1
|
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, Wang Y. Soft Bioelectronics for Therapeutics. ACS NANO 2023; 17:17634-17667. [PMID: 37677154 DOI: 10.1021/acsnano.3c02513] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhongtai Zhu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yunfan Zou
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
2
|
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches. Polymers (Basel) 2022; 14:2963. [PMID: 35890738 PMCID: PMC9322801 DOI: 10.3390/polym14142963] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Translation of novel therapies for brain cancer into clinical practice is of the utmost importance as primary brain tumors are responsible for more than 200,000 deaths worldwide each year. While many research efforts have been aimed at improving survival rates over the years, prognosis for patients with glioblastoma and other primary brain tumors remains poor. Safely delivering chemotherapeutic drugs and other anti-cancer compounds across the blood-brain barrier and directly to tumor cells is perhaps the greatest challenge in treating brain cancer. Polymeric nanoparticles (NPs) are powerful, highly tunable carrier systems that may be able to overcome those obstacles. Several studies have shown appropriately-constructed polymeric NPs cross the blood-brain barrier, increase drug bioavailability, reduce systemic toxicity, and selectively target central nervous system cancer cells. While no studies relating to their use in treating brain cancer are in clinical trials, there is mounting preclinical evidence that polymeric NPs could be beneficial for brain tumor therapy. This review includes a variety of polymeric NPs and how their associated composition, surface modifications, and method of delivery impact their capacity to improve brain tumor therapy.
Collapse
Affiliation(s)
- Chad A. Caraway
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- NIH-Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizabeth E. Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- University of Mississippi School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Anita Kalluri
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Navya Kunadi
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Betty M. Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| |
Collapse
|
3
|
Ene CI, Nerva JD, Morton RP, Barkley AS, Barber JK, Ko AL, Silbergeld DL. Safety and efficacy of carmustine (BCNU) wafers for metastatic brain tumors. Surg Neurol Int 2016; 7:S295-9. [PMID: 27217968 PMCID: PMC4866053 DOI: 10.4103/2152-7806.181987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/22/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Carmustine (BCNU) wafers (Gliadel) prolongs local disease control and progression-free survival (PFS) in patients with malignant gliomas. However, in metastatic brain tumors, there is a paucity of evidence in support of its safety and efficacy. The goal of this study was to assess the safety and efficacy of Gliadel wafers in patients with metastatic brain tumors. METHODS We retrospectively reviewed the University of Washington experience with Gliadel wafers for metastatic brain tumors between 2000 and 2015. RESULTS Gliadel wafers were used in 14 patients with metastatic brain tumors during the period reviewed. There were no postoperative seizures, strokes, or hemorrhages. There was one postoperative wound infection necessitating return to the operating room. The mean time to tumor progression (n = 7) and death (n = 5) after Gliadel wafer implantation was 2.5 and 2.9 years, respectively. Age was the only variable affecting PFS in patients receiving Gliadel wafers. Patients <53 years old (n = 7) had a PFS of 0.52 years, whereas patients >53 years old (n = 7) had a PFS of 4.29 years (P = 0.02). There was no significant difference in PFS in relation to presenting Karnofsky Performance Status (P = 0.26), number of brain metastasis (P = 0.82), tumor volume (P = 0.54), prior surgery (P = 0.57), or prior radiation (P = 0.41). There were no significant differences in the mean survival in relationship to any variable including age. CONCLUSIONS BCNU wafers are a safe and a potentially efficacious adjunct to surgery and radiation for improving local disease control in metastatic brain tumors. Larger studies, however, are needed to examine overall efficacy and tumor specific efficacy.
Collapse
Affiliation(s)
- Chibawanye I Ene
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - John D Nerva
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Ryan P Morton
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Ariana S Barkley
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jason K Barber
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Rodriguez-Aller M, Guillarme D, Veuthey JL, Gurny R. Strategies for formulating and delivering poorly water-soluble drugs. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.05.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Lukas RV, Lesniak MS, Salgia R. Brain metastases in non-small-cell lung cancer: better outcomes through current therapies and utilization of molecularly targeted approaches. CNS Oncol 2014; 3:61-75. [PMID: 25054901 PMCID: PMC6128200 DOI: 10.2217/cns.13.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) patients experience a high incidence of brain metastases, de novo and recurrent. We review the mechanisms of brain metastases and promising NSCLC molecular markers to delineate potential future therapeutic targets. Discussed are the current and previously utilized roles of surgery, radiation (both therapeutic and prophylactic), and systemic therapies in the treatment of NSCLC brain metastases. Future directions for treatment of NSCLC brain metastases will conclude our review.
Collapse
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, University of Chicago, Chicago, IL, USA.
| | | | | |
Collapse
|