1
|
Fatemi MY, Lu Y, Diallo AB, Srinivasan G, Azher ZL, Christensen BC, Salas LA, Tsongalis GJ, Palisoul SM, Perreard L, Kolling FW, Vaickus LJ, Levy JJ. An initial game-theoretic assessment of enhanced tissue preparation and imaging protocols for improved deep learning inference of spatial transcriptomics from tissue morphology. Brief Bioinform 2024; 25:bbae476. [PMID: 39367648 PMCID: PMC11452536 DOI: 10.1093/bib/bbae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/19/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
The application of deep learning to spatial transcriptomics (ST) can reveal relationships between gene expression and tissue architecture. Prior work has demonstrated that inferring gene expression from tissue histomorphology can discern these spatial molecular markers to enable population scale studies, reducing the fiscal barriers associated with large-scale spatial profiling. However, while most improvements in algorithmic performance have focused on improving model architectures, little is known about how the quality of tissue preparation and imaging can affect deep learning model training for spatial inference from morphology and its potential for widespread clinical adoption. Prior studies for ST inference from histology typically utilize manually stained frozen sections with imaging on non-clinical grade scanners. Training such models on ST cohorts is also costly. We hypothesize that adopting tissue processing and imaging practices that mirror standards for clinical implementation (permanent sections, automated tissue staining, and clinical grade scanning) can significantly improve model performance. An enhanced specimen processing and imaging protocol was developed for deep learning-based ST inference from morphology. This protocol featured the Visium CytAssist assay to permit automated hematoxylin and eosin staining (e.g. Leica Bond), 40×-resolution imaging, and joining of multiple patients' tissue sections per capture area prior to ST profiling. Using a cohort of 13 pathologic T Stage-III stage colorectal cancer patients, we compared the performance of models trained on slide prepared using enhanced versus traditional (i.e. manual staining and low-resolution imaging) protocols. Leveraging Inceptionv3 neural networks, we predicted gene expression across serial, histologically-matched tissue sections using whole slide images (WSI) from both protocols. The data Shapley was used to quantify and compare marginal performance gains on a patient-by-patient basis attributed to using the enhanced protocol versus the actual costs of spatial profiling. Findings indicate that training and validating on WSI acquired through the enhanced protocol as opposed to the traditional method resulted in improved performance at lower fiscal cost. In the realm of ST, the enhancement of deep learning architectures frequently captures the spotlight; however, the significance of specimen processing and imaging is often understated. This research, informed through a game-theoretic lens, underscores the substantial impact that specimen preparation/imaging can have on spatial transcriptomic inference from morphology. It is essential to integrate such optimized processing protocols to facilitate the identification of prognostic markers at a larger scale.
Collapse
Affiliation(s)
- Michael Y Fatemi
- Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA
| | - Yunrui Lu
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, USA
| | - Alos B Diallo
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, USA
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH 03756, USA
- Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH 03756, USA
| | - Gokul Srinivasan
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, USA
| | - Zarif L Azher
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Brock C Christensen
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH 03756, USA
| | - Lucas A Salas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH 03756, USA
| | - Gregory J Tsongalis
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, USA
| | - Scott M Palisoul
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, USA
| | - Laurent Perreard
- Genomics Shared Resource, Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | - Fred W Kolling
- Genomics Shared Resource, Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | - Louis J Vaickus
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, USA
| | - Joshua J Levy
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, USA
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH 03756, USA
- Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH 03756, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH 03756, USA
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Munari E, Scarpa A, Cima L, Pozzi M, Pagni F, Vasuri F, Marletta S, Dei Tos AP, Eccher A. Cutting-edge technology and automation in the pathology laboratory. Virchows Arch 2024; 484:555-566. [PMID: 37930477 PMCID: PMC11062949 DOI: 10.1007/s00428-023-03637-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023]
Abstract
One of the goals of pathology is to standardize laboratory practices to increase the precision and effectiveness of diagnostic testing, which will ultimately enhance patient care and results. Standardization is crucial in the domains of tissue processing, analysis, and reporting. To enhance diagnostic testing, innovative technologies are also being created and put into use. Furthermore, although problems like algorithm training and data privacy issues still need to be resolved, digital pathology and artificial intelligence are emerging in a structured manner. Overall, for the field of pathology to advance and for patient care to be improved, standard laboratory practices and innovative technologies must be adopted. In this paper, we describe the state-of-the-art of automation in pathology laboratories in order to lead technological progress and evolution. By anticipating laboratory needs and demands, the aim is to inspire innovation tools and processes as positively transformative support for operators, organizations, and patients.
Collapse
Affiliation(s)
- Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Piazza Del Mercato, 15, 25121, Brescia, BS, Italy.
| | - Aldo Scarpa
- Pathology Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
| | - Luca Cima
- Pathology Unit, Department of Laboratory Medicine, Santa Chiara Hospital, APSS, Trento, Italy
| | - Matteo Pozzi
- Bruno Kessler Foundation, Trento, Italy
- University of Trento, CIBIO Department, Trento, Italy
| | - Fabio Pagni
- Pathology Unit, Department of Medicine and Surgery, University of Milano-Bicocca, IRCCS Fondazione San Gerardo Dei Tintori, Monza, Italy
| | - Francesco Vasuri
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Marletta
- Pathology Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Albino Eccher
- Section of Pathology, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| |
Collapse
|
3
|
Ahmed A, Abdel-Rahman D, Hantash EM. Role of canagliflozin in ameliorating isoprenaline induced cardiomyocyte oxidative stress via the heme oxygenase-1 mediated pathway. Biotech Histochem 2023; 98:593-605. [PMID: 37779487 DOI: 10.1080/10520295.2023.2262390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Canagliflozin (CZ) is commonly prescribed for management of type-2 diabetes mellitus (T2DM); it also can reduce the risk of myocardial infarction. We used 80 albino Wistar rats to investigate the cardioprotective potential of CZ against oxidative stress caused by administration of isoprenaline (ISO). We found that ISO stimulates production of reactive oxygen species and that CZ administration caused up-regulation of antioxidants and down-regulation of oxidants due to nuclear factor erythroid-2 related factor-2, as well as by enhancement of the heme oxygenase-1 mediated cascade. CZ monotherapy may play a cardioprotective role in diabetic patients. CZ possesses strong antioxidant potential that ameliorates cardiac damage induced by ISO administration.
Collapse
Affiliation(s)
- Ahmed Ahmed
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, Egypt
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Dina Abdel-Rahman
- Department of Pathology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ehab M Hantash
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Fatemi MY, Lu Y, Diallo AB, Srinivasan G, Azher ZL, Christensen BC, Salas LA, Tsongalis GJ, Palisoul SM, Perreard L, Kolling FW, Vaickus LJ, Levy JJ. The Overlooked Role of Specimen Preparation in Bolstering Deep Learning-Enhanced Spatial Transcriptomics Workflows. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296700. [PMID: 37873287 PMCID: PMC10593052 DOI: 10.1101/2023.10.09.23296700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The application of deep learning methods to spatial transcriptomics has shown promise in unraveling the complex relationships between gene expression patterns and tissue architecture as they pertain to various pathological conditions. Deep learning methods that can infer gene expression patterns directly from tissue histomorphology can expand the capability to discern spatial molecular markers within tissue slides. However, current methods utilizing these techniques are plagued by substantial variability in tissue preparation and characteristics, which can hinder the broader adoption of these tools. Furthermore, training deep learning models using spatial transcriptomics on small study cohorts remains a costly endeavor. Necessitating novel tissue preparation processes enhance assay reliability, resolution, and scalability. This study investigated the impact of an enhanced specimen processing workflow for facilitating a deep learning-based spatial transcriptomics assessment. The enhanced workflow leveraged the flexibility of the Visium CytAssist assay to permit automated H&E staining (e.g., Leica Bond) of tissue slides, whole-slide imaging at 40x-resolution, and multiplexing of tissue sections from multiple patients within individual capture areas for spatial transcriptomics profiling. Using a cohort of thirteen pT3 stage colorectal cancer (CRC) patients, we compared the efficacy of deep learning models trained on slide prepared using an enhanced workflow as compared to the traditional workflow which leverages manual tissue staining and standard imaging of tissue slides. Leveraging Inceptionv3 neural networks, we aimed to predict gene expression patterns across matched serial tissue sections, each stemming from a distinct workflow but aligned based on persistent histological structures. Findings indicate that the enhanced workflow considerably outperformed the traditional spatial transcriptomics workflow. Gene expression profiles predicted from enhanced tissue slides also yielded expression patterns more topologically consistent with the ground truth. This led to enhanced statistical precision in pinpointing biomarkers associated with distinct spatial structures. These insights can potentially elevate diagnostic and prognostic biomarker detection by broadening the range of spatial molecular markers linked to metastasis and recurrence. Future endeavors will further explore these findings to enrich our comprehension of various diseases and uncover molecular pathways with greater nuance. Combining deep learning with spatial transcriptomics provides a compelling avenue to enrich our understanding of tumor biology and improve clinical outcomes. For results of the highest fidelity, however, effective specimen processing is crucial, and fostering collaboration between histotechnicians, pathologists, and genomics specialists is essential to herald this new era in spatial transcriptomics-driven cancer research.
Collapse
|
5
|
Lara H, Li Z, Abels E, Aeffner F, Bui MM, ElGabry EA, Kozlowski C, Montalto MC, Parwani AV, Zarella MD, Bowman D, Rimm D, Pantanowitz L. Quantitative Image Analysis for Tissue Biomarker Use: A White Paper From the Digital Pathology Association. Appl Immunohistochem Mol Morphol 2021; 29:479-493. [PMID: 33734106 PMCID: PMC8354563 DOI: 10.1097/pai.0000000000000930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/12/2021] [Indexed: 01/19/2023]
Abstract
Tissue biomarkers have been of increasing utility for scientific research, diagnosing disease, and treatment response prediction. There has been a steady shift away from qualitative assessment toward providing more quantitative scores for these biomarkers. The application of quantitative image analysis has thus become an indispensable tool for in-depth tissue biomarker interrogation in these contexts. This white paper reviews current technologies being employed for quantitative image analysis, their application and pitfalls, regulatory framework demands, and guidelines established for promoting their safe adoption in clinical practice.
Collapse
Affiliation(s)
- Haydee Lara
- GlaxoSmithKline-R&D, Cellular Biomarkers, Collegeville, PA
| | - Zaibo Li
- The Ohio State University, Columbus, OH
| | | | - Famke Aeffner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc
| | | | | | | | | | | | | | | | - David Rimm
- Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
6
|
Polavarapu VK, Xing P, Zhang H, Zhao M, Mathot L, Zhao L, Rosen G, Swartling FJ, Sjöblom T, Chen X. Profiling chromatin accessibility in formalin-fixed paraffin-embedded samples. Genome Res 2021; 32:150-161. [PMID: 34261731 PMCID: PMC8744681 DOI: 10.1101/gr.275269.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
Archived formalin-fixed paraffin-embedded (FFPE) samples are the global standard format for preservation of the majority of biopsies in both basic research and translational cancer studies, and profiling chromatin accessibility in the archived FFPE tissues is fundamental to understanding gene regulation. Accurate mapping of chromatin accessibility from FFPE specimens is challenging because of the high degree of DNA damage. Here, we first showed that standard ATAC-seq can be applied to purified FFPE nuclei but yields lower library complexity and a smaller proportion of long DNA fragments. We then present FFPE-ATAC, the first highly sensitive method for decoding chromatin accessibility in FFPE tissues that combines Tn5-mediated transposition and T7 in vitro transcription. The FFPE-ATAC generates high-quality chromatin accessibility profiles with 500 nuclei from a single FFPE tissue section, enables the dissection of chromatin profiles from the regions of interest with the aid of hematoxylin and eosin (H&E) staining, and reveals disease-associated chromatin regulation from the human colorectal cancer FFPE tissue archived for more than 10 years. In summary, the approach allows decoding of the chromatin states that regulate gene expression in archival FFPE tissues, thereby permitting investigators, to better understand epigenetic regulation in cancer and precision medicine.
Collapse
|
7
|
Abstract
Pathology has benefited from advanced innovation with novel technology to implement a digital solution. Whole slide imaging is a disruptive technology where glass slides are scanned to produce digital images. There have been significant advances in whole slide scanning hardware and software that have allowed for ready access of whole slide images. The digital images, or whole slide images, can be viewed comparable to glass slides in a microscope, as digital files. Whole slide imaging has increased in adoption among pathologists, pathology departments, and scientists for clinical, educational, and research initiatives. Worldwide usage of whole slide imaging has grown significantly. Pathology regulatory organizations (ie, College of American Pathologists) have put forth guidelines for clinical validation, and the US Food and Drug Administration have also approved whole slide imaging for primary diagnosis. This article will review the digital pathology ecosystem and discuss clinical and nonclinical applications of its use.
Collapse
|
8
|
A Study of the Effect of Platelet-Rich Plasma on Outcomes After Aspirated Human Fat Grafting With Experimental Design. J Craniofac Surg 2019; 31:313-318. [PMID: 31469736 DOI: 10.1097/scs.0000000000005878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Over the past decade, some studies have focused on whether platelet-rich plasma (PRP) can promote the survival of fat grafts after transplantation. However, the results of these studies have been controversial because of the variations in research methods and assessment methodologies. METHODS In this study, the authors aspirated fat particles from the abdomen of a healthy woman, mixed them with PRP, and injected them into the backs of nude mice subcutaneously, which simulates the clinical model. The control group was designed to mix aspired fat with normal saline. The fat grafts were removed 10 weeks after transplantation, stained with hematoxylin and eosin, and sliced into pathological sections, which were subsequently scanned and analyzed using the Digital Slide Scanning System (PRECICE, Beijing, China). RESULTS The total area of the graft section and the necrotic adipose tissue area in the control group were significantly larger than that in the PRP group. The fibrosis tissue area in the PRP group was significantly larger than that in the control group. There were no statistically significant differences in the viable adipocyte area, the cyst area, and the mature blood vessel number between the PRP and control groups. CONCLUSION In this study, PRP did not cause an increase in the number of viable adipocytes; however, it did increase the amount of inflammation, which promoted necrotic tissue absorption and the proliferation of granulation tissue. Further research, including research on normalization of fat preparation and grafting, unification of the PRP preparation and application scheme, and optimization of histological measurement and analysis methods, is needed to assess the effect of PRP on fat grafting.
Collapse
|
9
|
Computational imaging of aortic vasa vasorum and neovascularization in rabbits using contrast-enhanced intravascular ultrasound: Association with histological analysis. Anatol J Cardiol 2019; 20:117-124. [PMID: 30088486 PMCID: PMC6237958 DOI: 10.14744/anatoljcardiol.2018.35761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: Neoangiogenesis is pathophysiologically related to atherosclerotic plaque growth and vulnerability. We examined the in vivo performance of a computational method using contrast-enhanced intravascular ultrasound (CE-IVUS) to detect and quantify aortic wall neovascularization in rabbits. We also compared these findings with histological data. Methods: Nine rabbits were fed with a hyperlipidemic diet. IVUS image sequences were continuously recorded before and after the injection of a contrast agent. Mean enhancement of intensity of a region of interest (MEIR) was calculated using differential imaging algorithm. The percent difference of MEIR before and after the injection of microbubbles (d_MEIR) was used as an index of the density of plaque or/and adventitial neovascularization. Aortic segments were excised for histological analysis. Results: CE-IVUS and histological analysis were performed in 11 arterial segments. MEIR was significantly increased (~20%) after microbubble injection (from 8.1±0.9 to 9.7±1.8, p=0.016). Segments with increased VV/neovessels in the tunica adventitia (histological scores 2 and 3) had significantly higher d_MEIR compared with segments with low presence of VV/neovessels (score 1); 40.5±22.9 vs. 8±14.6, p=0.024, respectively. Conclusion: It is possible to detect VV or neovessels in vivo using computational analysis of CE-IVUS images, which is in agreement with histological data. These findings may have critical implications on vulnerable plaque assessment and risk stratification.
Collapse
|
10
|
Kanai T, Ito Z, Oji Y, Suka M, Nishida S, Takakura K, Kajihara M, Saruta M, Fujioka S, Misawa T, Akiba T, Yanagisawa H, Shimodaira S, Okamoto M, Sugiyama H, Koido S. Prognostic significance of Wilms' tumor 1 expression in patients with pancreatic ductal adenocarcinoma. Oncol Lett 2018; 16:2682-2692. [PMID: 30008944 DOI: 10.3892/ol.2018.8961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
The only current curative treatment for patients with pancreatic ductal adenocarcinoma (PDA) is surgical resection, and certain patients still succumb to disease shortly after complete surgical resection. Wilms' tumor 1 (WT1) serves an oncogenic role in various types of tumors; therefore, in the present study, WT1 protein expression in patients with PDA was analyzed and the association with overall survival (OS) and disease-free survival (DFS) time in patients with PDA was assessed following surgical resection. A total of 50 consecutive patients with PDA who received surgical resection between January 2005 and December 2015 at the Jikei University Kashiwa Hospital (Kashiwa, Chiba, Japan) were enrolled. WT1 protein expression in PDA tissue was measured using immunohistochemical staining. Furthermore, laboratory parameters were measured within 2 weeks of surgery, and systemic inflammatory response markers were evaluated. WT1 protein expression was detected in the nucleus and cytoplasm of all PDA cells and in tumor vessels. WT1 exhibited weak staining in the nuclei of all PDA cells; however, the cytoplasmic expression of WT1 levels was classified into four groups: Negative (n=0), weak (n=19), moderate (n=23) and strong (n=8). In patients with PDA, it was demonstrated that the OS and DFS times of patients with weak cytoplasmic WT1 expression were significantly prolonged compared with those of patients with moderate-to-strong cytoplasmic WT1 expression, as determined by log-rank test (P=0.0005 and P=0.0001, respectively). Furthermore, an association between the density of WT1-expressing tumor vessels and worse OS/DFS times was detected. Multivariate analysis also indicated a significant association between the overexpression of WT1 in PDA tissue and worse OS/DFS times. To the best of our knowledge, the present study is the first to demonstrate that moderate-to-strong overexpression of WT1 in the cytoplasm of PDA cells is significantly associated with worse OS/DFS times. Therefore, overexpression of WT1 in the cytoplasm of PDA cells may impact the recurrence and prognosis of patients with PDA following surgical resection. The results further support the development of WT1-targeted therapies to prolong survival in all patients with PDA.
Collapse
Affiliation(s)
- Tomoya Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8571, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8571, Japan
| | - Shuichi Fujioka
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Tadashi Akiba
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8571, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Masato Okamoto
- Department of Advanced Immunotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan.,Institute of Clinical Medicine and Research, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| |
Collapse
|
11
|
Tang T, Zhang DL. Detection of p53 and Bcl-2 expression in cutaneous hemangioma through the quantum dot technique. Oncol Lett 2017; 13:2937-2944. [PMID: 28529555 PMCID: PMC5431704 DOI: 10.3892/ol.2017.5856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/16/2016] [Indexed: 12/28/2022] Open
Abstract
Hemangioma is one of the most common types of infantile vascular benign tumor. The aim of the present study was to investigate the role of B-cell lymphoma 2 (Bcl-2) and tumor protein p53 (p53) in the proliferation and apoptosis of hemangioma cells. A total of 38 paraffin-embedded hemangioma specimens (16 males and 22 females) and another 5 paraffin-embedded healthy surrounding tissue samples, collected between January 2007 and December 2010, were obtained from the Department of Pathology at Renmin Hospital of Wuhan University (Wuhan, China). Immunohistochemistry, hematoxylin and eosin staining, and quantum dot double staining were used to detect the expression of proliferating cell nuclear antigen (PCNA), Bcl-2 and p53 in hemangioma and healthy surrounding skin tissue samples. All hemangioma specimens were classified into proliferative or the involuting stage hemangioma according to Mulliken's criteria and their expression of PCNA. The results of the quantum dot double staining were analyzed using a multi-spectral imaging system. One-way analysis of the variance and the Student-Newman-Keuls q test were performed to statistically analyze the data. There were 24 cases of proliferative stage and 14 cases of involuting stage hemangioma among the specimens. Immunohistochemical analysis results indicated a high expression of Bcl-2 and p53 in proliferative stage hemangioma tissue samples, and low expression in involuting stage hemangioma and healthy tissue samples. Statistical analysis of the results from quantum dot double staining demonstrated that the expression of Bcl-2 and p53 in proliferative hemangioma was significantly increased compared with that in involuting stage specimens (P<0.05) and healthy tissue samples (P<0.05). No significant difference in Bcl-2 and p53 expression was identified between the involuting hemangioma and healthy surrounding tissue samples. The higher expression of Bcl-2 and p53 in proliferative hemangioma suggests that Bcl-2 may cause an imbalance between endothelial cell proliferation and apoptosis through the inhibition of endothelial cell apoptosis. Furthermore, p53 may promote the proliferation of endothelial cells in proliferative hemangioma.
Collapse
Affiliation(s)
- Tian Tang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Duan-Lian Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Sarnecki JS, Burns KH, Wood LD, Waters KM, Hruban RH, Wirtz D, Wu PH. A robust nonlinear tissue-component discrimination method for computational pathology. J Transl Med 2016; 96:450-8. [PMID: 26779829 PMCID: PMC4808351 DOI: 10.1038/labinvest.2015.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 02/01/2023] Open
Abstract
Advances in digital pathology, specifically imaging instrumentation and data management, have allowed for the development of computational pathology tools with the potential for better, faster, and cheaper diagnosis, prognosis, and prediction of disease. Images of tissue sections frequently vary in color appearance across research laboratories and medical facilities because of differences in tissue fixation, staining protocols, and imaging instrumentation, leading to difficulty in the development of robust computational tools. To address this challenge, we propose a novel nonlinear tissue-component discrimination (NLTD) method to register automatically the color space of histopathology images and visualize individual tissue components, independent of color differences between images. Our results show that the NLTD method could effectively discriminate different tissue components from different types of tissues prepared at different institutions. Further, we demonstrate that NLTD can improve the accuracy of nuclear detection and segmentation algorithms, compared with using conventional color deconvolution methods, and can quantitatively analyze immunohistochemistry images. Together, the NLTD method is objective, robust, and effective, and can be easily implemented in the emerging field of computational pathology.
Collapse
Affiliation(s)
- Jacob S. Sarnecki
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA, Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kathleen H. Burns
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Laura D. Wood
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Kevin M. Waters
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Denis Wirtz
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA, Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA,Co-corresponding authors: Denis Wirtz () and Pei-Hsun Wu ()
| | - Pei-Hsun Wu
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA, Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA,Co-corresponding authors: Denis Wirtz () and Pei-Hsun Wu ()
| |
Collapse
|
13
|
Simone BA, Dan T, Palagani A, Jin L, Han SY, Wright C, Savage JE, Gitman R, Lim MK, Palazzo J, Mehta MP, Simone NL. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle 2016; 15:2265-74. [PMID: 27027731 DOI: 10.1080/15384101.2016.1160982] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. METHODS An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. RESULTS CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. CONCLUSIONS CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Brittany A Simone
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Tu Dan
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Ajay Palagani
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Lianjin Jin
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Sunny Y Han
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Christopher Wright
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Jason E Savage
- b Radiation Oncology Branch , National Cancer Institute , Bethesda , MD , USA
| | - Robert Gitman
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Meng Kieng Lim
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Juan Palazzo
- c Department of Pathology , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Minesh P Mehta
- d Radiation Oncology Department , Miami Cancer Institute , Miami , FL , USA
| | - Nicole L Simone
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
14
|
Yang W, Zheng H, Wang Y, Lian F, Hu Z, Xue S. Nesprin-1 has key roles in the process of mesenchymal stem cell differentiation into cardiomyocyte-like cells in vivo and in vitro. Mol Med Rep 2014; 11:133-42. [PMID: 25339194 PMCID: PMC4237090 DOI: 10.3892/mmr.2014.2754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the expression of nesprin-1 protein in MSCs and its effects on the differentiation of rat bone-marrow mesenchymal stem cells (MSCs). Surface-associated antigens of MSCs were detected by flow cytometry. MSC differentiation was induced by treatment with 10 μmol/l 5-azacytidine. Sprague-Dawley rats were anesthetized prior to thoracotomy and subsequent ligation of the left anterior descending coronary artery to establish a model of myocardial infarction. Two weeks following myocardial infarction, DAPI-marked MSCs were injected into the infarcted region in the experimental group, while DMEM was injected into the infarcted region of the control group. Characteristics of the putative cardiac-myogenic cells were evaluated using immunohistochemical and immunofluorescent analysis. The messenger RNA expression levels of cardiac-myogenic specific genes; desmin, α-actinin and cardiac troponin I (cTnI) were detected by reverse transcription quantitative polymerase chain reaction. The expression of nesprin-1 protein in MSCs was identified by immunofluorescence and western blot analysis, prior to and following MSC differentiation. Following differentiation, the MSCs appeared spindle-shaped with irregular processes and were positive for CD90 and CD29, but negative for CD45. Cardiomyocyte-like cells were positive for desmin, α-sarcomeric actin and cTnI. Nesprin protein was detected in the nuclear membrane via immunofluorescence, and following MSC differentiation into cardiomyocyte-like cells, the expression of nesprin protein was significantly higher (*P=0.03<0.05). The results of the present study indicated that MSCs may be differentiated in vitro and in vivo into cells with characteristics commonly attributed to cardiomyocytes. Cardiomyocyte-like cells cultured from bone marrow sources may be potentially useful for repairing the injured myocardium. The results also suggested that, consistent with the results of previous studies, the expression of nesprin-1 protein was higher during the differentiation process of MSCs and may have an important role in mediating MSC differentiation. Elucidation of the role of nesprin-1 in MSC differentiation may aid in the development of novel therapies for the treatment of myocardial ischemia and nesprin-1 genetic deficiencies.
Collapse
Affiliation(s)
- Wengang Yang
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hui Zheng
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yongyi Wang
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Feng Lian
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Zhenglei Hu
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
15
|
Têtu B, Gagnon MP, Roch G, Fortin JP. The Eastern Quebec Telepathology Network: a support to the improvement to the public health care system. Diagn Pathol 2013. [PMCID: PMC3856492 DOI: 10.1186/1746-1596-8-s1-s8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Kostrominova TY, Reiner DS, Haas RH, Ingermanson R, McDonough PM. Automated methods for the analysis of skeletal muscle fiber size and metabolic type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:275-332. [PMID: 24016528 DOI: 10.1016/b978-0-12-407694-5.00007-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is of interest to quantify the size, shape, and metabolic subtype of skeletal muscle fibers in many areas of biomedical research. To do so, skeletal muscle samples are sectioned transversely to the length of the muscle and labeled for extracellular or membrane proteins to delineate the fiber boundaries and additionally for biomarkers related to function or metabolism. The samples are digitally photographed and the fibers "outlined" for quantification of fiber cross-sectional area (CSA) using pointing devices interfaced to a computer, which is tedious, prone to error, and can be nonobjective. Here, we review methods for characterizing skeletal muscle fibers and describe new automated techniques, which rapidly quantify CSA and biomarkers. We discuss the applications of these methods to the characterization of mitochondrial dysfunctions, which underlie a variety of human afflictions, and we present a novel approach, utilizing images from the online Human Protein Atlas to predict relationships between fiber-specific protein expression, function, and metabolism.
Collapse
|
17
|
Gimbel DC, Sohani AR, Prasad Busarla SV, Kirimi JM, Sayed S, Okiro P, Nazarian RM. A static-image telepathology system for dermatopathology consultation in East Africa: the Massachusetts General Hospital Experience. J Am Acad Dermatol 2012; 67:997-1007. [PMID: 22341607 DOI: 10.1016/j.jaad.2011.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 12/21/2011] [Accepted: 12/29/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND The histologic diagnosis of skin lesions in the developing world is complicated by the shortage of pathologists with subspecialty training in dermatopathology, limited access to ancillary diagnostic testing, and costly referrals for expert glass slide consultation in challenging cases. OBJECTIVE In this study we evaluate the feasibility of a static-image telepathology platform in Africa for performing accurate dermatopathology consultations. METHODS A static-image telepathology platform using the iPath server was utilized by referring pathologists in 4 African hospitals. Diagnostic interpretations were provided by Massachusetts General Hospital dermatopathologists at no cost. The diagnostic accuracy and interobserver correlation was evaluated. RESULTS The static histopathologic images were diagnostic in 22 of 29 (76%) cases. Diagnostic accuracy between static image and glass slide diagnosis in 22 cases was 91%, ranging from 86% to 95% according to years of dermatopathology subspecialty expertise. Comparison with the glass slides showed that the telepathology diagnosis was limited by inappropriate field selection in only one case. Interobserver concordance between two pathologists was high (K = 0.86) suggesting that this platform is easy to use with minimal training of both referring and consulting pathologists. LIMITATIONS Concordance between conventional microscopy and static image telepathology was performed in 22 of 29 cases for which glass slides were received. Interobserver concordance was performed for two pathologists. CONCLUSION Static-image telepathology is a feasible means of rendering diagnoses on dermatopathology cases and is a cost-effective technology for obtaining much-needed second opinions in resource-poor settings.
Collapse
Affiliation(s)
- Devon C Gimbel
- Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Sadimin ET, Foran DJ. Pathology Imaging Informatics for Clinical Practice and Investigative and Translational Research. ACTA ACUST UNITED AC 2012; 5:103-109. [PMID: 22855694 DOI: 10.7156/v5i2p103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathologists routinely interpret gross and microscopic specimens to render diagnoses and to engage in a broad spectrum of investigative research. Multiple studies have demonstrated that imaging technologies have progressed to a level at which properly digitized specimens provide sufficient quality comparable to the traditional glass slides examinations. Continued advancements in this area will have a profound impact on the manner in which pathology is conducted from this point on. Several leading institutions have already undertaken ambitious projects directed toward digitally imaging, archiving, and sharing pathology specimens. As a result of these advances, the use of informatics in diagnostic and investigative pathology applications is expanding rapidly. In addition, the advent of novel technologies such as multispectral imaging makes it possible to visualize and analyze imaged specimens using multiple wavelengths simultaneously. As these powerful technologies become increasingly accepted and adopted, the opportunities for gaining new insight into the underlying mechanisms of diseases as well as the potential for discriminating among subtypes of pathologies are growing accordingly.
Collapse
Affiliation(s)
- Evita T Sadimin
- Department of Pathology, Robert Wood Johnson Medical School, New Brunswick, NJ
| | | |
Collapse
|