1
|
Marino N, Bedeschi M, Vaccari ME, Cambiaghi M, Tesei A. Glitches in the brain: the dangerous relationship between radiotherapy and brain fog. Front Cell Neurosci 2024; 18:1328361. [PMID: 38515789 PMCID: PMC10956129 DOI: 10.3389/fncel.2024.1328361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Up to approximately 70% of cancer survivors report persistent deficits in memory, attention, speed of information processing, multi-tasking, and mental health functioning, a series of symptoms known as "brain fog." The severity and duration of such effects can vary depending on age, cancer type, and treatment regimens. In particular, every year, hundreds of thousands of patients worldwide undergo radiotherapy (RT) for primary brain tumors and brain metastases originating from extracranial tumors. Besides its potential benefits in the control of tumor progression, recent studies indicate that RT reprograms the brain tumor microenvironment inducing increased activation of microglia and astrocytes and a consequent general condition of neuroinflammation that in case it becomes chronic could lead to a cognitive decline. Furthermore, radiation can induce endothelium reticulum (ER) stress directly or indirectly by generating reactive oxygen species (ROS) activating compensatory survival signaling pathways in the RT-surviving fraction of healthy neuronal and glial cells. In particular, the anomalous accumulation of misfolding proteins in neuronal cells exposed to radiation as a consequence of excessive activation of unfolded protein response (UPR) could pave the way to neurodegenerative disorders. Moreover, exposure of cells to ionizing radiation was also shown to affect the normal proteasome activity, slowing the degradation rate of misfolded proteins, and further exacerbating ER-stress conditions. This compromises several neuronal functions, with neuronal accumulation of ubiquitinated proteins with a consequent switch from proteasome to immunoproteasome that increases neuroinflammation, a crucial risk factor for neurodegeneration. The etiology of brain fog remains elusive and can arise not only during treatment but can also persist for an extended period after the end of RT. In this review, we will focus on the molecular pathways triggered by radiation therapy affecting cognitive functions and potentially at the origin of so-called "brain fog" symptomatology, with the aim to define novel therapeutic strategies to preserve healthy brain tissue from cognitive decline.
Collapse
Affiliation(s)
- Noemi Marino
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Martina Bedeschi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Melania Elettra Vaccari
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marco Cambiaghi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Tesei
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
2
|
Mensah-Kane P, Sumien N. The potential of hyperbaric oxygen as a therapy for neurodegenerative diseases. GeroScience 2023; 45:747-756. [PMID: 36525211 PMCID: PMC9886764 DOI: 10.1007/s11357-022-00707-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
The World Health Organization estimates that by the year 2040, neurodegenerative diseases will be the second leading cause of death in developed countries, overtaking cancer-related deaths and exceeded only by cardiovascular disease-related death. The search for interventions has therefore become paramount to alleviate some of this burden. Based on pathways affected in neurodegenerative diseases, hyperbaric oxygen treatment (HBOT) could be a good candidate. This therapy has been used for the past 50 years for conditions such as decompression sickness and wound healing and has been shown to have promising effects in conditions associated with neurodegeneration and functional impairments. The goal of this review was to explore the history of hyperbaric oxygen therapy, its uses, and benefits, and to evaluate its effectiveness as an intervention in treating neurodegenerative diseases. Additionally, we examined common mechanisms underlying the effects of HBOT in different neurodegenerative diseases, with a special emphasis on epigenetics.
Collapse
Affiliation(s)
- Paapa Mensah-Kane
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
3
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Abstract
Hyperbaric oxygen therapy, intermittent breathing of 100% oxygen at a pressure upper than sea level, has been shown to be some of the neuroprotective effects and used therapeutically in a wide range of neurological disorders. This review summarizes current knowledge about the neuroprotective effects of hyperbaric oxygen therapy with their molecular mechanisms in different models of neurological disorders.
Collapse
Affiliation(s)
- Fahimeh Ahmadi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. J Neuroinflammation 2020; 17:326. [PMID: 33121516 PMCID: PMC7597018 DOI: 10.1186/s12974-020-01994-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Repetitive, mild traumatic brain injuries (RmTBIs) are increasingly common in adolescents and encompass one of the largest neurological health concerns in the world. Adolescence is a critical period for brain development where RmTBIs can substantially impact neurodevelopmental trajectories and life-long neurological health. Our current understanding of RmTBI pathophysiology suggests key roles for neuroinflammation in negatively regulating neural health and function. Microglia, the brain’s resident immune population, play important roles in brain development by regulating neuronal number, and synapse formation and elimination. In response to injury, microglia activate to inflammatory phenotypes that may detract from these normal homeostatic, physiological, and developmental roles. To date, however, little is known regarding the impact of RmTBIs on microglia function during adolescent brain development. This review details key concepts surrounding RmTBI pathophysiology, adolescent brain development, and microglia dynamics in the developing brain and in response to injury, in an effort to formulate a hypothesis on how the intersection of these processes may modify long-term trajectories.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Asher Khan
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada.,Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alexander W Lohman
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
7
|
The effectiveness of hyperbaric oxygen modalities against vascular component of traumatic brain injury. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
8
|
Clément T, Lee JB, Ichkova A, Rodriguez-Grande B, Fournier ML, Aussudre J, Ogier M, Haddad E, Canini F, Koehl M, Abrous DN, Obenaus A, Badaut J. Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses. Glia 2019; 68:528-542. [PMID: 31670865 DOI: 10.1002/glia.23736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Mild-traumatic brain injury (mTBI) represents ~80% of all emergency room visits and increases the probability of developing long-term cognitive disorders in children. To date, molecular and cellular mechanisms underlying post-mTBI cognitive dysfunction are unknown. Astrogliosis has been shown to significantly alter astrocytes' properties following brain injury, potentially leading to significant brain dysfunction. However, such alterations have never been investigated in the context of juvenile mTBI (jmTBI). A closed-head injury model was used to study jmTBI on postnatal-day 17 mice. Astrogliosis was evaluated using glial fibrillary acidic protein (GFAP), vimentin, and nestin immunolabeling in somatosensory cortex (SSC), dentate gyrus (DG), amygdala (AMY), and infralimbic area (ILA) of prefrontal cortex in both hemispheres from 1 to 30 days postinjury (dpi). In vivo T2-weighted-imaging (T2WI) and diffusion tensor imaging (DTI) were performed at 7 and 30 dpi to examine tissue level structural alterations. Increased GFAP-labeling was observed up to 30 dpi in the ipsilateral SSC, the initial site of the impact. However, vimentin and nestin expression was not perturbed by jmTBI. The morphology of GFAP positive cells was significantly altered in the SSC, DG, AMY, and ILA up to 7 dpi that some correlated with magnetic resonance imaging changes. T2WI and DTI values were significantly altered at 30 dpi within these brain regions most prominently in regions distant from the impact site. Our data show that jmTBI triggers changes in astrocytic phenotype with a distinct spatiotemporal pattern. We speculate that the presence and time course of astrogliosis may contribute to pathophysiological processes and long-term structural alterations following jmTBI.
Collapse
Affiliation(s)
| | - Jeong B Lee
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | | | | | | | | | - Michael Ogier
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Elizabeth Haddad
- Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Frederic Canini
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Muriel Koehl
- Neurocentre Magendie INSERM U1215, Bordeaux, France
| | | | - Andre Obenaus
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France.,Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
9
|
Bian H, Huang L, Li B, Hu Q, Liang X, Tang J, Zhang JH. The arousal effect of hyperbaric oxygen through orexin/hypocretin an upregulation on ketamine/ethanol-induced unconsciousness in male rats. J Neurosci Res 2019; 98:201-211. [PMID: 30895638 DOI: 10.1002/jnr.24414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/01/2019] [Accepted: 03/01/2019] [Indexed: 01/18/2023]
Abstract
Approaches that facilitate the recovery from coma would have enormous impacts on patient outcomes and medical economics. Orexin-producing neurons release orexins (also known as hypocretins) energy-dependently to maintain arousal. Hyperbaric oxygen (HBO) could increase ATP levels by preserving mitochondrial function. We investigated, for the first time, the arousal effects of HBO and orexins mechanisms in a rat model of unconsciousness induced by ketamine or ethanol. A total of 120 Sprague-Dawley male rats were used in this study. Unconsciousness was induced either by intraperitoneal injection of ketamine or ethanol. The HBO treatment (100% O2 at 3 ATA) was administered immediately after unconsciousness induction for 1 hr. SB334867, orexin-1 receptor (OX1R) inhibitor, or JNJ10397049, orexin-2 receptor (OX2R) inhibitor was administered 30 min intraperitoneally before unconsciousness induction. Loss of righting reflex test (LORR) and Garcia test were used to evaluate the unconsciousness duration and neurological deficits after recovering from unconsciousness, respectively. Enzyme-linked immunosorbent assay was used to measure brain tissue ATP and orexin A levels. Ketamine or ethanol injection resulted in LORR immediately and neurological deficits 6 hr after unconsciousness induction. HBO treatment significantly reduced the LORR duration, improved Garcia scores and unregulated ATP and orexin A levels in the brain tissue. Administration of OX1R inhibitor or OX2 R inhibitor abolished arousal and neurological benefits of HBO. In conclusion, HBO exerted arousal-promoting effects on unconscious rats induced by ketamine or ethanol. The underlying mechanism was via, at least in part, ATP/orexin A upregulation. HBO may be a practical clinical approach to accelerate unconsciousness recovery in patients.
Collapse
Affiliation(s)
- Hetao Bian
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurology, Jining First People's Hospital, Jining, China.,Mental Health Center of Wuhan University Renmin Hospital, Wuhan, China
| | - Lei Huang
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, California
| | - Bo Li
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Qin Hu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Xiping Liang
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
10
|
Tchirikov M, Saling E, Bapayeva G, Bucher M, Thews O, Seliger G. Hyperbaric oxygenation and glucose/amino acids substitution in human severe placental insufficiency. Physiol Rep 2019. [PMID: 29536649 PMCID: PMC5849598 DOI: 10.14814/phy2.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the first case, the AA and glucose were infused through a perinatal port system into the umbilical vein at 30 weeks' gestation due to severe IUGR. The patient received daily hyperbaric oxygenation (HBO, 100% O2) with 1.4 atmospheres absolute for 50 min for 7 days. At 31+4 weeks' gestation, the patient gave birth spontaneously to a newborn weighing 1378 g, pH 7.33, APGAR score 4/6/intubation. In follow‐up examinations at 5 years of age, the boy was doing well without any neurological disturbance or developmental delay. In the second case, the patient presented at 25/5 weeks' gestation suffering from severe IUGR received HBO and maternal AA infusions. The cardiotocography was monitored continuously during HBO treatment. The short‐time variations improved during HBO from 2.9 to 9 msec. The patient developed pathologic CTG and uterine contractions 1 day later and gave birth to a hypotrophic newborn weighing 420 g. After initial adequate stabilization, the extremely preterm newborn unfortunately died 6 days later. Fetal nutrition combined with HBO is technically possible and may allow the prolongation of the pregnancy. Fetal‐specific amino‐acid composition would facilitate the treatment options of IUGR fetuses and extremely preterm newborn.
Collapse
Affiliation(s)
- Michael Tchirikov
- Center of Fetal Surgery, University Clinic of Obstetrics and Fetal Medicine, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Erich Saling
- Saling Institute of Perinatal Medicine, Berlin, Germany
| | - Gauri Bapayeva
- National Research Center for Mother and Child Health, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Michael Bucher
- Center of HBO, University Clinic of Anesthesiology, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Oliver Thews
- Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Gregor Seliger
- Center of Fetal Surgery, University Clinic of Obstetrics and Fetal Medicine, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Siebold L, Obenaus A, Goyal R. Criteria to define mild, moderate, and severe traumatic brain injury in the mouse controlled cortical impact model. Exp Neurol 2018; 310:48-57. [DOI: 10.1016/j.expneurol.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
12
|
Proton Magnetic Resonance Spectroscopy (H1-MRS) Study of the Ketogenic Diet on Repetitive Mild Traumatic Brain Injury in Adolescent Rats and Its Effect on Neurodegeneration. World Neurosurg 2018; 120:e1193-e1202. [DOI: 10.1016/j.wneu.2018.09.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
|
13
|
Lee JB, Affeldt BM, Gamboa Y, Hamer M, Dunn JF, Pardo AC, Obenaus A. Repeated Pediatric Concussions Evoke Long-Term Oligodendrocyte and White Matter Microstructural Dysregulation Distant from the Injury. Dev Neurosci 2018; 40:358-375. [PMID: 30466074 DOI: 10.1159/000494134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/30/2018] [Indexed: 11/19/2022] Open
Abstract
Concussion or mild traumatic brain injury (mTBI) is often accompanied by long-term behavioral and neuropsychological deficits. Emerging data suggest that these deficits can be exacerbated following repeated injuries. However, despite the overwhelming prevalence of mTBI in children due to falls and sports-related activities, the effects of mTBI on white matter (WM) structure and its development in children have not been extensively examined. Moreover, the effect of repeated mTBI (rmTBI) on developing WM has not yet been studied, despite the possibility of exacerbated outcomes with repeat injuries. To address this knowledge gap, we investigated the long-term effects of single (s)mTBI and rmTBI on the WM in the pediatric brain, focusing on the anterior commissure (AC), a WM structure distant to the injury site, using diffusion tensor imaging (DTI) and immunohistochemistry (IHC). We hypothesized that smTBI and rmTBI to the developing mouse brain would lead to abnormalities in microstructural integrity and impaired oligodendrocyte (OL) development. We used a postnatal day 14 Ascl1-CreER: ccGFP mouse closed head injury (CHI) model with a bilateral repeated injury. We demonstrate that smTBI and rmTBI differentially lead to myelin-related diffusion changes in the WM and to abnormal OL development in the AC, which are accompanied by behavioral deficits 2 months after the initial injury. Our results suggest that mTBIs elicit long-term behavioral alterations and OL-associated WM dysregulation in the developing brain. These findings warrant additional research into the development of WM and OL as key components of pediatric TBI pathology and potential therapeutic targets.
Collapse
Affiliation(s)
- Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Bethann M Affeldt
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yaritxa Gamboa
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Mary Hamer
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jeff F Dunn
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea C Pardo
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andre Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA, .,Department of Pediatrics, University of California Irvine School of Medicine, Irvine, California, USA,
| |
Collapse
|
14
|
Kim S, Han SC, Gallan AJ, Hayes JP. Neurometabolic indicators of mitochondrial dysfunction in repetitive mild traumatic brain injury. Concussion 2017; 2:CNC48. [PMID: 30202587 PMCID: PMC6128012 DOI: 10.2217/cnc-2017-0013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant national health concern and there is growing evidence that repetitive mTBI (rmTBI) can cause long-term change in brain structure and function. The mitochondrion has been suggested to be involved in the mechanism of TBI. There are noninvasive methods of determining mitochondrial dysfunction through biomarkers and spectroscopy. Mitochondrial dysfunction has been implicated in a variety of neurological consequences secondary to rmTBI through activation of caspases and calpains. The purpose of this review is to examine the mechanism of mitochondrial dysfunction in rmTBI and its downstream effects on neuronal cell death, axonal injury and blood–brain barrier compromise.
Collapse
Affiliation(s)
- Susan Kim
- Boston University School of Medicine, Boston, MA 02118, USA.,Boston University School of Medicine, Boston, MA 02118, USA
| | - Steve C Han
- Boston University School of Medicine, Boston, MA 02118, USA.,Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexander J Gallan
- Department of Pathology, University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jasmeet P Hayes
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA.,National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|