1
|
Bekmez H, Kocak MN, Tavaci T, Halici H, Toktay E, Celik M, Bagci HH. Inflammation in cerebral ischemia reperfusion improved by avanafil via nod-like receptor protein-3 inflammasome: an experimental study in rats. Brain Inj 2024; 38:708-715. [PMID: 38676710 DOI: 10.1080/02699052.2024.2346147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE The aim of study was to investigate the effect of avanafil, a second-generation phosphodiesterase-5 (PDE5) inhibitor, on cerebral ischemia reperfusion (CI/R) model. METHODS 32 male albino Wistar rats were used. Four groups were constituted, as I: the healthy (sham), II: the CI/R group, III: the CI/R +I 10 mg/kg avanafil group, and IV: the CI/R + 20 mg/kg avanafil group. Avanafil was administered twice via oral gavage, first shortly after ischemia reperfusion and once more after 12 h. The rats were euthanized after 24 h. Histopathological and Real Time PCR analyzes were performed on cerebral tissues. RESULTS IL-1β, NLRP3 and TNF-α mRNA expressions were statistically higher in the CI/R group when compared to healthy (sham) group. Conversely, the IL-1β, NLRP3, and TNF-α mRNA expressions were significantly decreased in both of the avanafil-treated groups when compared to CI/R group. Histopathological results showed that both doses of avanafil also decreased cellular damage in cerebral tissue that occurred after CI/R. CONCLUSION Avanafil, was found to have ameliorated inflammatory response and cellular injury caused by CI/R. The mRNA expression of IL-1β, NLRP3, and TNF-α decreased in the I/R groups and approached the control group levels with a high dose of avanafil.
Collapse
Affiliation(s)
- Huseyin Bekmez
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Mehmet Nuri Kocak
- Faculty of Medicine, Department of Neurology, Ataturk University, Erzurum, Turkey
| | - Taha Tavaci
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Hamza Halici
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
- Department of Hınıs Vocational Training School, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Embryology and Histology, Kafkas University, Kars, Turkey
| | - Muhammet Celik
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Hamit Harun Bagci
- General Directorate of Administrative Services, Republic of Türkiye Ministry of Health, Ankara, Turkey
| |
Collapse
|
2
|
Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, Fodor A, Sitar-Tăut AV, Cozma A, Orășan OH, Hegheș SC, Vulturar R, Suharoschi R. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. PLANTS (BASEL, SWITZERLAND) 2023; 13:20. [PMID: 38202328 PMCID: PMC10780634 DOI: 10.3390/plants13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Moringa oleifera (M. oleifera) is a tropical tree native to Pakistan, India, Bangladesh, and Afghanistan; it is cultivated for its nutritious leaves, pods, and seeds. This scientific study was conducted to outline the anti-inflammatory properties and mechanisms of action of bioactive compounds from M. oleifera. The existing research has found that the plant is used in traditional medicine due to its bioactive compounds, including phytochemicals: flavonoids and polyphenols. The compounds are thought to exert their anti-inflammatory effects due to: (1) inhibition of pro-inflammatory enzymes: quercetin and kaempferol inhibit the pro-inflammatory enzymes (cyclooxygenase and lipoxygenase); (2) regulation of cytokine production: isothiocyanates modulate signaling pathways involved in inflammation, such as the nuclear factor-kappa B (NF-kappa B) pathway; isothiocyanates inhibit the production of pro-inflammatory cytokines such as TNF-α (tumor necrosis factor α) and IL-1β (interleukin-1β); and (3) antioxidant activity: M. oleifera contains flavonoids, polyphenols, known to reduce oxidative stress and inflammation. The review includes M. oleifera's effects on cardiovascular protection, anti-hypertensive activities, type 2 diabetes, inflammatory bowel disease, and non-alcoholic fatty liver disease (NAFLD). This research could prove valuable for exploring the pharmacological potential of M. oleifera and contributing to the prospects of developing effective medicines for the benefit of human health.
Collapse
Affiliation(s)
- Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Paul Aimé Noubissi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Oana-Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Michel Archange Fokam Tagne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon;
| | - René Kamgang
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adela-Viviana Sitar-Tăut
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Olga Hilda Orășan
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Simona Codruța Hegheș
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Marianne M, Husori DI, Nasution R, Wismar A, Pranata AA. Relaxation effects of Eriobotrya japonica toward tracheal smooth muscle via action mechanism on histamine-1 receptor and phosphodiesterase-5 enzyme. J Adv Pharm Technol Res 2021; 12:67-72. [PMID: 33532358 PMCID: PMC7832185 DOI: 10.4103/japtr.japtr_118_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 11/12/2022] Open
Abstract
The Eriobotrya japonica leaves have the activity to relax the smooth muscle in the respiratory tract. However, the mechanism of action due to that activity has never been carried out. This study aims to determine the relaxation effects of E. japonica leaves extract in the isolated trachea of the guinea pigs through the inhibition of the histamine-1 (H-1) receptor and the phosphodiesterase-5 (PDE-5) enzyme. The determination of the relaxation effects was carried out by using histamine to contract smooth muscle within the tracheal tract, followed by adding cumulative concentrations of extract. Michaelis–Menten kinetics equation was used to determine the antagonist type of extract toward H-1 receptor. The understanding of mechanism of action of the extract toward PDE-5 enzyme was performed by incubating the smooth muscle using sildenafil. The percentage value of responses, originated from the relaxation effect of the extract toward the trachea was analyzed by using the t-independent test. The result showed that the extract was able to relax the smooth muscle, which was contracted by histamine, and there was a positive correlation between concentration and relaxation effect (P < 0.05; r = 0.973). The extract also antagonized the histamine as a noncompetitive antagonist. The incubation within the trachea with sildenafil demonstrated equal relaxation effect, produced by the extract. It can be concluded that E. japonica extract had relaxation effect within the isolated trachea as antagonist noncompetitive toward H-1 receptor and inhibitor of the PDE-5 enzyme.
Collapse
Affiliation(s)
- Marianne Marianne
- Department of Pharmacology Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia.,Nanomedicine Centre, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Dadang Irfan Husori
- Department of Pharmacology Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Rosnani Nasution
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Annisa Wismar
- Undergraduate Student, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Aspan Ali Pranata
- Undergraduate Student, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| |
Collapse
|
4
|
Kreisel W, Schaffner D, Lazaro A, Trebicka J, Merfort I, Schmitt-Graeff A, Deibert P. Phosphodiesterases in the Liver as Potential Therapeutic Targets of Cirrhotic Portal Hypertension. Int J Mol Sci 2020; 21:E6223. [PMID: 32872119 PMCID: PMC7503357 DOI: 10.3390/ijms21176223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is a frequent condition with high impact on patients' life expectancy and health care systems. Cirrhotic portal hypertension (PH) gradually develops with deteriorating liver function and can lead to life-threatening complications. Other than an increase in intrahepatic flow resistance due to morphological remodeling of the organ, a functional dysregulation of the sinusoids, the smallest functional units of liver vasculature, plays a pivotal role. Vascular tone is primarily regulated by the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, wherein soluble guanylate cyclase (sGC) and phosphodiesterase-5 (PDE-5) are key enzymes. Recent data showed characteristic alterations in the expression of these regulatory enzymes or metabolite levels in liver cirrhosis. Additionally, a disturbed zonation of the components of this pathway along the sinusoids was detected. This review describes current knowledge of the pathophysiology of PH with focus on the enzymes regulating cGMP availability, i.e., sGC and PDE-5. The results have primarily been obtained in animal models of liver cirrhosis. However, clinical and histochemical data suggest that the new biochemical model we propose can be applied to human liver cirrhosis. The role of PDE-5 as potential target for medical therapy of PH is discussed.
Collapse
Affiliation(s)
- Wolfgang Kreisel
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Denise Schaffner
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany;
- Department of Radiology–Medical Physics, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Adhara Lazaro
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, Goethe University Clinic Frankfurt, 60590 Frankfurt, Germany;
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany;
| | | | - Peter Deibert
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
| |
Collapse
|
5
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Barnes JW, Patel RP. Things We "kNOw" and Do Not "kNOw" about Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 198:151-152. [PMID: 29590535 DOI: 10.1164/rccm.201803-0424ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jarrod W Barnes
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine University of Alabama at Birmingham Birmingham, Alabama.,2 Lerner Research Institute Cleveland Clinic Cleveland, Ohio and
| | - Rakesh P Patel
- 3 Department of Pathology University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|
7
|
Jiann BP, Nakajima K, Dighe S, Harshman-Smith CD, Hassan TA. Degree of Planning of Sexual Intercourse Among Men From China, Japan, and Taiwan Taking Medication for Erectile Dysfunction: Findings of an Observational, Cross-Sectional Survey. Sex Med 2018; 7:54-60. [PMID: 30522975 PMCID: PMC6377368 DOI: 10.1016/j.esxm.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Management of erectile dysfunction (ED) is beset with assumptions around spontaneity of sexual intercourse, requiring candor between the physician and patient if appropriate treatment is to be implemented. AIM To evaluate the degree to which men who take ED medications plan for and have sex. METHODS Men from China, Japan, and Taiwan aged 40-70 years who had taken ED medications within the past 3 months were invited to participate anonymously in an online, self-administered survey that enquired about frequency and advance planning of sex, time between taking ED medication and intercourse, and treatment satisfaction. Data were analyzed using descriptive statistics. MAIN OUTCOME MEASURE Frequency of planning of sexual intercourse, planning and ED medication dosing interval, and frequency of ED medication use. RESULTS Data from 604 respondents (mean age 50.8 years) from China (n = 254), Japan (n = 250), and Taiwan (n = 100) were collected. Men used ED medications a median of ≤4 times per month in all 3 territories. 76% who used ED medication during the past 3 months planned for sex on specific occasions, with 59% and 52% agreeing that they plan for sex on specific days of the week and times of the day, respectively. Most commonly, men planned for sex up to several hours to a day beforehand, with 94% taking ED medication within 4 hours of sex. Satisfaction with ED medication was generally high and related to erection rigidity, speed of onset, and safety. CONCLUSION Knowledge of the degree to which individuals with ED plan for sex may have important implications for the appropriate prescription of ED medication. The high degree of planning around sexual activities exhibited by men taking ED medication suggests there is a need for appropriate counseling to ensure that treatment is aligned with patient behavior. Jiann B-P, Nakajima K, Dighe S, et al. Degree of planning of sexual intercourse among men from China, Japan, and Taiwan taking medication for erectile dysfunction: Findings of an observational, cross-sectional survey. Sex Med 2019;7:54-60.
Collapse
Affiliation(s)
- Bang-Ping Jiann
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung and School of Medicine, National Yang-Ming Medical University, Taipei City, Taiwan.
| | - Koichi Nakajima
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Kloner RA, Goldstein I, Kirby MG, Parker JD, Sadovsky R. Cardiovascular Safety of Phosphodiesterase Type 5 Inhibitors After Nearly 2 Decades on the Market. Sex Med Rev 2018; 6:583-594. [DOI: 10.1016/j.sxmr.2018.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022]
|
9
|
Mokra D, Mokry J, Matasova K. Phosphodiesterase inhibitors: Potential role in the respiratory distress of neonates. Pediatr Pulmonol 2018; 53:1318-1325. [PMID: 29905405 DOI: 10.1002/ppul.24082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/31/2018] [Indexed: 12/27/2022]
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that catalyze the hydrolysis of phosphodiester bonds of 3',5' cyclic adenosine and guanosine monophosphate (cAMP and cGMP). PDEs control hydrolysis of cyclic nucleotides in many cells and tissues. Inhibition of PDEs by selective or nonselective PDE inhibitors represents an effective targeted strategy for the treatment of various diseases including respiratory disorders. Recent data have demonstrated that PDE inhibitors can also be of benefit in respiratory distress in neonates. This article outlines the pharmacological properties of nonselective and selective PDE inhibitors and provides up-to-date information regarding their use in experimental models of neonatal respiratory distress as well as in clinical studies.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia, EU.,Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia, EU
| | - Juraj Mokry
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia, EU.,Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia, EU
| | - Katarina Matasova
- Clinic of Neonatology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital in Martin, Martin, Slovakia, EU
| |
Collapse
|
10
|
Fitzakerley JL, Trachte GJ. Genetics of guanylyl cyclase pathways in the cochlea and their influence on hearing. Physiol Genomics 2018; 50:780-806. [PMID: 29958079 DOI: 10.1152/physiolgenomics.00056.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although hearing loss is the most common sensory deficit in Western societies, there are no successful pharmacological treatments for this disorder. Recent experiments have demonstrated that manipulation of intracellular cyclic guanosine monophosphate (cGMP) concentrations can have both beneficial and harmful effects on hearing. In this review, we will examine the role of cGMP as a key second messenger involved in many aspects of cochlear function and discuss the known functions of downstream effectors of cGMP in sound processing. The nitric oxide-stimulated soluble guanylyl cyclase system (sGC) and the two natriuretic peptide-stimulated particulate GCs (pGCs) will be more extensively covered because they have been studied most thoroughly. The cochlear GC systems are attractive targets for medical interventions that improve hearing while simultaneously representing an under investigated source of sensorineural hearing loss.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| | - George J Trachte
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| |
Collapse
|
11
|
Pauls MMH, Moynihan B, Barrick TR, Kruuse C, Madigan JB, Hainsworth AH, Isaacs JD. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: A systematic review. J Cereb Blood Flow Metab 2018; 38:189-203. [PMID: 29256324 PMCID: PMC5951021 DOI: 10.1177/0271678x17747177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
Agents that augment cerebral blood flow (CBF) could be potential treatments for vascular cognitive impairment. Phosphodiesterase-5 inhibitors are vasodilating drugs established in the treatment of erectile dysfunction (ED) and pulmonary hypertension. We reviewed published data on the effects of phosphodiesterase-5 inhibitors on CBF in adult humans. A systematic review according to PRISMA guidelines was performed. Embase, Medline and Cochrane Library Trials databases were searched. Sixteen studies with 353 participants in total were retrieved. Studies included healthy volunteers and patients with migraine, ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5 inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated with an impaired endothelial dilatory response. This supports the potential therapeutic use of phosphodiesterase-5 inhibitors in vascular cognitive impairment where CBF is reduced. Further studies with better resolution of deep CBF are warranted. The review is registered on the PROSPERO database (registration number CRD42016029668).
Collapse
Affiliation(s)
- Mathilde MH Pauls
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
- Department of Geriatric and Stroke
Medicine, Beaumont Hospital, Dublin, Ireland
| | - Thomas R Barrick
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
| | - Christina Kruuse
- Department of Neurology, Neurovascular
Research Unit, Herlev Gentofte Hospital and University of Copenhagen, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St
George's University Hospitals NHS Foundation Trust, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Jeremy D Isaacs
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Design and optimization of purine derivatives as in vivo active PDE10A inhibitors. Bioorg Med Chem 2017; 25:3315-3329. [DOI: 10.1016/j.bmc.2017.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/20/2022]
|
13
|
Barnes JW, Tonelli AR, Heresi GA, Newman JE, Mellor NE, Grove DE, Dweik RA. Novel methods in pulmonary hypertension phenotyping in the age of precision medicine (2015 Grover Conference series). Pulm Circ 2016; 6:439-447. [PMID: 28090286 PMCID: PMC5210071 DOI: 10.1086/688847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022] Open
Abstract
Among pulmonary vascular diseases, pulmonary hypertension (PH) is the best studied and has been the focus of our work. The current classification of PH is based on a relatively simple combination of patient characteristics and hemodynamics. This leads to inherent limitations, including the inability to customize treatment and the lack of clarity from a more granular identification based on individual patient phenotypes. Accurate phenotyping of PH can be used in the clinic to select therapies and determine prognosis and in research to increase the homogeneity of study cohorts. Rapid advances in the mechanistic understanding of the disease, improved imaging methods, and innovative biomarkers now provide an opportunity to define novel PH phenotypes. We have recently shown that altered metabolism may affect nitric oxide levels and protein glycosylation, the peripheral circulation (which may provide insights into the response to therapy), and exhaled-breath analysis (which may be useful in disease evaluation). This review is based on a talk presented during the 2015 Grover Conference and highlights the relevant literature describing novel methods to phenotype pulmonary arterial hypertension patients by using approaches that involve the pulmonary and systemic (peripheral) vasculature. In particular, abnormalities in metabolism, the pulmonary and peripheral circulation, and exhaled breath in PH may help identify phenotypes that can be the basis for a precision-medicine approach to PH management. These approaches may also have a broader scope and may contribute to a better understanding of other diseases, such as asthma, diabetes, and cancer.
Collapse
Affiliation(s)
- Jarrod W. Barnes
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adriano R. Tonelli
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gustavo A. Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jennie E. Newman
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Noël E. Mellor
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David E. Grove
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Raed A. Dweik
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|