermore, SARS-Co-2 infection is associated with noteworthy changes in lipid profile, which is suggested as a possible biomarker to support the diagnosis and management of Covid-19. METHODS This paper adopts the literature review method to obtain information about how Covid-19 affects high-risk group patients and may cause severe and critical effects due to the development of acute lung injury and acute respiratory distress syndrome. A narrative and comprehensive review is presented. RESULTS Reducing HDL in Covid-19 is connected to the disease severity and poor clinical outcomes, suggesting that high HDL serum levels could benefit Covid-19. SARS-CoV-2 binds HDL, and this complex is attached to the co-localized receptors, facilitating viral entry. Therefore, SARS-CoV-2 infection may induce the development of dysfunctional HDL through different mechanisms, including induction of inflammatory and oxidative stress with activation of inflammatory signaling pathways. In turn, the induction of dysfunctional HDL induces the activation of inflammatory signaling pathways and oxidative stress, increasing Covid-19 severity. CONCLUSIONS Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia in general and dysregulation of high-density lipoprotein and low-density lipoprotein. Therefore, the present study aimed to overview the causal relationship between dysfunctional high-density lipoprotein and Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | - Nawar R. Hussien
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | - Marwa S. Al‐Niemi
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | | | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | | | - Christos Tsagkaris
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP Med AustriaWienAustria
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
3
|
Hosseini A, Razavi BM, Hosseinzadeh H. Protective effects of pomegranate (Punica granatum) and its main components against natural and chemical toxic agents: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154581. [PMID: 36610118 DOI: 10.1016/j.phymed.2022.154581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Different chemical toxicants or natural toxins can damage human health through various routes such as air, water, fruits, foods, and vegetables. PURPOSE Herbal medicines may be safe and selective for the prevention of toxic agents due to their active ingredients and various pharmacological properties. According to the beneficial properties of pomegranate, this paper summarized the protective effects of this plant against toxic substances. STUDY DESIGN In this review, we focused on the findings of in vivo and in vitro studies of the protective effects of pomegranate (Punica granatum) and its active components including ellagic acid and punicalagin, against natural and chemical toxic agents. METHODS We collected articles from the following databases or search engines such as Web of Sciences, Google Scholar, Pubmed and Scopus without a time limit until the end of September 2022. RESULTS P. granatum and its constituents have shown protective effects against natural toxins such as aflatoxins, and endotoxins as well as chemical toxicants for instance arsenic, diazinon, and carbon tetrachloride. The protective effects of these compounds are related to different mechanisms such as the prevention of oxidative stress, and reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2(COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis, mitogen-activated protein kinase (MAPK) signaling pathways and improvement of liver or cardiac function via regulation of enzymes. CONCLUSION In this review, different in vitro and in vivo studies have shown that P. granatum and its active constituents have protective effects against natural and chemical toxic agents via different mechanisms. There are no clinical trials on the protective effects of P. granatum against toxic agents.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Al-Kuraishy HM, Issa HK, Al-Gareeb AI, El-Bouseary MM, Youssef A, Abdelaziz AS, Khalifa HA, Batiha GES. The role of ivabradine in doxorubicin-induced cardiotoxicity: exploring of underlying argument. Inflammopharmacology 2022; 30:2441-2446. [PMID: 36219320 PMCID: PMC9552141 DOI: 10.1007/s10787-022-01082-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
This study investigated the potential role of ivabradine (IVN) in the attenuation of doxorubicin (DXR)-induced cardiotoxicity in rats. A total of 28 Swiss-Albino male mice were used, divided into four equal groups: the negative control did not receive any agents (n = 7), the DXR group received a single dose of DXR 20 mg/kg (n = 7), the treated group A was pretreated with IVN 5 mg/kg plus DXR (n = 7), and the treated group B was pretreated with IVN 10 mg/kg plus DXR (n = 7). The duration of this study was 10 days. Inflammatory biomarkers, including tumor necrosis factor alpha (TNF-α), lactate dehydrogenase (LDH), malondialdehyde (MDA), and cardiac troponin (cTn-I) serum levels were measured. TNF-α, LDH, MDA, and cTn-I serum levels were higher in the DXR-treated mice compared with the control (P˂0.01). IVN produced a dose-dependent effect in the reduction of MDA and cTn-I compared to DXR-treated mice (P˂0.05). Our findings suggest that IVN is an effective agent in mitigating DXR-induced cardiotoxicity due to its anti-inflammatory and antioxidant effects. IVN illustrated a dose-dependent effect in the attenuation of DXR-induced cardiotoxicity through inhibition of lipid peroxidation and cardiomyocyte injury.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Hajer K Issa
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Amal Youssef
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
5
|
Al-Kuraishy HM, Al-Hussaniy HA, Al-Gareeb AI, Negm WA, El-Kadem AH, Batiha GES, N. Welson N, Mostafa-Hedeab G, Qasem AH, Conte-Junior CA. Combination of Panax ginseng C. A. Mey and Febuxostat Boasted Cardioprotective Effects Against Doxorubicin-Induced Acute Cardiotoxicity in Rats. Front Pharmacol 2022; 13:905828. [PMID: 35814241 PMCID: PMC9257079 DOI: 10.3389/fphar.2022.905828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer agent for treating solid and soft tissue malignancies. However, the clinical use of DOX is restricted by cumulative, dose-dependent cardiotoxicity. Therefore, the present study aimed to assess the cardioprotective effects of P. ginseng C. A. Mey, febuxostat, and their combination against DOX-induced cardiotoxicity. Thirty-five Sprague Dawley male rats were used in this study. The animals were randomly divided into five groups, with seven rats per group. The control group received normal saline, the induced group received DOX only, and the treated group received P. ginseng, febuxostat, and their combination before DOX treatment. Biomarkers of acute cardiac toxicity were assessed in each group. Results showed that treatment with the combination of febuxostat and P. ginseng before DOX led to a significant improvement in the biomarkers of acute DOX-induced cardiotoxicity. In conclusion, the combination of P. ginseng and febuxostat produced more significant cardioprotective effects against DOX-induced cardiotoxicity when compared to either P. ginseng or febuxostat when used alone. The potential mechanism of this combination was mainly mediated by the anti-inflammatory and antioxidant effects of P. ginseng and febuxostat.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | | | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya H. El-Kadem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Sakakah, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed H Qasem
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Hosseini A, Rajabian A, Forouzanfar F, Farzadnia M, Boroushaki MT. Pomegranate seed oil protects against tacrolimus-induced toxicity in the heart and kidney by modulation of oxidative stress in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:439-448. [PMID: 35782771 PMCID: PMC9121255 DOI: 10.22038/ajp.2022.19703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The clinical use of tacrolimus is limited due to its side effects. This research investigated the protective activities of pomegranate seed oil (PSO) against TAC toxicity. MATERIALS AND METHODS The groups are included normal (1 ml of corn oil), TAC (2 mg/kg), and co-treatment of PSO (0.4 and 0.8 ml/kg) and TAC. All administrations were carried out intraperitoneally for 14 days. After the last injection, blood was collected from the heart. RESULTS TAC increased creatinine and urea. Increased malondialdehyde, reduced thiol content and superoxide dismutase. The elevation of lactate dehydrogenase, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine kinase-MB and creatinine phosphokinase that confirmed cardiac toxicity. PSO reduced TAC toxicity. PSO decreased TAC-induced pathology injury. CONCLUSION PSO reduced TAC toxicity in renal and heart via scavenging free radicals.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Farzadnia
- Cancer Molecular Pathology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,Corresponding Author: Tel: +9838002261, Fax: +98-38828567,
| |
Collapse
|
8
|
Onohuean H, Al-kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Batiha GES. Covid-19 and development of heart failure: mystery and truth. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2013-2021. [PMID: 34480616 PMCID: PMC8417660 DOI: 10.1007/s00210-021-02147-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is a novel worldwide pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During Covid-19 pandemic, socioeconomic deprivation, social isolation, and reduced physical activities may induce heart failure (HF), destabilization, and cause more complications. HF appears as a potential hazard due to SARS-CoV-2 infection, chiefly in elderly patients with underlying comorbidities. In reality, the expression of cardiac ACE2 is implicated as a target point for SARS-CoV-2-induced acute cardiac injury. In SARS-CoV-2 infection, like other febrile illnesses, high blood viscosity, exaggerated pro-inflammatory response, multisystem inflammatory syndrome, and endothelial dysfunction-induced coagulation disorders may increase risk of HF development. Hypoxic respiratory failure, as in pulmonary edema, severe acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) may affect heart hemodynamic stability due to the development of pulmonary hypertension. Indeed, Covid-19-induced HF could be through the development of cytokine storm, characterized by high proliferation pro-inflammatory cytokines. In cytokine storm-mediated cardiac dysfunction, there is a positive correlation between levels of pro-inflammatory cytokine and myocarditis-induced acute cardiac injury biomarkers. Therefore, Covid-19-induced HF is more complex and related from a molecular background in releasing pro-inflammatory cytokines to the neuro-metabolic derangements that together affect cardiomyocyte functions and development of HF. Anti-heart failure medications, mainly digoxin and carvedilol, have potent anti-SARS-CoV-2 and anti-inflammatory properties that may mitigate Covid-19 severity and development of HF. In conclusion, SARS-CoV-2 infection may lead to the development of HF due to direct acute cardiac injury or through the development of cytokine storms, which depress cardiomyocyte function and cardiac contractility. Anti-heart failure drugs, mainly digoxin and carvedilol, may attenuate severity of HF by reducing the infectivity of SARS-CoV-2 and prevent the development of cytokine storms in severely affected Covid-19 patients.
Collapse
Affiliation(s)
- Hope Onohuean
- Department of Pharmacology and Toxicology, Biopharmaceutics Unit, School of Pharmacy, Kampala International University, Western-Campus, Kampala, Uganda
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511 Egypt
| |
Collapse
|
9
|
Asgary S, Karimi R, Joshi T, Kilpatrick KL, Moradi S, Samimi Z, Mohammadi E, Farzaei MH, Bishayee A. Effect of pomegranate juice on vascular adhesion factors: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153359. [PMID: 33188983 DOI: 10.1016/j.phymed.2020.153359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cardiovascular diseases, obesity, and insulin resistance demonstrate elements of functional impairment of the endothelium. Treatment of endothelial dysfunction with natural products, such as pomegranate, can open new ways in the treatment of cardiovascular diseases. PURPOSE The present meta-analysis provides information in highlighting the role of pomegranate in endothelial dysfunction. METHODS Various databases, such as PubMed, Scopus, Web of Science, Cochrane, and Google Scholar, were searched up to July 2020 using relevant keywords. We have selected the studies that investigated the effects of pomegranate on vascular adhesion factors, including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), E-selectin, and interleukin-6 (IL-6). MD with 95% CrI with 100,000 iterations by using Markov chain Monte Carlo code were used. RESULTS Pooled effect size of articles in human studies indicated that pomegranate juice was not significantly effective on ICAM-1 [MD: -0.42; CrI: (-1.01, 0.17)], VCAM-1 [MD: -0.20; CrI: (-1.95, 1.40)], and E-selectin [MD: -0.21; CrI: (-1.62, 1.21)] compared to the control group. But it can significantly reduce IL-6 [MD: -1.07; CrI: (-1.90, -0.19)]. CONCLUSION Generally, present study showed that pomegranate juice has no significant effect on vascular adhesion factors, ICAM-1, VCAM-1, and E-selectin, but can reduce IL-6 significantly. Future prospective randomized clinical trials with longer intervention duration are warranted to obtain a precise conclusion.
Collapse
Affiliation(s)
- Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Raheleh Karimi
- Cardiac Rehabilitation Research center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital - 263 002, Uttarakhand, India
| | | | - Sajjad Moradi
- Halal Research Center of Islamic republic of Iran, Food and Drug Administration, Tehran 1415845371, Iran; Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
| | - Elham Mohammadi
- R.R.College of Pharmacy, Bangaluru 090 560, Karnataka, India
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States.
| |
Collapse
|
10
|
Zhou H, Fu LX, Li L, Chen YY, Zhu HQ, Zhou JL, Lv MX, Gan RZ, Zhang XX, Liang G. The epigallocatechin gallate derivative Y6 reduces the cardiotoxicity and enhances the efficacy of daunorubicin against human hepatocellular carcinoma by inhibiting carbonyl reductase 1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113118. [PMID: 32621953 DOI: 10.1016/j.jep.2020.113118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/04/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea is the most ancient and popular beverage worldwide and its main constituent epigallocatechin-3-gallate (EGCG) has a potential role in the management of cancer through the modulation of cell signaling pathways. However, EGCG is frangible to oxidation and exhibits low lipid solubility and bioavailability, and we synthesized a derivative of EGCG in an attempt to overcome these limitations. AIM OF THE STUDY The anthracycline antibiotic daunorubicin (DNR) is a potent anticancer agent. However, its severe cardiotoxic limits its clinical efficacy. Human carbonyl reductase 1 (CBR1) is one of the most effective human reductases for producing hydroxyl metabolites and thus may be involved in increasing the cardiotoxicity and decreasing the antineoplastic effect of anthracycline antibiotics. Accordingly, in this study, we investigated the co-therapeutic effect of Y6, a novel and potent adjuvant obtained by optimization of the structure of EGCG. MATERIAL AND METHODS The cellular concentrations of DNR and its metabolite DNRol were measured by HPLC to determine the effects of EGCG and Y6 on the inhibition of DNRol formation. The cytotoxic effects of EGCG and Y6 were tested by MTT assay in order to identify non-toxic concentrations of them. To understand their antitumor and cardioprotective mechanisms, hypoxia-inducible factor-1α (HIF-1α) and CBR1 protein expression was measured via Western blotting and immunohistochemical staining while gene expression was analyzed using RT-PCR. Moreover, PI3K/AKT and MEK/ERK signaling pathways were analyzed via Western blotting. HepG2 xenograft model was used to detect the effects of EGCG and Y6 on the antitumor activity and cardiotoxicity of DNR in vivo. Finally, to obtain further insight into the interactions of Y6 and EGCG with HIF-1α and CBR1, we performed a molecular modeling. RESULTS Y6(10 μg/ml or 55 mg/kg) decreased the expression of HIF-1α and CBR1 at both the mRNA and protein levels during combined drug therapy in vitro as well as in vivo, thereby inhibiting formation of the metabolite DNRol from DNR, with the mechanisms being related to PI3K/AKT and MEK/ERK signaling inhibition. In a human carcinoma xenograft model established with subcutaneous HepG2 cells, Y6(55 mg/kg) enhanced the antitumor effect and reduced the cardiotoxicity of DNR more effectively than EGCG(40 mg/kg). CONCLUSIONS Y6 has the ability to inhibit CBR1 expression through the coordinate inhibition of PI3K/AKT and MEK/ERK signaling, then synergistically enhances the antitumor effect and reduces the cardiotoxicity of DNR.
Collapse
MESH Headings
- Alcohol Oxidoreductases/antagonists & inhibitors
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/metabolism
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/toxicity
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/toxicity
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cardiotoxicity
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Cell Proliferation/drug effects
- Daunorubicin/pharmacology
- Daunorubicin/toxicity
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Heart Rate/drug effects
- Hep G2 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Huan Zhou
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China; Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Li-Xiang Fu
- Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Li Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yan-Yan Chen
- Department of Pharmacy, The Second People's Hospital of Qinzhou, Qinzhou, China
| | - Hong-Qing Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jin-Ling Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Mei-Xian Lv
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ri-Zhi Gan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuan-Xuan Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Gang Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| |
Collapse
|
11
|
Al-Kuraishy HM, Sami OM, Hussain NR, Al-Gareeb AI. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced-oxidative stress: The intriguing effect. J Adv Pharm Technol Res 2020; 11:142-147. [PMID: 33102198 PMCID: PMC7574736 DOI: 10.4103/japtr.japtr_18_20] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/13/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the probable effects of metformin plus vildagliptin on the oxidative stress index (OSI) in patients with type II diabetes mellitus (T2DM). In this case–control study, 44 patients with T2DM on either metformin monotherapy (n = 24) or metformin plus vildagliptin (n = 20) were compared with healthy controls (n = 20). Anthropometric and biochemical variables including body mass index, blood pressure profile, cardiac indices, lipid profile, fasting blood glucose, fasting serum insulin, and glycemic indices were assessed. Besides, total oxidant status (TOS), total antioxidant status (TAS), and OSI were determined. Patients with T2DM have higher risk of cardiometabolic changes compared with the control (P = 0.0001). TAS was lower while TOS and OSI were higher in patients with T2DM, as compared with the healthy controls (P < 0.001). TAS, TOS, and OSI were better in patients with T2DM on metformin plus vildagliptin therapy as compared with metformin monotherapy (P < 0.05). Therefore, this study concluded that metformin plus vildagliptin therapy is more effective than metformin monotherapy in attenuation of OSI in patients with T2DM.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Oula Mohamed Sami
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Nawar R Hussain
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
12
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS. Irbesartan Attenuates Gentamicin-induced Nephrotoxicity in Rats through Modulation of Oxidative Stress and Endogenous Antioxidant Capacity. Int J Prev Med 2020; 11:16. [PMID: 32175056 PMCID: PMC7050237 DOI: 10.4103/ijpvm.ijpvm_567_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Overproduction of reactive oxygen species and free radicals is the main mechanism beyond gentamicin-induced nephrotoxicity. Irbesartan and other angiotensin II blockers offer significant nephroprotective effect through improvement of renal function and reduction of renal inflammation. Therefore, the objective of this study was to illustrate the nephroprotective effect of irbesartan in rats regarding the oxidative stress of irbesartan biomarkers. Methods: Thirty male Sprague–Dawley rats were used; they were divided into three groups: Group I (10 rats) treated with distilled water, Group II (10 rats) treated with gentamicin, and Group III (10 rats) treated with gentamicin plus irbesartan for 12 days. Blood urea, serum creatinine, serum malondialdehyde (MDA), superoxide dismutase (SOD), glutathione reductase (GSH), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule (KIM-1), and cystatin-c were measured in each group. Results: Irbesartan significantly reduced blood urea, serum creatinine, serum MDA, NGAL, KIM-1, and cystatin-c [P < 0.05]. Irbesartan significantly increases SOD [P < 0.05] without significant effect in elevation of GSH serum levels. Conclusions: This study concluded that irbesartan has a nephroprotective effect in attenuation of acute nephrotoxicity through modulation of oxidative stress and antioxidant capacity in rats.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Marwa S Al-Nami
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
13
|
Wilson HK, Buckeridge SA, Yau W, Howerth EW, Gato WE. Investigating the toxic effects of 2-aminoanthracene ingestion in pregnant Sprague Dawley dams. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:283-289. [PMID: 29293381 DOI: 10.1080/03601234.2017.1421837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) refer to organic compounds that are byproducts of incomplete combustion of fossil fuels and wood. One specific polycyclic aromatic hydrocarbon, 2-aminoanthracene (2AA), is a member of a broader group of compounds known as anthracenes, which have been classified by the United States Agency for Toxic Substances and Disease Registry (ASTDR) as one of a group of PAHs of top concern based on their greater potential risk for exposure and greater harmful effects to humans, compared to other PAHs. Previous research has shown that 2AA affects genes involved in carbohydrate and lipid metabolism, inflammatory stress responses, and immune system responses, among other processes. The objective of the present study was to examine the toxicity of dietary ingestion of 2AA from gestation through the postnatal period. Pregnant dams (Day 1) were purchased from Taconic Hudson, NY, and assigned into dose regimens of 0 mg/kg- (control-C), 50 mg/kg- (low dose-LD) and 100 mg/kg-diet (high dose-HD) 2AA. Dams were fed 2AA contaminated diet during the period of gestation and postpartum. Insulin and H&E immunohistochemical staining were undertaken and indicated no significant changes between control and treated groups. However, percent pancreatic islets (islets within the pancreas) were larger in the exposed groups. The value was 1.5% in the control dams compared to 3.2% and 4.3% low dose and high dose groups respectively. Serum concentrations of albumin and lactate dehydrogenase (LDH) were increased in the exposed groups, with the HD group experiencing the greater increase. Analyses of Fabp4, Mgmt , Fas, Nhej1, Aldh1a1 and Ncam1 were conducted via real-time quantitative polymerase chain reaction (RT-pPCR), using β-Actin as the control gene. There was an up-regulation of the Mgmt and Nhej1 gene transcripts in the exposed groups, with the extent of upregulation being highest in the HD group. Taken together, a link between environmental exposure to 2AA and pancreatic effects appears to exist.
Collapse
Affiliation(s)
- Hannah K Wilson
- a Department of Chemistry , Georgia Southern University , Statesboro , Georgia , USA
| | - Steven A Buckeridge
- a Department of Chemistry , Georgia Southern University , Statesboro , Georgia , USA
| | - Wilson Yau
- b Department of Pathology , College of Veterinary Medicine, The University of Georgia , Athens , Georgia , USA
| | - Elizabeth W Howerth
- b Department of Pathology , College of Veterinary Medicine, The University of Georgia , Athens , Georgia , USA
| | - Worlanyo E Gato
- a Department of Chemistry , Georgia Southern University , Statesboro , Georgia , USA
| |
Collapse
|
14
|
Wei Z, Dong X, Zhang H, Gao S, Shi W, Yang F, Dong X. Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabolomic analysis of Veratrum nigrum-induced cardiotoxicity. Biomed Chromatogr 2017; 31. [PMID: 28544073 DOI: 10.1002/bmc.4011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 11/07/2022]
Abstract
The acute cardiotoxicity induced by Veratrum nigrum (VN) is explored by analyzing heart tissue metabolic profiles in mouse models and applying reversed-phase liquid chromatography mass spectrometry and hydrophilic interaction liquid chromatography mass spectrometry that are based on ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. An animal model of acute heart injury was established in mice via intra-gastric administration of VN. Then, electrocardiogram and echocardiograph monitoring of cardiac function and pathological examination were performed on mice in both the control and VN groups, and it was verified that acute heart injury was caused. Meanwhile, comparing the results of the control and VN groups, we detected 36 differential endogenous metabolites of heart tissue, including taurine, riboflavin, purine and lipids, which are related to many possible pathways such as purine metabolism, taurine and hypotaurine metabolism and energy metabolism. Our study provides a scientific approach for evaluating and revealing the mechanisms of VN-induced cardiotoxicity via the metabolomic strategy.
Collapse
Affiliation(s)
- Ziheng Wei
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, People's Republic of China
| | - Xu Dong
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, People's Republic of China
| | - Hanzhe Zhang
- Brigade of Undergraduate Student, Second Military Medical University, Shanghai, People's Republic of China
| | - Songyan Gao
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Wei Shi
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|