1
|
Jodeh D, Terzic M, Wenig E, Amin A, Al Baghdadi T. Dysphasia: metastatic prostate cancer to the leptomeninges: a case report. J Med Case Rep 2024; 18:532. [PMID: 39478563 PMCID: PMC11526645 DOI: 10.1186/s13256-024-04840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/06/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Leptomeningeal metastasis occurs in 5% of patients with prostate cancer and indicates a very poor prognosis. CASE PRESENTATION A 60-year-old Caucasian male patient diagnosed with metastatic castration-resistant prostate cancer with sclerotic bone metastases and soft tissue metastases underwent multiple courses of chemotherapy and hormone therapy. The diagnosis of prostate cancer is based on elevated prostate-specific antigen levels and tissue biopsy. He subsequently presented with expressive aphasia. Nonspecific, diffuse irregular dural/pachymeningeal thickening enhancement was noted on magnetic resonance imaging. Upon evaluation by neurology, electroencephalogram was negative for an epileptiform correlate. The workup included a lumbar puncture to rule out infectious etiology. The patient's neurological status stabilized, and he was discharged home with a plan for continued therapy with abiraterone and prednisone. Due to advanced malignancy, the patient enrolled in hospice and died 3 weeks after hospital discharge. CONCLUSIONS Central nervous system metastasis occurs very rarely in prostate cancer. With the increase in life expectancy and advances in oncologic therapy for prostate cancer, physicians should be aware of and consider central nervous system metastasis in men aged 50 years and above.
Collapse
Affiliation(s)
- Diana Jodeh
- Department of Internal Medicine, Trinity Health Ann Arbor Hospital, 5301 McAuley Dr, Ypsilanti, MI, 48197, USA.
| | - Milan Terzic
- Department of Internal Medicine, Trinity Health Ann Arbor Hospital, 5301 McAuley Dr, Ypsilanti, MI, 48197, USA
| | - Evan Wenig
- Department of Hematology and Oncology, Trinity Health Ann Arbor Hospital, 5301 McAuley Dr, Ypsilanti, MI, 48197, USA
| | - Amit Amin
- Department of Internal Medicine, Trinity Health Ann Arbor Hospital, 5301 McAuley Dr, Ypsilanti, MI, 48197, USA
| | - Tareq Al Baghdadi
- Department of Hematology and Oncology, Trinity Health Ann Arbor Hospital, 5301 McAuley Dr, Ypsilanti, MI, 48197, USA
| |
Collapse
|
2
|
Zhao Y, Gu S, Li L, Zhao R, Xie S, Zhang J, Zhou R, Tu L, Jiang L, Zhang S, Ma S. A novel risk signature for predicting brain metastasis in patients with lung adenocarcinoma. Neuro Oncol 2023; 25:2207-2220. [PMID: 37379245 PMCID: PMC10708939 DOI: 10.1093/neuonc/noad115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Brain metastasis (BM) are a devastating consequence of lung cancer. This study was aimed to screen risk factors for predicting BM. METHODS Using an in vivo BM preclinical model, we established a series of lung adenocarcinoma (LUAD) cell subpopulations with different metastatic ability. Quantitative proteomics analysis was used to screen and identify the differential protein expressing map among subpopulation cells. Q-PCR and Western-blot were used to validate the differential proteins in vitro. The candidate proteins were measured in LUAD tissue samples (n = 81) and validated in an independent TMA cohort (n = 64). A nomogram establishment was undertaken by performing multivariate logistic regression analysis. RESULTS The quantitative proteomics analysis, qPCR and Western blot assay implied a five-gene signature that might be key proteins associated with BM. In multivariate analysis, the occurrence of BM was associated with age ≤ 65 years, high expressions of NES and ALDH6A1. The nomogram showed an area under the receiver operating characteristic curve (AUC) of 0.934 (95% CI, 0.881-0.988) in the training set. The validation set showed a good discrimination with an AUC of 0.719 (95% CI, 0.595-0.843). CONCLUSIONS We have established a tool that is able to predict occurrence of BM in LUAD patients. Our model based on both clinical information and protein biomarkers will help to screen patient in high-risk population of BM, so as to facilitate preventive intervention in this part of the population.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Shen Gu
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, China
| | - Lingjie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Ruping Zhao
- Department of Radiotherapy, Shanghai Jiahui International Hospital, China
| | - Shujun Xie
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, China
| | - Jingjing Zhang
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, China
| | - Rongjing Zhou
- Department of Pathology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, Zhejiang University School of Medicine, China
| | - Shirong Zhang
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, China
| | - Shenglin Ma
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
3
|
Linville RM, Maressa J, Guo Z, Chung TD, Farrell A, Jha R, Searson PC. A tissue-engineered model of the blood-tumor barrier during metastatic breast cancer. Fluids Barriers CNS 2023; 20:80. [PMID: 37924145 PMCID: PMC10623725 DOI: 10.1186/s12987-023-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023] Open
Abstract
Metastatic brain cancer has poor prognosis due to challenges in both detection and treatment. One contributor to poor prognosis is the blood-brain barrier (BBB), which severely limits the transport of therapeutic agents to intracranial tumors. During the development of brain metastases from primary breast cancer, the BBB is modified and is termed the 'blood-tumor barrier' (BTB). A better understanding of the differences between the BBB and BTB across cancer types and stages may assist in identifying new therapeutic targets. Here, we utilize a tissue-engineered microvessel model with induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (iBMECs) and surrounded by human breast metastatic cancer spheroids with brain tropism. We directly compare BBB and BTB in vitro microvessels to unravel both physical and chemical interactions occurring during perivascular cancer growth. We determine the dynamics of vascular co-option by cancer cells, modes of vascular degeneration, and quantify the endothelial barrier to antibody transport. Additionally, using bulk RNA sequencing, ELISA of microvessel perfusates, and related functional assays, we probe early brain endothelial changes in the presence of cancer cells. We find that immune cell adhesion and endothelial turnover are elevated within the metastatic BTB, and that macrophages exert a unique influence on BTB identity. Our model provides a novel three-dimensional system to study mechanisms of cancer-vascular-immune interactions and drug delivery occurring within the BTB.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joanna Maressa
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alanna Farrell
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Ria Jha
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Romero-Garcia R, Mandal AS, Bethlehem RAI, Crespo-Facorro B, Hart MG, Suckling J. Transcriptomic and connectomic correlates of differential spatial patterning among gliomas. Brain 2023; 146:1200-1211. [PMID: 36256589 PMCID: PMC9976966 DOI: 10.1093/brain/awac378] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
Unravelling the complex events driving grade-specific spatial distribution of brain tumour occurrence requires rich datasets from both healthy individuals and patients. Here, we combined open-access data from The Cancer Genome Atlas, the UK Biobank and the Allen Brain Human Atlas to disentangle how the different spatial occurrences of glioblastoma multiforme and low-grade gliomas are linked to brain network features and the normative transcriptional profiles of brain regions. From MRI of brain tumour patients, we first constructed a grade-related frequency map of the regional occurrence of low-grade gliomas and the more aggressive glioblastoma multiforme. Using associated mRNA transcription data, we derived a set of differential gene expressions from glioblastoma multiforme and low-grade gliomas tissues of the same patients. By combining the resulting values with normative gene expressions from post-mortem brain tissue, we constructed a grade-related expression map indicating which brain regions express genes dysregulated in aggressive gliomas. Additionally, we derived an expression map of genes previously associated with tumour subtypes in a genome-wide association study (tumour-related genes). There were significant associations between grade-related frequency, grade-related expression and tumour-related expression maps, as well as functional brain network features (specifically, nodal strength and participation coefficient) that are implicated in neurological and psychiatric disorders. These findings identify brain network dynamics and transcriptomic signatures as key factors in regional vulnerability for glioblastoma multiforme and low-grade glioma occurrence, placing primary brain tumours within a well established framework of neurological and psychiatric cortical alterations.
Collapse
Affiliation(s)
- Rafael Romero-Garcia
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ayan S Mandal
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Benedicto Crespo-Facorro
- Department of Psychiatry, Universidad de Sevilla, Hospital Universitario Virgen del Rocio/IBiS-CSIC/CIBERSAM, ISCIII, Sevilla, Spain
| | - Michael G Hart
- St George’s, University of London and St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences Neurosciences Research Centre, London, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
5
|
Li C, Zheng H, Xiong J, Huang Y, Li H, Jin H, Ai S, Wang Y, Su T, Sun G, Xiao X, Fu T, Wang Y, Gao X, Liang P. miR-596-3p suppresses brain metastasis of non-small cell lung cancer by modulating YAP1 and IL-8. Cell Death Dis 2022; 13:699. [PMID: 35961957 PMCID: PMC9374706 DOI: 10.1038/s41419-022-05062-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Brain metastasis (BM) frequently occurs in advanced non-small cell lung cancer (NSCLC) and is associated with poor clinical prognosis. Due to the location of metastatic lesions, the surgical resection is limited and the chemotherapy is ineffective because of the existence of the blood brain barrier (BBB). Therefore, it is essential to enhance our understanding about the underlying mechanisms associated with brain metastasis in NSCLC. In the present study, we explored the RNA-Seq data of brain metastasis cells from the GEO database, and extracted RNA collected from primary NSCLC tumors as well as paired brain metastatic lesions followed by microRNA PCR array. Meanwhile, we improved the in vivo model and constructed a cancer stem cell-derived transplantation model of brain metastasis in mice. Our data indicated that the level of miR-596-3p is high in primary NSCLC tumors, but significantly downregulated in the brain metastatic lesion. The prediction target of microRNA suggested that miR-596-3p was considered to modulate two genes essential in the brain invasion process, YAP1 and IL-8 that restrain the invasion of cancer cells and permeability of BBB, respectively. Moreover, in vivo experiments suggested that our model mimics the clinical aspect of NSCLC and improves the success ratio of brain metastasis model. The results demonstrated that miR-596-3p significantly inhibited the capacity of NSCLC cells to metastasize to the brain. Furthermore, these finding elucidated that miR-596-3p exerts a critical role in brain metastasis of NSCLC by modulating the YAP1-IL8 network, and this miRNA axis may provide a potential therapeutic strategy for brain metastasis.
Collapse
Affiliation(s)
- Chenlong Li
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Hongshan Zheng
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Jinsheng Xiong
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Yuxin Huang
- Heilongjiang Tuomeng Technology Co.Ltd, Harbin, 150040 Heilongjiang China
| | - Haoyang Li
- grid.45672.320000 0001 1926 5090Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia ,grid.64924.3d0000 0004 1760 5735Cancer Systems Biology Center, the China-Japan Union Hospital, Jilin University, Changchun, 130001 Jilin China ,grid.64924.3d0000 0004 1760 5735College of Computer Science and Technology, Jilin University, Changchun, 130001 Jilin China
| | - Hua Jin
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Siqi Ai
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Yingjie Wang
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Tianqi Su
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Guiyin Sun
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Xu Xiao
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Tianjiao Fu
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Yujie Wang
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Xin Gao
- grid.45672.320000 0001 1926 5090Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
| | - Peng Liang
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| |
Collapse
|
6
|
Mampre D, Mehkri Y, Rajkumar S, Sriram S, Hernandez J, Lucke-Wold B, Chandra V. Treatment of breast cancer brain metastases: radiotherapy and emerging preclinical approaches. DIAGNOSTICS AND THERAPEUTICS 2022; 1:25-38. [PMID: 35782783 PMCID: PMC9249118 DOI: 10.55976/dt.1202216523-36] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The breast is one of the common primary sites of brain metastases (BM). Radiotherapy for BM from breast cancer may include whole brain radiation therapy (WBRT), stereotactic radiosurgery (SRS), and stereotactic radiotherapy (SRT), but a consensus is difficult to reach because of the wide and varied protocols, indications, and outcomes of these interventions. Overall, dissemination of disease, patient functional status, and tumor size are all important factors in the decision of treatment with WBRT or SRS. Thus far, previous studies indicate that WBRT can improve tumor control compared to SRS, but increase side effects, however no randomized trials have compared the efficacy of these therapies in BM from breast cancer. Therapies targeting long non-coding RNAs and transcription factors, such as MALAT1, HOTAIR, lnc-BM, TGL1, and ATF3, have the potential to both prevent metastatic spread and treat BM with improved radiosensitivity. Given the propensity for HER2+ breast cancer to develop BM, the above-mentioned cell lines may represent an important target for future investigations, and the development of everolimus and pyrotinib are equally important.
Collapse
Affiliation(s)
- David Mampre
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | | | - Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Jairo Hernandez
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | | | - Vyshak Chandra
- Department of Neurosurgery, University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Aramini B, Masciale V, Arienti C, Dominici M, Stella F, Martinelli G, Fabbri F. Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and Treatments. Cancers (Basel) 2022; 14:cancers14102408. [PMID: 35626011 PMCID: PMC9139858 DOI: 10.3390/cancers14102408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The world of small molecules in solid tumors as cancer stem cells (CSCs), circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs) continues to be under-debated, but not of minor interest in recent decades. One of the main problems in regard to cancer is the development of tumor recurrence, even in the early stages, in addition to drug resistance and, consequently, ineffective or an incomplete response against the tumor. The findings behind this resistance are probably justified by the presence of small molecules such as CSCs, CTCs and CAFs connected with the tumor microenvironment, which may influence the aggressiveness and the metastatic process. The mechanisms, connections, and molecular pathways behind them are still unknown. Our review would like to represent an important step forward to highlight the roles of these molecules and the possible connections among them. Abstract The importance of defining new molecules to fight cancer is of significant interest to the scientific community. In particular, it has been shown that cancer stem cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity; on the other side, circulating tumor cells (CTCs) seem to split away from the primary tumor and appear in the circulatory system as singular units or clusters. It is becoming more and more important to discover new biomarkers related to these populations of cells in combination to define the network among them and the tumor microenvironment. In particular, cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment with different functions, including matrix deposition and remodeling, extensive reciprocal signaling interactions with cancer cells and crosstalk with immunity. The settings of new markers and the definition of the molecular connections may present new avenues, not only for fighting cancer but also for the definition of more tailored therapies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy;
- Correspondence:
| | - Valentina Masciale
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41122 Modena, Italy; (V.M.); (M.D.)
| | - Chiara Arienti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41122 Modena, Italy; (V.M.); (M.D.)
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy;
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| |
Collapse
|
8
|
Shoji Y, Furuhashi S, Kelly DF, Bilchik AJ, Hoon DSB, Bustos MA. Current status of gastrointestinal tract cancer brain metastasis and the use of blood-based cancer biomarker biopsy. Clin Exp Metastasis 2021; 39:61-69. [PMID: 33950411 DOI: 10.1007/s10585-021-10094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Brain metastasis (BM) frequently occurs in patients with cutaneous melanoma, lung, and breast cancer; although, BM rarely arises from cancers of the gastrointestinal tract (GIT). The reported incidence of GIT cancer BM is less than 4%. In the last few years, effective systemic therapy has prolonged the survival of GIT patients and consequently, the incidence of developing BM is rising. Therefore, the epidemiology and biology of BM arising from GIT cancer requires a more comprehensive understanding. In spite of the development of new therapeutic agents for patients with metastatic GIT cancers, survival for patients with BM still remains poor, with a median survival after diagnosis of less than 4 months. Limited evidence suggests that early detection of isolated intra-cranial lesions will enable surgical resection plus systemic and/or radiation therapy, which may lead to an increase in overall survival. Novel diagnostic methods such as blood-based biomarker biopsies may play a crucial role in the early detection of BM. Circulating tumor cells and circulating cell-free nucleic acids are known to serve as blood biomarkers for early detection and treatment response monitoring of multiple cancers. Blood biopsy may improve early diagnosis and treatment monitoring of GIT cancers BM, thus prolonging patients' survivals.
Collapse
Affiliation(s)
- Yoshiaki Shoji
- Division of Molecular Oncology, Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Satoru Furuhashi
- Division of Molecular Oncology, Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Daniel F Kelly
- Pacific Neuroscience Institute, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Anton J Bilchik
- Department of Surgical Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Division of Molecular Oncology, Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Matias A Bustos
- Division of Molecular Oncology, Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
| |
Collapse
|
9
|
Münsterberg J, Loreth D, Brylka L, Werner S, Karbanova J, Gandrass M, Schneegans S, Besler K, Hamester F, Robador JR, Bauer AT, Schneider SW, Wrage M, Lamszus K, Matschke J, Vashist Y, Uzunoglu G, Steurer S, Horst AK, Oliveira-Ferrer L, Glatzel M, Schinke T, Corbeil D, Pantel K, Maire C, Wikman H. ALCAM contributes to brain metastasis formation in non-small-cell lung cancer through interaction with the vascular endothelium. Neuro Oncol 2021; 22:955-966. [PMID: 32064501 PMCID: PMC7339886 DOI: 10.1093/neuonc/noaa028] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Brain metastasis (BM) in non-small-cell lung cancer (NSCLC) has a very poor prognosis. Recent studies have demonstrated the importance of cell adhesion molecules in tumor metastasis. The aim of our study was to investigate the role of activated leukocyte cell adhesion molecule (ALCAM) in BM formation in NSCLC. Methods Immunohistochemical analysis was performed on 143 NSCLC primary tumors and BM. A correlation between clinicopathological parameters and survival was developed. Biological properties of ALCAM were assessed in vitro by gene ablation using CRISPR/Cas9 technology in the NCI-H460 NSCLC cell line and in vivo by intracranial and intracardial cell injection of NCI-H460 cells in NMRI-Foxn1nu/nu mice. Results ALCAM expression was significantly upregulated in NSCLC brain metastasis (P = 0.023) with a de novo expression of ALCAM in 31.2% of BM. Moderate/strong ALCAM expression in both primary NSCLC and brain metastasis was associated with shortened survival. Functional analysis of an ALCAM knock-out (KO) cell line showed a significantly decreased cell adhesion capacity to human brain endothelial cells by 38% (P = 0.045). In vivo studies showed significantly lower tumor cell dissemination in mice injected with ALCAM-KO cells in both mouse models, and both the number and size of BM were significantly diminished in ALCAM depleted tumors. Conclusions Our findings suggest that elevated levels of ALCAM expression promote BM formation in NSCLC through increased tumor cell dissemination and interaction with the brain endothelial cells. Therefore, ALCAM could be targeted to reduce the occurrence of BM. Key Points 1. ALCAM expression associates with poor prognosis and brain metastasis in NSCLC. 2. ALCAM mediates interaction of NSCLC tumor cells with brain vascular endothelium. 3. ALCAM might represent a novel preventive target to reduce the occurrence of BM in NSCLC.
Collapse
Affiliation(s)
- Justine Münsterberg
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desirée Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Karbanova
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technical University Dresden, Dresden, Germany
| | - Monja Gandrass
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Besler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabienne Hamester
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - José Ramon Robador
- Experimental Dermatology, Department of Dermatology, Venereology and Allergy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Thomas Bauer
- Experimental Dermatology, Department of Dermatology, Venereology and Allergy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner Schneider
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Wrage
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Vashist
- General, Visceral and Thoracic Surgery Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Güntac Uzunoglu
- General, Visceral and Thoracic Surgery Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Kristina Horst
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Markus Glatzel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technical University Dresden, Dresden, Germany
| | | | - Cecile Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
10
|
Ortega Rodriguez AA, Centeno Haro M, Caro Cardera JL, Joly Torta C, de Manuel-Rimbau Muñoz J. Dural Metastasis from Breast Carcinoma Mimicking Sub-acute Subdural Hematoma: a Case Report. Indian J Surg Oncol 2021; 12:197-200. [PMID: 33994747 DOI: 10.1007/s13193-021-01283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022] Open
Affiliation(s)
| | - Macarena Centeno Haro
- Department of Anatomical Pathology, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain
| | - José Luís Caro Cardera
- Department of Neurosurgery, Hospital Universitari de Girona Doctor Josep Trueta, Avinguda de França S/N, 17007 Girona, Spain
| | - Carme Joly Torta
- Department of Neurosurgery, Hospital Universitari de Girona Doctor Josep Trueta, Avinguda de França S/N, 17007 Girona, Spain
| | - Jordi de Manuel-Rimbau Muñoz
- Department of Neurosurgery, Hospital Universitari de Girona Doctor Josep Trueta, Avinguda de França S/N, 17007 Girona, Spain
| |
Collapse
|
11
|
A solitary hypothalamic metastasis from prostatic cancer mimicking a giant thrombotic aneurysm and presenting with intraventricular hemorrhage and acute hydrocephalus: a case report. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [PMCID: PMC7729140 DOI: 10.1186/s43055-020-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Despite the high prevalence of prostate cancer, its brain parenchymal metastasis is not common and intracranial hemorrhage due to such a metastasis is even less common. This report presents a challenging case of solitary brain metastasis secondary to prostate cancer that gave rise to intraventricular hemorrhage and acute hydrocephalus mimicking a giant aneurysm. Case presentation A 77-year-old man with a history of prostate cancer, hypertension, and morbid obesity presented to the emergency room with a severe headache. He was afebrile with a blood pressure of 144/79 mmHg, alert, without any sign of sensory or motor deficit. Shortly after admission, he became unresponsive and was immediately intubated. His blood tests revealed hypernatremia at 154 mmol/L; otherwise, the lab data including the COVID-19 screening proved normal. The cerebral CT and MR images, with and without contrast, were interpreted as a giant thrombotic aneurysm extending to the suprasellar region by the emergency radiologist. Also, moderate intraventricular hemorrhage, acute hydrocephalus, and sub-ependymal interstitial edema were observed. Upon further evaluation of the images, the lesion was determined to be an exophytic hemorrhagic hypothalamic mass, and the subsequent biopsy was consistent with prostate cancer metastasis. Conclusions The exophytic hemorrhagic hypothalamic metastasis can mimic a ruptured aneurysm on imaging. Given the improved survival of patients with prostate cancer, radiologists may encounter such unusual cerebral metastases from prostate cancers more frequently in the future.
Collapse
|
12
|
Han J, Lee KY, Kim NK, Min BS. Metachronous metastasis confined to isolated lymph node after curative treatment of colorectal cancer. Int J Colorectal Dis 2020; 35:2089-2097. [PMID: 32696171 DOI: 10.1007/s00384-020-03695-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The incidence of lymph node metastasis (LNM) in colorectal cancer is known to be 2-6%, but little data are available regarding metachronous metastasis confined to isolated LN. The aim of this study is to determine the distribution of isolated LNM and the risk factors for survival of isolated LNM in colorectal cancer. METHODS We retrospectively reviewed consecutive patients with colorectal adenocarcinoma between January 2008 and December 2015 at a tertiary referral center. A total of 5902 patients with biopsy-proven colorectal adenocarcinoma treated via surgery were included. Multivariate Cox proportional hazards analysis was used to identify prognostic factors for overall survival. RESULTS Of the 5902 patients, recurrent cases were 1326. Among the relapsed patients, 301 patients had isolated LNM (22.69%). Para-aortic (48.8%), pelvic (29.9%), and Lung hilum (10.0%) were the most common sites of isolated LNM; there were statistically significant differences in the distribution of isolated LNM between the colon and rectal cancer (p = 0.02). Approximately 80% of isolated LNM were diagnosed within 3 years. Multidisciplinary therapy for LNM, diagnosis time to LNM, the T-stage, and histological type of primary cancer were identified as independent prognostic factors for overall survival. CONCLUSION This study suggests that multidisciplinary management is a potentially effective treatment strategy for isolated LNM. Since time to LNM, the T-stage, and histological type are prognostic factors, an active follow-up program for colorectal cancer is required.
Collapse
Affiliation(s)
- Jeonghee Han
- Division of colorectal surgery, Department of Surgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Kang Young Lee
- Division of colorectal surgery, Department of Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Ku, Seoul, 03722, South Korea
| | - Nam Kyu Kim
- Division of colorectal surgery, Department of Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Ku, Seoul, 03722, South Korea
| | - Byung Soh Min
- Division of colorectal surgery, Department of Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Ku, Seoul, 03722, South Korea.
| |
Collapse
|
13
|
The role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases: an update on its pathological significance and therapeutic potential. Contemp Oncol (Pozn) 2019; 23:187-194. [PMID: 31992949 PMCID: PMC6978756 DOI: 10.5114/wo.2019.91543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LA) is the most common cause of cancer-related death worldwide. Despite the advances over last decade in new targeted therapies, cancer genetics, diagnostics, staging, and surgical techniques as well as new chemotherapy and radiotherapy protocols, the death rate from LA remains high. The tumour microenvironment is composed of several cytokines, one of which is transforming growth factor β1 (TGF-β1), which modulates and mediates the expression of epithelial-mesenchymal transition (EMT), correlated with invasive growth in LAs, and exhibits its pleiotropic effects through binding to transmembrane receptors TβR-1 (also termed activin receptor-like kinases – ALKs) and TβR-2. Accordingly, there is an urgent need to elucidate the molecular mechanisms associated with the tumoural spreading process and therapeutic resistance of this serious pathology. In this review, we briefly discuss the current role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases, and give an overview of our current mechanistic understanding of the TGF-β1-related pathways in brain metastases progression, TGF-β1 pathway inhibitors that could be used for clinical treatment, and examination of models used to study these processes. Finally, we summarise the current progress in the therapeutic approaches targeting TGF-β1.
Collapse
|
14
|
Sprowls SA, Arsiwala TA, Bumgarner JR, Shah N, Lateef SS, Kielkowski BN, Lockman PR. Improving CNS Delivery to Brain Metastases by Blood-Tumor Barrier Disruption. Trends Cancer 2019; 5:495-505. [PMID: 31421906 PMCID: PMC6703178 DOI: 10.1016/j.trecan.2019.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 01/13/2023]
Abstract
Brain metastases encompass nearly 80% of all intracranial tumors. A late stage diagnosis confers a poor prognosis, with patients typically surviving less than 2 years. Poor survival can be equated to limited effective treatment modalities. One reason for the failure rates is the presence of the blood-brain barrier (BBB) and blood-tumor barrier (BTB) that limit the access of potentially effective chemotherapeutics to metastatic lesions. Strategies to overcome these barriers include new small molecule entities capable of crossing into the brain parenchyma, novel formulations of existing chemotherapies, and disruptive techniques. Here, we review BBB physiology and BTB pathophysiology. Additionally, we review the limitations of routinely practiced therapies and three current methods being explored for BBB/BTB disruption for improved delivery of chemotherapy to brain tumors.
Collapse
Affiliation(s)
- Samuel A. Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Tasneem A. Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Jacob R. Bumgarner
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Neal Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Sundus S. Lateef
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Brooke N. Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Paul R. Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| |
Collapse
|
15
|
Mazzola R, Corradini S, Gregucci F, Figlia V, Fiorentino A, Alongi F. Role of Radiosurgery/Stereotactic Radiotherapy in Oligometastatic Disease: Brain Oligometastases. Front Oncol 2019; 9:206. [PMID: 31019891 PMCID: PMC6458247 DOI: 10.3389/fonc.2019.00206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
During the natural history of oncologic diseases, approximately 20-40% of patients affected by cancer will develop brain metastases. Non-small lung cancer, breast cancer, and melanoma are the primaries that are most likely to metastasize into the brain. To date, the role of Radiosurgery/Stereotactic Radiotherapy (SRS/SRT) without Whole brain irradiation (WBRT) is a well-recognized treatment option for patients with limited intracranial disease (1-4 BMs) and a life-expectancy of more than 3-6 months. In the current review, we focused on randomized studies that evaluate the potential benefit of radiosurgery/stereotactic radiotherapy for brain oligometastases. To date, no difference in overall survival has been observed between SRS/SRT alone compared to WBRT plus SRS. Notably, SRS alone achieved higher local control rates compared to WBRT. A possible strength of SRS adoption is the potential decreased neurocognitive impairment.
Collapse
Affiliation(s)
- Rosario Mazzola
- Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Stefanie Corradini
- Radiation Oncology Department, LMU Munich University Hospital, Munich, Germany
| | - Fabiana Gregucci
- Radiation Oncology Department, General Regional Hospital “F. Miulli”, Acquaviva delle Fonti, Italy
| | - Vanessa Figlia
- Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Alba Fiorentino
- Radiation Oncology Department, General Regional Hospital “F. Miulli”, Acquaviva delle Fonti, Italy
| | - Filippo Alongi
- Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
- Radiation Oncology Department, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Mampre D, Ehresman J, Alvarado-Estrada K, Wijesekera O, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Propensity for different vascular distributions and cerebral edema of intraparenchymal brain metastases from different primary cancers. J Neurooncol 2019; 143:115-122. [PMID: 30835021 DOI: 10.1007/s11060-019-03142-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE This study seeks to ascertain whether different primary tumor types have a propensity for brain metastases (BMs) in different cerebral vascular territories and cerebral edema. METHODS Consecutive adult patients who underwent surgical resection of a BM at a tertiary care institution between 2001 and 2011 were retrospectively reviewed. Only patients with the most common primary cancers (lung, breast, skin-melanoma, colon, and kidney) were included. Preoperative MRIs were reviewed to classify all tumors by cerebral vascular territory (anterior cerebral artery-ACA, lenticulostriate, middle cerebral artery-MCA, posterior cerebral artery-PCA, posterior fossa, and watershed), and T2-weighted FLAIR widths were measured. Chi square analyses were performed to determine differences in cerebral vascular distribution by primary tumor type, and one-way ANOVA analyses were performed to determine FLAIR signal differences. RESULTS 669 tumors from 388 patients were classified from lung (n = 316 BMs), breast (n = 144), melanoma (n = 119), renal (n = 47), and colon (n = 43). BMs from breast cancer were less likely to be located in PCA territory (n = 18 [13%]; χ2 = 6.10, p = 0.01). BMs from melanoma were less likely to be located in cerebellar territory (n = 11 [9%]; χ2 = 14.1, p < 0.001), and more likely to be located in lateral (n = 5 [4%]; χ2 = 4.56, p = 0.03) and medial lenticulostriate territories (n = 2 [2%]; χ2 = 6.93, p = 0.009). BMs from breast and melanoma had shorter T2-FLAIR widths, with an average [IQR] of 47.2 [19.6-69.2] mm (p = 0.01) and 41.2 [14.4-62.7] mm (p = 0.002) respectively. Conversely, BMs from renal cancer had longer T2-FLAIR widths (64.2 [43.6-80.8] mm, p = 0.002). CONCLUSIONS These findings suggest that different primary tumor types could have propensities for different cerebral vascular territories and cerebral edema.
Collapse
Affiliation(s)
- David Mampre
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Jeff Ehresman
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Keila Alvarado-Estrada
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Olindi Wijesekera
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
17
|
Oraiopoulou ME, Tzamali E, Tzedakis G, Liapis E, Zacharakis G, Vakis A, Papamatheakis J, Sakkalis V. Integrating in vitro experiments with in silico approaches for Glioblastoma invasion: the role of cell-to-cell adhesion heterogeneity. Sci Rep 2018; 8:16200. [PMID: 30385804 PMCID: PMC6212459 DOI: 10.1038/s41598-018-34521-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma cells adopt migration strategies to invade into the brain parenchyma ranging from individual to collective mechanisms, whose role and dynamics are not yet fully understood. In this work, we explore Glioblastoma heterogeneity and recapitulate its invasive patterns both in vitro, by utilizing primary cells along with the U87MG cell line, and in silico, by adopting discrete, individual cell-based mathematics. Glioblastoma cells are cultured three-dimensionally in an ECM-like substrate. The primary Glioblastoma spheroids adopt a novel cohesive pattern, mimicking perivascular invasion in the brain, while the U87MG adopt a typical, starburst invasive pattern under the same experimental setup. Mathematically, we focus on the role of the intrinsic heterogeneity with respect to cell-to-cell adhesion. Our proposed mathematical approach mimics the invasive morphologies observed in vitro and predicts the dynamics of tumour expansion. The role of the proliferation and migration is also explored showing that their effect on tumour morphology is different per cell type. The proposed model suggests that allowing cell-to-cell adhesive heterogeneity within the tumour population is sufficient for variable invasive morphologies to emerge which remain originally undetectable by conventional imaging, indicating that exploration in pathological samples is needed to improve our understanding and reveal potential patient-specific therapeutic targets.
Collapse
Affiliation(s)
- M-E Oraiopoulou
- Department of Medicine, University of Crete, Heraklion, Crete, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - E Tzamali
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - G Tzedakis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - E Liapis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - G Zacharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - A Vakis
- Department of Medicine, University of Crete, Heraklion, Crete, Greece
- Neurosurgery Clinic, University General Hospital of Heraklion, Crete, Greece
| | - J Papamatheakis
- Gene Expression Laboratory, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - V Sakkalis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
18
|
Mitra D, Clark JW, Shih HA, Oh KS, Brastianos PK, Wo JY, Strickland MR, Curry WT, Parikh AR, Corcoran RB, Ryan DP, Iafrate AJ, Borger DR, Lennerz JK, Hong TS. Enrichment of HER2 Amplification in Brain Metastases from Primary Gastrointestinal Malignancies. Oncologist 2018; 24:193-201. [PMID: 30373904 DOI: 10.1634/theoncologist.2018-0152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In nongastric gastrointestinal (GI) cancers, HER2-positive (HER2+) disease is not common. In breast cancer, HER2 status is associated with increased risk of brain metastases and response to HER2-targeted therapy. The purpose of this project was to compare HER2 status in GI cancer brain metastases versus matched prior sites of disease in order to determine if HER2+ disease is more common intracranially. MATERIALS AND METHODS We identified 28 patients with GI cancer who had craniotomy for brain metastases between 1999 and 2017 with intracranial metastatic tissue available at Massachusetts General Hospital. Twenty-four patients also had tissue from a prior site of disease. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) for HER2 were performed on all samples. A tumor was defined as HER2+ if it had 3+ staining by IHC or amplification by FISH. RESULTS A prior site of disease (including intracranial metastases) was HER2+ for 13% of evaluable patients: 3 of 11 patients with colorectal cancer and no patients with esophageal or pancreatic cancer. The most recent brain metastases were HER2+ for 32% of patients: 2 of 3 esophageal squamous cell carcinomas, 3 of 10 esophageal adenocarcinomas (ACs), 3 of 14 colorectal ACs, and 1 of 1 pancreatic AC. Only 37.5% of patients with HER2+ brain metastasis had concordant HER2+ prior tissue (κ = 0.38, p = .017). CONCLUSION In this cohort of patients with GI cancer with brain metastases, HER2+ status was more common intracranially compared with prior sites of disease. These findings suggest that testing HER2 in patients with GI cancer with brain metastases may lead to additional therapeutic options, regardless of HER2 status in previously examined tissue. IMPLICATIONS FOR PRACTICE HER2 amplification is a well-known driver of oncogenesis in breast cancer, with associated increased risk of brain metastases and response to HER2-directed therapy. In nongastric gastrointestinal (GI) cancers, HER2 amplification is not common and consequently is infrequently tested. The current study shows that brain metastases in patients with GI primary malignancies have a relatively high likelihood of being HER2 positive despite HER2 amplification or overexpression being less commonly found in matched tissue from prior sites of disease. This suggests that regardless of prior molecular testing, patients with GI cancer with brain metastases who have tissue available are likely to benefit from HER2 assessment to identify potential novel therapeutic options.
Collapse
Affiliation(s)
- Devarati Mitra
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeffrey W Clark
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin S Oh
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Priscilla K Brastianos
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew R Strickland
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aparna R Parikh
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryan B Corcoran
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David P Ryan
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Darrell R Borger
- Biomarker Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Nunno A, Johnson MD, Wu G, Li YM. Metastatic prostate cancer mimicking a subdural hematoma: A case report and literature review. J Clin Neurosci 2018; 55:109-112. [PMID: 29980476 DOI: 10.1016/j.jocn.2018.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/24/2018] [Indexed: 11/30/2022]
Abstract
Occurrences of metastatic prostate cancer imitating a subdural hematoma are limited to a small number of case reports, even though prostate cancer spreads to the dura more than other types of cancer. Here, we present the case of a 64 year-old male whose prostate carcinoma's metastasis mimicked a subdural hematoma, and he suffered a middle cerebral artery stroke. Prostate cancer's high rate of progression to the dura is disproportionate to its relatively low rate of brain metastasis. Furthermore, we explore the potential molecular implications of prostate cancer's propensity to spread to the dura.
Collapse
Affiliation(s)
- Andrew Nunno
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, United States
| | - Mahlon D Johnson
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, United States
| | - Guan Wu
- Department of Urology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, United States
| | - Yan Michael Li
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, United States.
| |
Collapse
|
20
|
Bhattacharya R, Panda CK, Nandi S, Mukhopadhyay A. An insight into metastasis: Random or evolving paradigms? Pathol Res Pract 2018; 214:1064-1073. [PMID: 30078401 DOI: 10.1016/j.prp.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Mechanical or fostered molecular events define metastatic cascade. Three distinct sets of molecular events characterize metastasis, viz invasion of extracellular matrix; angiogenesis, vascular dissemination and anoikis resistance; tumor homing and relocation of tumor cells to selective organ. Invasion of extracellular matrix requires epithelial to mesenchymal transition through disrupted lamellopodia formation and contraction of actin cytoskeleton; aberration of Focal adhesion complex formation involving integrins and the extracellular matrix; degradation of extracellular matrix by matrix metalloproteases; faulty immune surveillance in tumor microenvironment and an upregulated proton efflux pump NHE1 in tumors. Vascular dissemination and anoikis resistance depend upon upregulation of integrins, phosphorylation of CDCP1, attenuated apoptotic pathways and upregulation of angiogenesis. Tumor homing depends on recruitment of mesenchymal stem cells, expression on chemokines and growth factors, upregulated stem cell renewal pathways. Despite of many potential challenges in curbing metastasis, future targeted therapies involving immunotherapy, stem cell engineered and oncolytic virus based therapy, pharmacological activation of circadian clock are held promising. To sum up, metastasis is a complex cascade of events and warrants detailed molecular understanding for development of therapeutic strategies.
Collapse
Affiliation(s)
- Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S.P Mukherjee Road, Kolkata, 700026, India.
| | - Sourav Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Ashis Mukhopadhyay
- Department of Haemato-Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| |
Collapse
|
21
|
Mikheev AM, Mikheeva SA, Severs LJ, Funk CC, Huang L, McFaline-Figueroa JL, Schwensen J, Trapnell C, Price ND, Wong S, Rostomily RC. Targeting TWIST1 through loss of function inhibits tumorigenicity of human glioblastoma. Mol Oncol 2018; 12:1188-1202. [PMID: 29754406 PMCID: PMC6026950 DOI: 10.1002/1878-0261.12320] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022] Open
Abstract
TWIST1 (TW) is a bHLH transcription factor (TF) and master regulator of the epithelial-to-mesenchymal transition (EMT). In vitro, TW promotes mesenchymal change, invasion, and self-renewal in glioblastoma (GBM) cells. However, the potential therapeutic relevance of TW has not been established through loss-of-function studies in human GBM cell xenograft models. The effects of TW loss of function (gene editing and knockdown) on inhibition of tumorigenicity of U87MG and GBM4 glioma stem cells were tested in orthotopic xenograft models and conditional knockdown in established flank xenograft tumors. RNAseq and the analysis of tumors investigated putative TW-associated mechanisms. Multiple bioinformatic tools revealed significant alteration of ECM, membrane receptors, signaling transduction kinases, and cytoskeleton dynamics leading to identification of PI3K/AKT signaling. We experimentally show alteration of AKT activity and periostin (POSTN) expression in vivo and/or in vitro. For the first time, we show that effect of TW knockout inhibits AKT activity in U87MG cells in vivo independent of PTEN mutation. The clinical relevance of TW and candidate mechanisms was established by analysis of the TCGA and ENCODE databases. TW expression was associated with decreased patient survival and LASSO regression analysis identified POSTN as one of top targets of TW in human GBM. While we previously demonstrated the role of TW in promoting EMT and invasion of glioma cells, these studies provide direct experimental evidence supporting protumorigenic role of TW independent of invasion in vivo and the therapeutic relevance of targeting TW in human GBM. Further, the role of TW driving POSTN expression and AKT signaling suggests actionable targets, which could be leveraged to mitigate the oncogenic effects of TW in GBM.
Collapse
Affiliation(s)
- Andrei M Mikheev
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Svetlana A Mikheeva
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Liza J Severs
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | - Lei Huang
- Department of Systems Medicine& Bioengineering, Houston Methodist Hospital and Research Institute, Weil Cornell Medical College, Houston, TX, USA
| | | | - Jeanette Schwensen
- Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Stephen Wong
- Department of Systems Medicine& Bioengineering, Houston Methodist Hospital and Research Institute, Weil Cornell Medical College, Houston, TX, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018; 18:296-312. [PMID: 29546880 PMCID: PMC6790333 DOI: 10.1038/nrc.2018.15] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.
Collapse
Affiliation(s)
- Christina H. Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- Department of Pharmacology, Michigan Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- ;
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, USA
- ;
| |
Collapse
|
23
|
Syed S, Karambizi DI, Baker A, Groh DM, Toms SA. A Comparative Report on Intracranial Tumor-to-Tumor Metastasis and Collision Tumors. World Neurosurg 2018; 116:454-463.e2. [PMID: 29704691 DOI: 10.1016/j.wneu.2018.04.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND The incidence of 2 distinct tumor types occupying the same anatomic location is rarely observed and may be accounted for by 2 separate mechanisms: tumor-to-tumor metastasis and collision tumors, where 2 adjacent tumors invade one another. These rare phenomena arise from distinct mechanisms, which may affect their preoperative recognition, surgical approach, and postoperative care. We review 2 cases, highlighting their identification and perioperative management. CASE DESCRIPTIONS In case 1, a 71-year-old patient with a history of sphenoid wing meningioma presented with headache, nausea, and vomiting and was found to have a mass with meningioma and glioblastoma (GBM) characteristics. In case 2, a 61-year-old man with worsening dysmetria in the setting of unintentional weight loss presented with multiple masses in the pelvis, abdomen, lung, and brain. The brain masses were classified as meningioma with intratumoral metastatic adenocarcinoma foci. CONCLUSIONS Preoperative recognition of collision tumor and tumor-to-tumor metastasis is imperative for surgical planning, including selecting regions for tissue biopsy and goals of care. Meticulous evaluation of history and imaging and thorough pathologic analysis allow for effective diagnosis and optimal patient outcomes.
Collapse
Affiliation(s)
- Sohail Syed
- Department of Neurosurgery, Brown University, Providence, Rhode Island, USA
| | - David I Karambizi
- Warren Alpert Medical School of Brown University, Brown University, Providence, Rhode Island, USA
| | - Amanda Baker
- Department of Radiology, Brown University, Providence, Rhode Island, USA
| | - Darren M Groh
- Department of Neuropathology, Brown University, Providence, Rhode Island, USA
| | - Steven A Toms
- Department of Neurosurgery, Brown University, Providence, Rhode Island, USA; Normal Prince Neurosciences Institute, Brown University, Providence, Rhode Island, USA; Warren Alpert Medical School of Brown University, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
24
|
Chahine G, Ibrahim T, Felefly T, El-Ahmadie A, Freiha P, El-Khoury L, Khalife-Saleh N, Saleh K. Colorectal cancer and brain metastases: An aggressive disease with a different response to treatment. TUMORI JOURNAL 2018; 105:427-433. [PMID: 29714653 DOI: 10.1177/0300891618765541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Brain metastases (BM) are rare in colorectal cancer (CRC) and are associated with a dismal prognosis. This work aims to report the rate of BM in CRC patients treated in a single institution, along with survival and prognostic factors. METHODS Medical charts for patients with histologically proven CRC were retrospectively reviewed. RESULTS A total of 538 patients were identified, of whom 33% developed any metastatic disease and 4.4% presented BM. Lung was the most frequently associated metastatic site (in 68% of the cases). The only factor independently associated with BM development was the presence of metastatic disease at the time of initial presentation. The median duration from initial diagnosis to BM development was 38.6 months (SD 29.1 months). Median survival after BM development was 62 days (95% confidence interval [CI] 56-68). Patients diagnosed with BM within 1 year of cancer diagnosis responded significantly better to treatment than those who acquired BM later, with a median survival after BM diagnosis of 261 days versus 61 days, respectively (p = .002). Patients with BM who received antiangiogenic therapy had an improved median survival compared to those who did not (151 days vs 59 days, p = 0.02; hazard ratio for death 0.29 [95% CI 0.09-0.94]). CONCLUSION CRC with BM is an aggressive disease resistant to standard treatment and is associated with poor outcomes. Adding antiangiogenic therapy might be of value for those patients. Patients with BM developing early in the disease course might respond better to treatment.
Collapse
Affiliation(s)
- Georges Chahine
- Hematology-Oncology Department, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Tony Ibrahim
- Hematology-Oncology Department, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon.,Medical Oncology Department, Gustave Roussy Institute, Villejuif, France
| | - Tony Felefly
- Radiation Oncology Department, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Abir El-Ahmadie
- Hematology-Oncology Department, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Pamela Freiha
- Hematology-Oncology Department, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Lionel El-Khoury
- General Surgery Department, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Nadine Khalife-Saleh
- Hematology-Oncology Department, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon.,Medical Oncology Department, Gustave Roussy Institute, Villejuif, France
| | - Khalil Saleh
- Hematology-Oncology Department, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon.,Medical Oncology Department, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
25
|
Metzler VM, Pritz C, Riml A, Romani A, Tuertscher R, Steinbichler T, Dejaco D, Riechelmann H, Dudás J. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma. Tumour Biol 2017; 39:1010428317705507. [PMID: 29157176 PMCID: PMC6037299 DOI: 10.1177/1010428317705507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast–secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial–mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial–mesenchymal transition–related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.
Collapse
Affiliation(s)
- Veronika Maria Metzler
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Pritz
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Riml
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Romani
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Tuertscher
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Steinbichler
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Dejaco
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Singh M, Bakhshinyan D, Venugopal C, Singh SK. Preclinical Modeling and Therapeutic Avenues for Cancer Metastasis to the Central Nervous System. Front Oncol 2017; 7:220. [PMID: 28971065 PMCID: PMC5609558 DOI: 10.3389/fonc.2017.00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
Metastasis is the dissemination of cells from the primary tumor to other locations within the body, and continues to be the predominant cause of death among cancer patients. Metastatic progression within the adult central nervous system is 10 times more frequent than primary brain tumors. Metastases affecting the brain parenchyma and leptomeninges are associated with grave prognosis, and even after successful control of the primary tumor the median survival is a dismal 2-3 months with treatment options typically limited to palliative care. Current treatment options for brain metastases (BM) and disseminated brain tumors are scarce, and the improvement of novel targeted therapies requires a broader understanding of the biological complexity that characterizes metastatic progression. In this review, we provide insight into patterns of BM progression and leptomeningeal spread, outlining the development of clinically relevant in vivo models and their contribution to the discovery of innovative cancer therapies. In vivo models paired with manipulation of in vitro methods have expanded the tools available for investigators to develop agents that can be used to prevent or treat metastatic disease. The knowledge gained from the use of such models can ultimately lead to the prevention of metastatic dissemination and can extend patient survival by transforming a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.
Collapse
Affiliation(s)
- Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Surgery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Nakajima M, Nagahashi M, Rashid OM, Takabe K, Wakai T. The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. Tumour Biol 2017; 39:1010428317699133. [PMID: 28381169 DOI: 10.1177/1010428317699133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elucidating the interaction between cancer and non-cancer cells, such as blood vessels, immune cells, and other stromal cells, in the tumor microenvironment is imperative in understanding the mechanisms underlying cancer progression and metastasis, which is expected to lead to the development of new therapeutics. Sphingosine-1-phosphate is a bioactive lipid mediator that promotes cell survival, proliferation, migration, angiogenesis/lymphangiogenesis, and immune responsiveness, which are all factors involved in cancer progression. Sphingosine-1-phosphate is generated inside cancer cells by sphingosine kinases and then exported into the tumor microenvironment. Although sphingosine-1-phosphate is anticipated to play an important role in the tumor microenvironment and cancer progression, determining sphingosine-1-phosphate levels in the tumor microenvironment has been difficult due to a lack of established methods. We have recently developed a method to measure sphingosine-1-phosphate levels in the interstitial fluid that bathes cancer cells in the tumor microenvironment, and reported that high levels of sphingosine-1-phosphate exist in the tumor interstitial fluid. Importantly, sphingosine-1-phosphate can be secreted from cancer cells and non-cancer components such as immune cells and vascular/lymphatic endothelial cells in the tumor microenvironment. Furthermore, sphingosine-1-phosphate affects both cancer and non-cancer cells in the tumor microenvironment promoting cancer progression. Here, we review the roles of sphingosine-1-phosphate in the interaction between cancer and non-cancer cells in tumor microenvironment, and discuss future possibilities for targeted therapies against sphingosine-1-phosphate signaling for cancer patients.
Collapse
Affiliation(s)
- Masato Nakajima
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masayuki Nagahashi
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Omar M Rashid
- 2 Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Hospital, Fort Lauderdale, FL, USA.,3 Massachusetts General Hospital, Boston, MA, USA.,4 Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kazuaki Takabe
- 5 Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,6 Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| | - Toshifumi Wakai
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
28
|
Dai W, Zhu H, Chen G, Gu H, Gu Y, Sun X, Zeng X. Orchestration of the crosstalk between astrocytes and cancer cells affects the treatment and prognosis of lung cancer sufferers with brain metastasis. J Thorac Dis 2016; 8:E1450-E1454. [PMID: 28066629 DOI: 10.21037/jtd.2016.11.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain metastasis is an inauspicious consequence of lung cancer. However, the majority of cancer cells that seep into the brain died of unknown causes, only a few survived and developed into metastatic brain tumor. Communication between cancer cells and host tissue is viewed as an essential event during metastasis, but little is known about the accurate control of this processes. Within the lesion of brain metastasis, abundant activated astrocytes are observed with lung cancer cells. Previous studies have demonstrated that the astrocyte network served a protective role in the central nervous system (CNS) and most malignant cells that seep into the brain perish were rejected by astrocytes. Reactive astrocytes generated protease plasmin and cytotoxic cytokines as a defense against metastatic invasion. But recently, other investigators argued that tumor cells interactions with astrocytes promote the progression of brain metastases and protect them from the cytotoxic effects of chemotherapy. In this article, we review the architecture between astrocytes and infiltrated cancer cells, and raise a future perspective on therapeutic potential of targeting crosstalk modulators against brain metastasis.
Collapse
Affiliation(s)
- Wangshu Dai
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;; Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongcheng Zhu
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guangzong Chen
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;; Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Gu
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yihang Gu
- Department of Geratology, Jiangsu Jiangyin People's Hospital, Jiangyin 214400, China
| | - Xinchen Sun
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoning Zeng
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
29
|
Abstract
SIGNIFICANCE Breast cancer is a unique disease characterized by heterogeneous cell populations causing roadblocks in therapeutic medicine, owing to its complex etiology and primeval understanding of the biology behind its genesis, progression, and sustenance. Globocan statistics indicate over 1.7 million new breast cancer diagnoses in 2012, accounting for 25% of all cancer morbidities. RECENT ADVANCES Despite these dismal statistics, the introduction of molecular gene signature platforms, progressive therapeutic approaches in diagnosis, and management of breast cancer has led to more effective treatment strategies and control measures concurrent with an equally reassuring decline in the mortality rate. CRITICAL ISSUES However, an enormous body of research in this area is requisite as high mortality associated with metastatic and/or drug refractory tumors continues to present a therapeutic challenge. Despite advances in systemic chemotherapy, the median survival of patients harboring metastatic breast cancers continues to be below 2 years. FUTURE DIRECTIONS Hence, a massive effort to scrutinize and evaluate chemotherapeutics on the basis of the molecular classification of these cancers is undertaken with the objective to devise more attractive and feasible approaches to treat breast cancers and improve patients' quality of life. This review aims to summarize the current understanding of the biology of breast cancer as well as challenges faced in combating breast cancer, with special emphasis on the current battery of treatment strategies. We will also try and gain perspective from recent encounters on novel findings responsible for the progression and metastatic transformation of breast cancer cells in an endeavor to develop more targeted treatment options. Antioxid. Redox Signal. 25, 337-370.
Collapse
Affiliation(s)
- Deepika Raman
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Chuan Han Jonathan Foo
- 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore
| | - Marie-Veronique Clement
- 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,4 National University Cancer Institute , NUHS, Singapore, Singapore .,5 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
30
|
Yang KR, Mooney SM, Zarif JC, Coffey DS, Taichman RS, Pienta KJ. Niche inheritance: a cooperative pathway to enhance cancer cell fitness through ecosystem engineering. J Cell Biochem 2015; 115:1478-85. [PMID: 24700698 PMCID: PMC4143896 DOI: 10.1002/jcb.24813] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 02/03/2023]
Abstract
Cancer cells can be described as an invasive species that is able to establish itself in a new environment. The concept of niche construction can be utilized to describe the process by which cancer cells terraform their environment, thereby engineering an ecosystem that promotes the genetic fitness of the species. Ecological dispersion theory can then be utilized to describe and model the steps and barriers involved in a successful diaspora as the cancer cells leave the original host organ and migrate to new host organs to successfully establish a new metastatic community. These ecological concepts can be further utilized to define new diagnostic and therapeutic areas for lethal cancers. 115: 1478–1485, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kimberline R Yang
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
31
|
Blecharz KG, Colla R, Rohde V, Vajkoczy P. Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell 2015; 107:342-71. [PMID: 26032862 DOI: 10.1111/boc.201500011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022]
Abstract
Cerebral metastases are the most common brain neoplasms seen clinically in the adults and comprise more than half of all brain tumours. Actual treatment options for brain metastases that include surgical resection, radiotherapy and chemotherapy are rarely curative, although palliative treatment improves survival and life quality of patients carrying brain-metastatic tumours. Chemotherapy in particular has also shown limited or no activity in brain metastasis of most tumour types. Many chemotherapeutic agents used systemically do not cross the blood-brain barrier (BBB), whereas others may transiently weaken the BBB and allow extravasation of tumour cells from the circulation into the brain parenchyma. Increasing evidence points out that the interaction between the BBB and tumour cells plays a key role for implantation and growth of brain metastases in the central nervous system. The BBB, as the tightest endothelial barrier, prevents both early detection and treatment by creating a privileged microenvironment. Therefore, as observed in several in vivo studies, precise targetting the BBB by a specific transient opening of the structure making it permeable for therapeutic compounds, might potentially help to overcome this difficult clinical problem. Moreover, a better understanding of the molecular features of the BBB, its interrelation with metastatic tumour cells and the elucidation of cellular mechanisms responsible for establishing cerebral metastasis must be clearly outlined in order to promote treatment modalities that particularly involve chemotherapy. This in turn would substantially expand the survival and quality of life of patients with brain metastasis, and potentially increase the remission rate. Therefore, the focus of this review is to summarise the current knowledge on the role and function of the BBB in cancer metastasis.
Collapse
Affiliation(s)
- Kinga G Blecharz
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany
| | - Ruben Colla
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Veit Rohde
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| |
Collapse
|
32
|
Xing F, Sharma S, Liu Y, Mo YY, Wu K, Zhang YY, Pochampally R, Martinez LA, Lo HW, Watabe K. miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-α. Oncogene 2015; 34:4890-900. [PMID: 25659578 PMCID: PMC4530094 DOI: 10.1038/onc.2014.412] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
The median survival time of breast cancer patients with brain metastasis is less than 6 months, and even a small metastatic lesion often causes severe neurological disabilities. Because of the location of metastatic lesions, a surgical approach is limited and most chemotherapeutic drugs are ineffective due to the blood brain barrier (BBB). Despite this clinical importance, the molecular basis of the brain metastasis is poorly understood. In this study, we have isolated RNA from samples obtained from primary breast tumors and also from brain metastatic lesions followed by microRNA profiling analysis. Our results revealed that the miR-509 is highly expressed in the primary tumors, while the expression of this microRNA is significantly decreased in the brain metastatic lesions. MicroRNA target prediction and the analysis of cytokine array for the cells ectopically expressed with miR-509 demonstrated that this microRNA was capable of modulating two genes essential for brain invasion, RhoC and TNFα that affect the invasion of cancer cells and permeability of BBB, respectively. Importantly, high levels of TNFα and RhoC-induced MMP9 were significantly correlated with brain metastasis-free survival of breast cancer patients. Furthermore, the results of our in vivo experiments indicate that miR-509 significantly suppressed the ability of cancer cells to metastasize to the brain. These findings suggest that miR-509 plays a critical role in brain metastasis of breast cancer by modulating the RhoC-TNFα network and that this miR-509 axis may represent a potential therapeutic target or serve as a prognostic tool for brain metastasis.
Collapse
Affiliation(s)
- F Xing
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - S Sharma
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Y Liu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Y-Y Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - K Wu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Y-Y Zhang
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - R Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - L A Martinez
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - H-W Lo
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - K Watabe
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
33
|
Brain metastasis-initiating cells: survival of the fittest. Int J Mol Sci 2014; 15:9117-33. [PMID: 24857921 PMCID: PMC4057778 DOI: 10.3390/ijms15059117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Brain metastases (BMs) are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs) or cancer stem cells (CSCs) hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs). These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche.
Collapse
|
34
|
Alternol inhibits migration and invasion of human hepatocellular carcinoma cells by targeting epithelial-to-mesenchymal transition. Tumour Biol 2014; 35:1627-35. [PMID: 24078466 DOI: 10.1007/s13277-013-1224-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/16/2013] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. Such deaths are due, in large part, to its propensity to metastasize. We have examined the effect of alternol on human HCC cells and the underlying molecular mechanism. Therapeutic effects of alternol on cancer cell migration and invasion were analyzed with Boyden chamber and wound healing assays. Effects of alternol on the levels of various proteins involved in cancer cell migration and invasion were determined with gelatin zymography, immunofluorescence, and Western blotting. As shown, treatment with alternol has resulted in a concentration-dependent inhibition of cell migration and invasion of HepG2 cells. The inhibition of HCC invasion by alternol was associated with the suppression of MMP-9 expression and reversal of epithelial-to-mesenchymal transition (EMT). The above results indicated that alternol has the ability to inhibit the migration and invasion of human HCC cells by reversing the process of EMT, suggesting that alternol may be developed as an alternative drug for the treatment of HCC.
Collapse
|
35
|
McVeigh TP, Choi JK, Miller NM, Green AJ, Kerin MJ. Lobular breast cancer in a CDH1 splice site mutation carrier: case report and review of the literature. Clin Breast Cancer 2013; 14:e47-51. [PMID: 24333020 DOI: 10.1016/j.clbc.2013.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/03/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Terri P McVeigh
- Discipline of Surgery, National University of Ireland Galway, Galway, Ireland.
| | - Joon K Choi
- Discipline of Surgery, National University of Ireland Galway, Galway, Ireland
| | - Nicola M Miller
- Discipline of Surgery, National University of Ireland Galway, Galway, Ireland
| | - Andrew J Green
- National Centre for Medical Genetics, Our Lady's Hospital for Sick Children, Crumlin, Dublin, Ireland
| | - Michael J Kerin
- Discipline of Surgery, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
36
|
Michelhaugh SK, Mittal S. Towards a Targeted Molecular Approach for Brain Metastases. JOURNAL OF SPINE & NEUROSURGERY 2013; Suppl 1:S1-e002. [PMID: 25419531 PMCID: PMC4238290 DOI: 10.4172/2325-9701.s1-e002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Sharon K Michelhaugh
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
37
|
Bollig-Fischer A, Michelhaugh S, Ali-Fehmi R, Mittal S. The molecular genomics of metastatic brain tumours. ACTA ACUST UNITED AC 2013; 1. [PMID: 25400938 DOI: 10.13172/2052-9635-1-1-759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Metastatic brain tumours remain an intractable clinical problem despite notable advances in the treatment of the primary cancers. It is estimated that 30-40% of breast and lung cancer patients will develop brain metastases. Typically, brain lesions are not diagnosed until patients exhibit neurological symptoms because there are currently no tests that can predict which patients will be afflicted. Brain metastases are resistant to current chemotherapies, and despite surgical resection and radiotherapy, the prognosis for these patients remains very poor with an average survival of only 6-9 months. Cancer is ultimately a genetic disease, involving patient genetics and aberrant tumour genomics; therefore the pursuit of an explanation for why or how brain metastases occur requires investigation of the associated somatic mutations. In this article, we review the current literature surrounding the molecular and genome-based mechanistic evidence to indicate driver oncogenes that hold potential biomarkers for risk, or therapeutic targets for treatment of brain metastases. CONCLUSION Patients afflicted with metastatic brain tumours are in dire need of more effective therapies, and clinicians need predictive laboratory tests to identify patients at risk of developing metastatic brain tumours. The as yet unrealized comprehensive analysis of metastatic brain tumour genomics is necessary to meet these needs. Moreover, without improved understanding of the genomic aberrations that drive metastatic brain tumours, development of biomarkers and molecularly targeted therapies will remain stalled and patient outcomes will continue to be dismal.
Collapse
Affiliation(s)
- A Bollig-Fischer
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA ; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sk Michelhaugh
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Ali-Fehmi
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA ; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - S Mittal
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA ; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|