1
|
Wiraswati HL, Ma'ruf IF, Hidayati NA, Ramadhanti J, Calina D, Sharifi-Rad J. Harnessing the anticancer potential of Piper nigrum: a synergistic approach to chemotherapy enhancement and reduced side effects. Discov Oncol 2025; 16:10. [PMID: 39760812 PMCID: PMC11704108 DOI: 10.1007/s12672-024-01716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer therapy continues to face critical challenges, including drug resistance, recurrence, and severe side effects, which often compromise patient outcomes and quality of life. Exploring novel, cost-effective approaches, this review highlights the potential of Piper nigrum (black pepper) extract (PNE) as a complementary anticancer agent. Piper nigrum, a widely available spice with a rich history in traditional medicine, contains bioactive compounds such as piperine, which have demonstrated significant anticancer activities including cell cycle arrest, apoptosis induction, and inhibition of tumor growth and metastasis. The review evaluates the recent findings from in vitro, in vivo, and clinical studies, emphasizing PNE's capacity to enhance the efficacy of conventional chemotherapeutic agents while mitigating their side effects. Key mechanisms underlying these effects include oxidative stress modulation, suppression of pro-metastatic factors, and synergistic interactions with established drugs like doxorubicin and paclitaxel. These interactions suggest that PNE could play a pivotal role in overcoming chemoresistance and improving therapeutic outcomes. Furthermore, this review highlights the potential benefits of PNE in resource-limited settings, where the cost of cancer treatments often restricts access. However, challenges such as compositional variability, limited bioavailability, and the need for standardization and clinical validation need to be addressed to advance the integration of PNE into basic oncology. By providing a comprehensive analysis of the anticancer mechanisms of PNE and its potential as a cost-effective adjuvant therapy, this review provides new insight into the exploitation of Piper nigrum to improve cancer treatment efficacy while reducing side effects. Future research directions are discussed to address current limitations and facilitate clinical translation.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia.
| | - Ilma Fauziah Ma'ruf
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | | | - Julia Ramadhanti
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Shetty M, Shenoy S, Amuthan A, Devi V, Kumar N, Kiran A, Shenoy G, Chinta DR, Prasada K S, Shetty A, Rao K G M. Kadukkai maathirai (Indian herbal drug) prevents hepatocellular cancer progression by enhancing GSTM1 expression and modulating β catenin transcription: in-silico and in-vivo study. F1000Res 2024; 13:639. [PMID: 39916986 PMCID: PMC11800331 DOI: 10.12688/f1000research.145961.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/09/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor clinical outcomes. Hence cost-effective drugs with fewer side effects as a standard supportive therapy might yield substantial advantages in efficacy and safety. Kadukkai maathirai (KM) is being used as a supplement in hepatocellular carcinoma. We evaluated whether KM has any preventive action on cancer progression in diethyl nitrosamine (DEN) - induced HCC in rats. Methods DEN was injected to produce HCC in rats, which was confirmed after 16 weeks. All the rats were orally administered KM for 4 weeks. Hepatoprotective potential (serum AST, ALT, ALP, Bilirubin) and anticancer efficacy (body weight, nodule count, tumor progression by histopathology, expression of GSTM1 by Liquid chromatography-mass spectrometry (LC-MS), and In-silico analysis of phytoconstituents against β catenin and LRP analysis were evaluated. Results KM prevented cancer progression against DEN-induced HCC by an increase in GSTM1, a phase II detoxifying enzyme. It significantly reversed altered nodule count, relative liver weight, body weight, and histopathological features of HCC. In silico analysis of phytoconstituents of KM showed that they modulate the intracellular transcription process by inhibiting the armadillo repeat region of β catenin. Conclusions Our results elucidate the potential of KM as a supplement in HCC by reducing nodule count, protecting the liver from further damage, GSTM1 expression, and inhibiting armadillo repeat region of β catenin.
Collapse
Affiliation(s)
- Manjunath Shetty
- Centre Of Excellence, Ocular Nanoscience, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arul Amuthan
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Vaishali, Bihar, 844102, India
| | - Amruth Kiran
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ganesh Shenoy
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Diya Rajasekhar Chinta
- Department of Pharmacology, Manipal University College Malaysia, Bukit Baru, Melaka, 75150, Malaysia
| | - Shama Prasada K
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Manipal, Karnataka, 576104, India
| | - Akshatha Shetty
- Department of Research and Development, Muniyal Institute of Ayurveda and Medical Sciences, Manipal, Manipal, Karnataka, 576104, India
| | - Mohandas Rao K G
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Lone WI, Rashid A, Bhat BA, Rashid S. Chemoselective oxidation of aromatic aldehydes to carboxylic acids: potassium tert-butoxide as an anomalous source of oxygen. Chem Commun (Camb) 2024; 60:6544-6547. [PMID: 38842029 DOI: 10.1039/d4cc01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chemoselective oxidation of aromatic and heteroaromatic aldehydes (>45 examples) to their corresponding carboxylic acids has been developed. Potassium tert-butoxide acts as an oxygen source during this transformation that delivers the corresponding acids without chromatographic purifications. The use of bench-top reagents, operational simplicity, and high level of chemo-selectivity with respect to oxidation of the least preferred aldehyde functionality, in the presence of more susceptible functional groups, are some of the highlights of this strategy.
Collapse
Affiliation(s)
- Waseem I Lone
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Auqib Rashid
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bilal A Bhat
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Showkat Rashid
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Dotou M, L'honoré A, Moumné R, El Amri C. Amide Alkaloids as Privileged Sources of Senomodulators for Therapeutic Purposes in Age-Related Diseases. JOURNAL OF NATURAL PRODUCTS 2024; 87:617-628. [PMID: 38436272 DOI: 10.1021/acs.jnatprod.3c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nature is an important source of bioactive compounds and has continuously made a large contribution to the discovery of new drug leads. Particularly, plant-derived compounds have long been identified as highly interesting in the field of aging research and senescence. Many plants contain bioactive compounds that have the potential to influence cellular processes and provide health benefits. Among them, Piper alkaloids have emerged as interesting candidates in the context of age-related diseases and particularly senescence. These compounds have been shown to display a variety of features, including antioxidant, anti-inflammatory, neuroprotective, and other bioactive properties that may help counteracting the effects of cellular aging processes. In the review, we will put the emphasis on piperlongumine and other related derivatives, which belong to the Piper alkaloids, and whose senomodulating potential has emerged during the last several years. We will also provide a survey on their potential in therapeutic perspectives of age-related diseases.
Collapse
Affiliation(s)
- Mazzarine Dotou
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Aurore L'honoré
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| | - Roba Moumné
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| |
Collapse
|
5
|
Hudáková T, Šemeláková M, Očenáš P, Kožurková M, Krochtová K, Sovová S, Tóthová Z, Guľášová Z, Popelka P, Solár P. Chili pepper extracts, capsaicin, and dihydrocapsaicin as potential anticancer agents targeting topoisomerases. BMC Complement Med Ther 2024; 24:96. [PMID: 38383414 PMCID: PMC10880293 DOI: 10.1186/s12906-024-04394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
DNA topoisomerases regulate conformational changes in DNA topology during normal cell growth, such as replication, transcription, recombination, and repair, and may be targeted for anticancer drugs. A DNA topology assay was used to investigate DNA-damaging/protective activities of extracts from Habanero Red (HR), Habanero Maya Red (HMR), Trinidad Moruga Scorpion (TMS), Jalapeno (J), Serrano pepper (SP), Habanero Red Savina (HRS), Bhut Jolokia (BJ), and Jamaica Rosso (JR) peppers, demonstrating their inhibitory effect on the relaxation of pBR by Topo I. DNA topoisomerase II (Topo II) is proven therapeutic target of anticancer drugs. Complete inhibition of Topo II was observed for samples TMS, HR, and HMR. Extracts J and SP had the lowest capsaicin and dihydrocapsaicin content compared to other peppers. HR, HMR, TMS, J, S, HRS, BJ, JR extracts showed the anticancer effect, examined by MTS and xCell assay on the in vitro culture of human colon carcinoma cell line HCT116.
Collapse
Affiliation(s)
- Terézia Hudáková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Martina Šemeláková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Očenáš
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Mária Kožurková
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Kristína Krochtová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Simona Sovová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Zuzana Tóthová
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Zuzana Guľášová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia.
| |
Collapse
|
6
|
Enyang D, Sonibare MA, Tchamgoue AD, Tchokouaha LRY, Yadang FS, Nfor GN, Kom CW, Betote PDH, Tchinda CF, Tiogo SSK, Agbor GA. Protective and Ameliorative Effects of Hydroethanolic Extract of Piper nigrum (L.) Stem against Antiretroviral Therapy-Induced Hepatotoxicity and Dyslipidemia in Wistar Rats. J Toxicol 2024; 2024:5811080. [PMID: 38357682 PMCID: PMC10866638 DOI: 10.1155/2024/5811080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024] Open
Abstract
Antiretroviral therapy (ART) has revolutionized the lives of people living with HIV/AIDS by overall improving their quality of life and increasing life expectancy. However, ART-associated hepatotoxicity and metabolic disorders in HIV/AIDS patients are growing concerns to clinicians, especially due to the long-term use of the drugs. This study reported on the phytochemical and pharmacological profile of hydroethanolic extracts of Piper nigrum stem (PNS) and evaluated its protective effect against tenofovir/lamivudine/efavirenz (TLE)-induced hepatotoxicity and dyslipidemia in Wistar rats. Cytotoxic, antioxidant, and anti-inflammatory assays were performed on PNS. Thirty-six rats divided into 6 groups of 6 animals/group were administered: distilled water, 17 mg/kg TLE, 17 mg/kg TLE and 100 mg/kg silymarin, 17 mg/kg TLE, and Piper extract (200 mg/kg, 400 mg/kg, or 800 mg/kg) orally for 28 days. The body weight of animals was recorded every 7 days. On Day 29, the rats were sacrificed, and blood samples were collected for hematological and biochemical tests. Portions of the liver and kidneys were collected for histological evaluation, while liver homogenates were prepared from the rest to measure antioxidant enzymes. PNS possessed in vitro cytotoxic, antioxidant, and anti-inflammatory activities. A significant decrease (p < 0.05) in the body weight of rats treated with PNS was observed. A significant high platelet count (p < 0.05) was observed in the PNS800 mg/kg group. A considerable decrease in alkaline phosphatase and triglycerides was observed in the silymarin and PNS group compared to the TLE-only group. The findings also show a significant increase in catalase and glutathione in the TLE-only group compared to the normal group, while SOD decreased. Histological observations revealed normal hepatic and renal tissues in the silymarin, and PNS-treated groups compared to the normal control, while leucocyte infiltration was observed in the TLE-only group. These results suggest that PNS extract possessed antioxidant activity that alleviated TLE-induced toxicity. Further studies are necessary to understand the pharmacokinetic interactions between ART and PNS.
Collapse
Affiliation(s)
- Doreen Enyang
- Medicinal Plant Research and Drug Development Program, Pan African University Life and Earth Sciences Institute, University of Ibadan, Ibadan, Nigeria
| | - Mubo A. Sonibare
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Armelle D. Tchamgoue
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovations, P.O. Box 6163, Yaoundé, Cameroon
| | - Lauve R. Y. Tchokouaha
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovations, P.O. Box 6163, Yaoundé, Cameroon
| | - Fanta S. Yadang
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovations, P.O. Box 6163, Yaoundé, Cameroon
| | - Gael N. Nfor
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovations, P.O. Box 6163, Yaoundé, Cameroon
| | - Christelle W. Kom
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovations, P.O. Box 6163, Yaoundé, Cameroon
| | - Patrick D. H. Betote
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovations, P.O. Box 6163, Yaoundé, Cameroon
| | - Cedric F. Tchinda
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovations, P.O. Box 6163, Yaoundé, Cameroon
| | | | - Gabriel A. Agbor
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovations, P.O. Box 6163, Yaoundé, Cameroon
| |
Collapse
|
7
|
Prajapati KS, Kumar S. Piper chaba, an Indian spice plant extract, inhibits cell cycle G1/S phase transition and induces intrinsic apoptotic pathway in luminal breast cancer cells. Cell Biochem Funct 2023; 41:1230-1241. [PMID: 37711079 DOI: 10.1002/cbf.3857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Piper chaba (Piperaceae) is a medicinal spice plant that possesses several pharmacological activities. In the present study, we for the first time studied the effect of P. chaba extract on breast cancer cells. P. chaba stem methanolic (PCSM) extract produced time and dose dependent cytotoxicity in luminal breast cancer cells (MCF-7 and T47D) with a minimal toxicity in breast normal cells (MCF-10A) at 10-100 µg/mL concentration. PCSM extract exerts 16.79 and 31.21 µg/mL IC50 for T47D and MCF-7 cells, respectively, in 48 h treatment. PCSM significantly arrests the T47D cells at the G0/G1 phase by reducing the CCND1 and CDK4 expression at mRNA and protein levels. PCSM extract treatment significantly altered nuclear morphology, mitochondria membrane potential, and production of reactive oxygen species in T47D cells at IC50 concentration. Extract treatment significantly altered the Bax/Bcl-2 ratio and altered caspase 8 and 3 mRNA/protein levels in T47D cells. Confocal microscopy showed an increase in late apoptosis in PCSM extract-treated breast cancer cells at IC50 . Further, an increased caspase 9 and caspase 3/7 enzymatic activity was observed in test cells compared with nontreated cells. In conclusion, P. chaba phytocompound possesses the potential to induce cell cycle arrest and induce apoptosis in luminal breast cancer cells.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
8
|
Zhao M, Wang X, Kumar SA, Yao Y, Sun M. A Pharmacological Insight of Piperlongumine, Bioactive Validating Its Therapeutic Efficacy as a Drug to Treat Inflammatory Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
9
|
Silva RHN, Machado TQ, da Fonseca ACC, Tejera E, Perez-Castillo Y, Robbs BK, de Sousa DP. Molecular Modeling and In Vitro Evaluation of Piplartine Analogs against Oral Squamous Cell Carcinoma. Molecules 2023; 28:1675. [PMID: 36838660 PMCID: PMC9964404 DOI: 10.3390/molecules28041675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Cancer is a principal cause of death in the world, and providing a better quality of life and reducing mortality through effective pharmacological treatment remains a challenge. Among malignant tumor types, squamous cell carcinoma-esophageal cancer (EC) is usually located in the mouth, with approximately 90% located mainly on the tongue and floor of the mouth. Piplartine is an alkamide found in certain species of the genus Piper and presents many pharmacological properties including antitumor activity. In the present study, the cytotoxic potential of a collection of piplartine analogs against human oral SCC9 carcinoma cells was evaluated. The analogs were prepared via Fischer esterification reactions, alkyl and aryl halide esterification, and a coupling reaction with PyBOP using the natural compound 3,4,5-trimethoxybenzoic acid as a starting material. The products were structurally characterized using 1H and 13C nuclear magnetic resonance, infrared spectroscopy, and high-resolution mass spectrometry for the unpublished compounds. The compound 4-methoxy-benzyl 3,4,5-trimethoxybenzoate (9) presented an IC50 of 46.21 µM, high selectively (SI > 16), and caused apoptosis in SCC9 cancer cells. The molecular modeling study suggested a multi-target mechanism of action for the antitumor activity of compound 9 with CRM1 as the main target receptor.
Collapse
Affiliation(s)
- Rayanne H. N. Silva
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
| | - Thaíssa Q. Machado
- Postgraduate Program in Applied Science for Health Products, Faculty of Pharmacy, Fluminense Federal University, Niteroi 24241-000, Brazil
| | - Anna Carolina C. da Fonseca
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, Brazil
| | - Eduardo Tejera
- Bio-Cheminformatics Research Group, Universidad de Las Américas, Quito 170516, Ecuador
| | - Yunierkis Perez-Castillo
- Facultad de Ingeniería y Ciencias Aplicadas, Área de Ciencias Aplicadas, Universidad de Las Américas, Quito 170516, Ecuador
| | - Bruno K. Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo 28625-650, Brazil
| | - Damião P. de Sousa
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
| |
Collapse
|
10
|
Jena S, Ray A, Sahoo A, Das PK, Kamila PK, Kar SK, Nayak S, Panda PC. Anti-proliferative Activity of Piper trioicum Leaf Essential Oil Based on Phytoconstituent Analysis, Molecular Docking and in silico ADMET Approaches. Comb Chem High Throughput Screen 2023; 26:183-190. [PMID: 34951357 DOI: 10.2174/1386207325666211222113239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The essential oils isolated from several medicinal plants have been reported to possess anticancer activities. Both the essential oil and extracts of many Piper species (Piperaceae) possess potential cytotoxic effects against cancer cell lines and are being used in traditional systems of medicine for the treatment of cancer. There is a need to evaluate and validate the anticancer properties of essential oils extracted from other wild species of Piper. OBJECTIVE The current research was undertaken to determine the chemical composition and investigate the anti-proliferative activity of wild-growing Piper trioicum leaf essential oil. The selected five major constituents were subjected to molecular docking to identify possible modes of binding against serine/threonine-protein kinase (MST3) protein. METHODS The essential oil of leaf of P. trioicum was extracted by hydrodistillation method, and its chemical composition was evaluated by GC-FID and GC-MS. The anti-proliferative activity of the essential oil was evaluated by the MTT assay against normal (3T3-L1) and various cancer (HCT 116, HT-29, PC-3 and HepG2) cell lines. Molecular docking analysis was performed using the AutoDock 4.2 software. The pharmacokinetic and pharmacodynamic properties of the major constituents were determined using absorption, distribution, metabolization, excretion and toxicity (ADMET) analysis. RESULTS The GC-MS analysis revealed the identification of 45 constituents with δ-cadinene (19.57%), germacrene-D (8.54%), β-caryophyllene (6.84%), 1-epi-cubenol (4.83%) and α-pinene (4.52%) being predominant constituents in the leaf essential oil of P. trioicum. The highest cytotoxicity of essential oil was observed against HT-29 cells (IC50 value of 33.14 μg/ml). 1-epi-cubenol and δ-cadinene exhibited low binding energy values of -6.25 and -5.92 kcal/mol, respectively. For prediction of in silico pharmacokinetic and drug-like properties of the major compounds, the ADMET prediction tool was used, the results of which were observed to be within the ideal range. CONCLUSION The present findings demonstrate that P. trioicum essential oil possesses significant anti-proliferative activity and could be effective against cancer treatment.
Collapse
Affiliation(s)
- Sudipta Jena
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar 751 003, Odisha, India
| | - Asit Ray
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar 751 003, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar 751 003, Odisha, India
| | - Prabhat Kumar Das
- Taxonomy and Conservation Division, Regional Plant Resource Centre, Nayapalli, Bhubaneswar 751 015, Odisha, India
| | - Pradeep Kumar Kamila
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar 751 003, Odisha, India
| | - Subrat Kumar Kar
- Department of Microbiology, IMS & SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar 751 003, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar 751 003, Odisha, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar 751 003, Odisha, India
| |
Collapse
|
11
|
Drissi B, Mahdi I, Yassir M, Ben Bakrim W, Bouissane L, Sobeh M. Cubeb ( Piper cubeba L.f.): A comprehensive review of its botany, phytochemistry, traditional uses, and pharmacological properties. Front Nutr 2022; 9:1048520. [PMID: 36483927 PMCID: PMC9725028 DOI: 10.3389/fnut.2022.1048520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 06/21/2024] Open
Abstract
Piper cubeba L.f. (Piperaceae), known as cubeb, is a popular traditional herbal medicine used for the treatment of many diseases, especially digestive and respiratory disorders. The plant is rich in essential oil, found mainly in fruits, and this makes it economically important. Many traditional utilizations have been also validated from the plant and its isolated compounds owing to their antioxidant, antibacterial, anti-inflammatory and anticancer effects. These biological activities are attributed to the phytochemicals (phenolic compounds, lignans and alkaloids) and the essential oil of the plant. The present work aims to provide an up-to-date review on the traditional uses, phytochemistry and pharmacology of the plant and discusses the future perspectives to promote its valorization for nutritional- and health-promoting effects.
Collapse
Affiliation(s)
- Badreddine Drissi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Ismail Mahdi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mouna Yassir
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
12
|
In Memory of Professor Kuo-Hsiung Lee (K. H. Lee). J Tradit Complement Med 2022. [DOI: 10.1016/j.jtcme.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Shi J, Xia Y, Wang H, Yi Z, Zhang R, Zhang X. Piperlongumine Is an NLRP3 Inhibitor With Anti-inflammatory Activity. Front Pharmacol 2022; 12:818326. [PMID: 35095532 PMCID: PMC8790537 DOI: 10.3389/fphar.2021.818326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
Piperlongumine (PL) is an alkaloid from Piper longum L. with anti-inflammatory and antitumor properties. Numerous studies have focused on its antitumor effect. However, the underlying mechanisms of its anti-inflammation remain elusive. In this study, we have found that PL is a natural inhibitor of Nod-like receptor family pyrin domain-containing protein-3 (NLRP3) inflammasome, an intracellular multi-protein complex that orchestrates host immune responses to infections or sterile inflammations. PL blocks NLRP3 activity by disrupting the assembly of NLRP3 inflammasome including the association between NLRP3 and NEK7 and subsequent NLRP3 oligomerization. Furthermore, PL suppressed lipopolysaccharide-induced endotoxemia and MSU-induced peritonitis in vivo, which are NLRP3-dependent inflammation. Thus, our study identified PL as an inhibitor of NLRP3 inflammasome and indicated the potential application of PL in NLRP3-relevant diseases.
Collapse
Affiliation(s)
- Jie Shi
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xia
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huihong Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhongjie Yi
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruoruo Zhang
- Institute of Transplantation Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
14
|
Peppers: A "Hot" Natural Source for Antitumor Compounds. Molecules 2021; 26:molecules26061521. [PMID: 33802144 PMCID: PMC8002096 DOI: 10.3390/molecules26061521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.
Collapse
|
15
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
16
|
Islam MT, Hasan J, Snigdha HMSH, Ali ES, Sharifi-Rad J, Martorell M, Mubarak MS. Chemical profile, traditional uses, and biological activities of Piper chaba Hunter: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112853. [PMID: 32283191 DOI: 10.1016/j.jep.2020.112853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper chaba Hunter, called Chui Jhal or Choi Jhal, is commonly used as a culinary (spice) herb in India and Bangladesh. It exhibits numerous important biological activities and has been widely used in traditional medicine. AIM OF THE STUDY This review focuses on the chemical and pharmacological activities of a culinary ingredient P. chaba based on information extracted from the literature to highlight its use in traditional medicine. METHODS A literature search in known databases was conducted (till September 2019) for published articles using the relevant keywords. RESULTS Findings suggest that, to date, a number of important phytoconstituents such as dimeric alkaloids, and alkamides have been isolated from various parts of P. chaba. Extracts from P. chaba or derived compounds exhibit diverse biological activities, such as anti-microbial, anti-leishmanial, anti-malarial, anti-parasitic, cytotoxic/anticancer, adipogenic, hepato- and gastro-protective, anti-diabetic, analgesic, anti-diarrheal, depressive, anti-inflammatory, diuretic, anti-hypertensive, antipyretic, anti-ulcer, and immunomodulatory effect. Among the isolated compounds, chabamides, piperine, piplartine, retrofractamides A/B, methylenedioxyphenyl)-nona-2E,4E,8E-trienoic acid, n-butyl or n-pentyl amine, piperlonguminine, pipernonaline, dehydropipernonaline, N-isobutyl-(2E,4E)-octadecadienamide, and N-isobutyl-(2E,4E,14Z)-eicosatrienamide have documented important biological effects in various test systems. CONCLUSIONS Taken together, P. chaba may be a potential source of plant-based therapeutic lead compounds, which justify its uses in traditional medicine.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.
| | - Jabed Hasan
- Department of Applied Chemistry and Chemical Engineering, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - H M Shadid Hossain Snigdha
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Eunus S Ali
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, 4070386, Chile
| | - Mohammad S Mubarak
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
17
|
Quimque MTJ, Mandigma MJP, Lim JAK, Budde S, Dahse HM, Villaflores OB, Hallare AV, Macabeo APG. Synthesis, Characterization, and Molecular Docking Studies of N-Acylated Butyro and Valerolactam Derivatives with Antiproliferative and Cytotoxic Activities. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190716141524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Electrophilic compounds bearing Michael acceptors present great promise
in anticancer drug discovery.
Methods:
Drawing inspirations from cytotoxic Piper lactam alkaloids, twelve N-acylated butyro- and
valerolactams were prepared and evaluated for antiproliferative and cytotoxic activities against the
normal human umbilical vein endothelial cells (HUVEC), chronic human myeloid leukemia cells (K-
562), and Henrietta Lacks (HeLa) cells used as model cell lines. Molecular docking of bioactive
derivatives was performed against tyrosine kinase.
Results:
Results of the MTT assay showed the crotonylated (5) and nitro-containing cinnamoyl (8)
butyrolactams, and, the crotonylated (10), trifluoromethylated (13), and chlorinated (14) cinnamoyl
valerolactam derivatives as the most antiproliferative against human myeloid leukemia cells. The
trifluoromethylated cinnamoyl valerolactam (13) displayed the best selectivity on K-562 cells. Molecular
docking studies of 13 against tyrosine kinase provided evidence as tyrosine kinase inhibitor,
having comparable binding energy and receptor interaction with imatinib.
Conclusion:
The presence of electrophilic N-acrylic moieties contributes to the potential of a compound
as inspiration to develop anti-leukemia drugs.
Collapse
Affiliation(s)
- Mark Tristan J. Quimque
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila, Philippines
| | - Mark John P. Mandigma
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila, Philippines
| | - Justin Allen K. Lim
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila, Philippines
| | - Simon Budde
- Institut für Organische Chemie, Universitätstr. 31, 93053 Regensburg, Germany
| | - Hans-Martin Dahse
- Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute (HKI), Beutenbergstraße 11a, D-07745 Jena, Germany
| | - Oliver B. Villaflores
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila, Philippines
| | - Arnold V. Hallare
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Padre Faura St., 1000 Manila, Philippines
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila, Philippines
| |
Collapse
|
18
|
Wang RL, Gao Y, Xing X. Analysis of Chemical Composition and Assessment of Antioxidant, Cytotoxic and Synergistic Antibacterial Activities of Essential Oils from Different Plant Parts of Piper boehmeriifolium. Chem Biodivers 2020; 17:e2000245. [PMID: 32379384 DOI: 10.1002/cbdv.202000245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 11/07/2022]
Abstract
The essential oils (EOs) from leaves, stems, and whole plant of Piper boehmeriifolium were analyzed using GC/FID and GC/MS. The main constituents of P. boehmeriifolium EOs were β-caryophyllene, caryophyllene oxide, β-elemene, spathulenol, germacrene D, β-selinene, and neointermedeol. The antioxidant potential of the EOs were determined using DPPH• , ABTS•+ and FRAP assays. In ABTS•+ assay, the leaf oil exhibited a remarkable activity with an IC50 value of 7.36 μg/mL almost similar to BHT (4.06 μg/mL). Furthermore, the antibacterial activity of the oils as well as their synergistic potential with conventional antibiotics were evaluated using microdilution and Checkerboard assays. The results revealed that the oils from different parts of P. boehmeriifolium inhibited the growth of all tested bacteria and the minimum inhibitory concentrations were determined to be 0.078 - 1.250 mg/mL. In combination with chloramphenicol or streptomycin, the oils showed significant synergistic antibacterial effects in most cases. Besides, the results of MTT assay indicated that the oil of the whole plant exhibited significant cytotoxic activities on human hepatocellular carcinoma cells (HepG2) and human breast cancer cells (MCF-7). In summary, the P. boehmeriifolium oils could be regarded as a prospective source for pharmacologically active compounds.
Collapse
Affiliation(s)
- Ruo-Lan Wang
- Marine College, Shandong University, Weihai, 264209, P. R. China
| | - Yang Gao
- Marine College, Shandong University, Weihai, 264209, P. R. China
| | - Xiang Xing
- Marine College, Shandong University, Weihai, 264209, P. R. China
| |
Collapse
|
19
|
Chemical Composition and Preliminary Antimicrobial Activity of the Hydroxylated Sesquiterpenes in the Essential Oil from Piper barbatum Kunth Leaves. PLANTS 2020; 9:plants9020211. [PMID: 32041311 PMCID: PMC7076699 DOI: 10.3390/plants9020211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/17/2022]
Abstract
This study evaluates the antimicrobial and antifungal potential of the essential oil extracted from a species located in the Andes of Ecuador, Piper barbatum Kunth, known as “cordoncillo” or “allupa”, used by the Quichua people as an antibacterial plant for washing female genitalia in cases of infection. The most abundant molecules in the essential oil were: α- phellandrene (43.16%), limonene (7.04%); some oxygenated sesquiterpenes such as: trans-sesquisabinene hydrate (8.23%), elemol (7.21%) and others. The evaluation of antimicrobial activity showed activity in all the strains analyzed; however, those in which MIC values are considered to be very strong (less than 500 µg/mL) are: Staphylococcus aureus 264 µg/mL, Streptococcus mutans 132 µg/mL, Candida albicans 132 µg/mL and Candida tropicalis 264 µg/mL. Antimicrobial bioautography defines which molecules are responsible for the activity; thus, it was possible to establish the chromatographic regions of = 0.02 and Rf = 0.04, as those with active molecules. It was established that 4 hydroxylated sesquiterpene molecules are involved: elemol (7.21%), trans-sesquisabinene hydrate (8.23%), β–eudesmol (3.49%) and 10-epi-γ-eudesmol (1.07%); the last two being the most active. The aim of this manuscript is to analyze both the ancestral knowledge of the Quichua people of Ecuador, and the chemical-biodiversity of the Andean forest ecosystem, in order to provide new raw materials of pharmaceutical interest.
Collapse
|
20
|
|
21
|
The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins (Basel) 2019; 11:toxins11110656. [PMID: 31717922 PMCID: PMC6891610 DOI: 10.3390/toxins11110656] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
Collapse
|
22
|
Macedo AL, da Silva DPD, Moreira DL, de Queiroz LN, Vasconcelos TRA, Araujo GF, Kaplan MAC, Pereira SSC, de Almeida ECP, Valverde AL, Robbs BK. Cytotoxicity and selectiveness of Brazilian Piper species towards oral carcinoma cells. Biomed Pharmacother 2018; 110:342-352. [PMID: 30529767 DOI: 10.1016/j.biopha.2018.11.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/07/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the ten most common types of cancer worldwide. Plants of the genusPiper are used in traditional medicine to treat cancer, and they have a vast diversity of phytochemicals with cytotoxic potential. Purpose and Study Design: In this work, we analyzed the cytotoxic and selective potential of extracts and semipurified fractions of Piper mollicomum (PM), Piper truncatum (PT), Piper cernuum (PC), Piper arboreum (PA), and Piper cabralanum (PCa) using three different OSCC cell lines (SCC4, SCC9 and SCC25), and we measured their in vivo toxicities and conducted chemical analyses of their active fractions. RESULTS The dichloromethane fractions of the crude methanolic extracts of the leaves of PM(-L-D), PC(-L-D) and PCa(-L-D) exhibited notable IC50 values of 94.2, 47.2 and 47.5 μg/mL, respectively, and all three of these extracts were more active than carboplatin (172.3 μg/mL). The most selective fraction was PC-L-D, which exhibited SI > 4.5; less than 5% hemolysis; and no significant alterations in in vivo acute toxicology. The major constituents in active fractions were lignans (PC-L-D and PCa-L-D) and chromenes (PM-L-D). CONCLUSION PC-L-D demonstrated great potential for further development as an anticancer drug and could be the key to developing more effective and less toxic therapies against oral cancer.
Collapse
Affiliation(s)
- Arthur L Macedo
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi, Brazil
| | - Diego P D da Silva
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil
| | - Davyson L Moreira
- Natural Products Department, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Lucas N de Queiroz
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil
| | - Thatyana R A Vasconcelos
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi, Brazil
| | - Geisoellen F Araujo
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil
| | | | - Suiane S C Pereira
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil
| | - Elan C P de Almeida
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil
| | - Alessandra L Valverde
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi, Brazil.
| | - Bruno K Robbs
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil; Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil; Postgraduate Program in Applied Science for Health Products, Faculty of Pharmacy, Fluminense Federal University, Niteroi, Brazil.
| |
Collapse
|
23
|
Xia MY, Yang J, Zhang PH, Li XN, Luo JF, Long CL, Wang YH. Amides, Isoquinoline Alkaloids and Dipeptides from the Aerial Parts of Piper mullesua. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:419-430. [PMID: 30073582 PMCID: PMC6224811 DOI: 10.1007/s13659-018-0180-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/03/2018] [Indexed: 05/26/2023]
Abstract
One undescribed amide, pipermullesine A, two undescribed isoquinoline alkaloids, pipermullesines B and C, and six undescribed dipeptides, pipermullamides A-F, along with 28 known compounds, were isolated from the aerial parts of Piper mullesua. The structures of the undescribed compounds were elucidated based on the analysis of 1D and 2D NMR and MS data. Furthermore, the structures of pipermullesines A-C were confirmed by single crystal X-ray diffraction analysis. All isolates were evaluated for inhibitory activity against platelet aggregation induced by thrombin (IIa) or platelet-activating factor (PAF). (-)-Mangochinine, pellitorine, and (2E,4E)-N-isobutyl-2,4-dodecadienamide showed weak inhibitory activity against rabbit platelet aggregation induced by PAF, with IC50 values of 470.3 µg/mL, 614.9 µg/mL, and 579.7 µg/mL, respectively.
Collapse
Affiliation(s)
- Meng-Yuan Xia
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Pan-Hua Zhang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Feng Luo
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Chun-Lin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, People's Republic of China.
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
24
|
Paul A, Adnan M, Majumder M, Kar N, Meem M, Rahman MS, Rauniyar AK, Rahman N, Chy MNU, Kabir MSH. Anthelmintic activity of Piper sylvaticum Roxb. (family: Piperaceae): In vitro and in silico studies. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0077-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Velandia SA, Quintero E, Stashenko EE, Ocazionez RE. Actividad antiproliferativa de aceites esenciales de plantas cultivadas en Colombia. ACTA BIOLÓGICA COLOMBIANA 2018. [DOI: 10.15446/abc.v23n2.67394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Colombia posee gran diversidad de plantas medicinales, pero pocas han sido objeto de investigación. En este trabajo se evaluó la actividad antiproliferativa de aceites esenciales obtenidos por hidrodestilación asistida por microondas. Se analizaron 15 muestras de 11 especies en ensayos del MTT en células cancerosas MCF-7, HeLa y HepG-2 y se incluyeron células normales humanas (HEK293) y de animales (Vero y BF16F10) para evaluar selectividad. La composición química de muestras activas se determinó por cromatografía de gases acoplada a espectrometría de masas (GC-MS). Aceites esenciales de cuatro especies mostraron actividad antiproliferativa (CI50: 50 μg/mL) en células HeLa y/o MCF-7, en el siguiente rango (índice de selectividad en paréntesis): Piper cumanense H.B.K. (4,7) > Piper subflavum var. espejuelanum C.DC (3,9) > Salvia officinalis L. (3,6) > Piper eriopodom (Miq.) C. DC. (3,1). Ninguna muestra fue activa en células HepG-2. El análisis por CG-MS identificó β-cariofileno, α-copaeno, β-pineno, α-pineno y linalol como componentes mayoritarios. Los aceites esenciales activos pueden ser punto de partida para desarrollo de medicamentos herbales para cuidado paliativo del cáncer.
Collapse
|
26
|
Godoy de Lima R, Barros MT, da Silva Laurentiz R. Medicinal Attributes of Lignans Extracted from Piper Cubeba: Current Developments. ChemistryOpen 2018; 7:180-191. [PMID: 29435403 PMCID: PMC5795757 DOI: 10.1002/open.201700182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 11/21/2022] Open
Abstract
Lignans are a large class of natural products that have been isolated from many plants. They reveal diverse biological activities, especially antiviral and antitumor properties. From Piper cubeba, lignans of several classes can be isolated from the roots, rhizomes, stems, leaves, seeds, and fruits. Among its various chemical constituents, (-)-cubebin and (-)-hinokinin are found in significant quantities. Although they have been known for some time, during the last few decades their biological properties have been studied by several research groups. The cubebins have been identified as a lactol monomer and dimers as a mixture of diastereoisomers. Recently, their structural characterization and the synthesis of the possible structures have led to the correction of some earlier structural proposals. This review describes the more recent developments in the study of the medicinal attributes of cubebin and hinokinin extracted from Piper cubeba and the synthesis and biological testing of some analogues.
Collapse
Affiliation(s)
- Regiane Godoy de Lima
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa2829-516CaparicaPortugal), Tel. (+351) 212948361
- Department of Physics and ChemistrySão Paulo State UniversityAv. Brasil 5615380-000Ilha Solteira-SPBrasil
| | - Maria Teresa Barros
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa2829-516CaparicaPortugal), Tel. (+351) 212948361
| | - Rosangela da Silva Laurentiz
- Department of Physics and ChemistrySão Paulo State UniversityAv. Brasil 5615380-000Ilha Solteira-SPBrasil
- Department of Physics and ChemistrySão Paulo State UniversityAv. Brasil 5615380-000Ilha Solteira-SPBrasil
| |
Collapse
|
27
|
Grinevicius VM, Andrade KS, Ourique F, Micke GA, Ferreira SR, Pedrosa RC. Antitumor activity of conventional and supercritical extracts from Piper nigrum L. cultivar Bragantina through cell cycle arrest and apoptosis induction. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Song JL, Li BL, Yuan Y, Nie LH, Niu J, Chiu D, Xu ZF, Wu JW, Qiu SX. Yangonindimers A-C, three new kavalactone dimers from Piper methysticum (kava). Nat Prod Res 2017; 31:2459-2466. [DOI: 10.1080/14786419.2017.1312395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jia-Ling Song
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bai-Lin Li
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Yuan
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Hui Nie
- College Of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Niu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - David Chiu
- Intern, High School Junior of Davis Senior High School, Davis, CA, USA
| | - Zhi-Fang Xu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jie-Wei Wu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sheng-Xiang Qiu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
29
|
Tariq A, Sadia S, Pan K, Ullah I, Mussarat S, Sun F, Abiodun OO, Batbaatar A, Li Z, Song D, Xiong Q, Ullah R, Khan S, Basnet BB, Kumar B, Islam R, Adnan M. A systematic review on ethnomedicines of anti-cancer plants. Phytother Res 2017; 31:202-264. [DOI: 10.1002/ptr.5751] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Akash Tariq
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Sehrish Sadia
- College of life sciences; Beijing Normal University; Beijing China
| | - Kaiwen Pan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - Ihteram Ullah
- Center for Agricultural Resources Research, Chinese Academy of Sciences; Shijiazhuang; Hebei China
| | - Sakina Mussarat
- Department of Botany; Kohat University of Science and Technology; Kohat Pakistan
| | - Feng Sun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Olatunji Olusanya Abiodun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
- Department of Botany; Obafemi Awolowo University; Ile-Ife Osun State Nigeria
| | | | - Zilong Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Dagang Song
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Qinli Xiong
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- University of Chinese Academy of Sciences; Beijing China
| | - Riaz Ullah
- Department of Chemistry; Government College Ara Khel; Frontier Region Kohat Pakistan
| | - Suliman Khan
- Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan China
| | - Buddha Bahadur Basnet
- State Key Laboratory of Mycology, Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- Central Department of Biotechnology; Tribhuvan University; Kathmandu Nepal
| | - Brawin Kumar
- Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - Rabiul Islam
- Department of Crop Physiology and Ecology; Hajee Mohammad Danesh Science and Technology University; Dinajpur Bangladesh
- Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan China
| | - Muhammad Adnan
- Department of Botany; Kohat University of Science and Technology; Kohat Pakistan
| |
Collapse
|
30
|
Gutiérrez Y, Montes R, Scull R, Sánchez A, Cos P, Monzote L, Setzer WN. Chemodiversity Associated with Cytotoxicity and Antimicrobial Activity of Piper aduncum var. ossanum. Chem Biodivers 2016; 13:1715-1719. [PMID: 27603914 DOI: 10.1002/cbdv.201600133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Chemical analysis, antimicrobial activity and cytotoxic effects of essential oils (EOs) from leaves of Piper aduncum var. ossanum from two localities Bauta (EO-B) and Ceiba (EO-C), Artemisa Province, Cuba, were determined. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. EO-B demonstrated higher activity against S. aureus and L. amazonensis; while a lower cytotoxicity on mammalian cells was observed. Both EOs displayed the same activity against Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei, and Leishmania infantum. Both EOs were inactive against Escherichia coli and Candida albicans.
Collapse
Affiliation(s)
- Yamilet Gutiérrez
- Department of Chemistry, Institute of Pharmacy and Food, Havana University, Calle 222 # 2317 e/23 y 31, Coronela, Lisa, Habana, Havana, 10 400, Cuba
| | - Rodny Montes
- Laboratorios Antidoping, Instituto de Medicina Deportiva, Calle 14 y 100, Reparto Embil, Municipio Boyeros, Ciudad Habana, C.P., 10800, Cuba
| | - Ramón Scull
- Department of Chemistry, Institute of Pharmacy and Food, Havana University, Calle 222 # 2317 e/23 y 31, Coronela, Lisa, Habana, Havana, 10 400, Cuba
| | - Arturo Sánchez
- Department of Chemistry, Institute of Pharmacy and Food, Havana University, Calle 222 # 2317 e/23 y 31, Coronela, Lisa, Habana, Havana, 10 400, Cuba
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, BE-2610, Antwerp
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine 'Pedro Kouri', 10400, Havana, Cuba
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| |
Collapse
|
31
|
Ding DD, Wang YH, Chen YH, Mei RQ, Yang J, Luo JF, Li Y, Long CL, Kong Y. Amides and neolignans from the aerial parts of Piper bonii. PHYTOCHEMISTRY 2016; 129:36-44. [PMID: 27452451 DOI: 10.1016/j.phytochem.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 05/26/2023]
Abstract
Six amides, piperbonamides A-F, three neolignans piperbonins A-C, and 11 known compounds were isolated from the aerial parts of Piper bonii (Piperaceae). The structures of piperbonamides A-F and piperbonins A-C were elucidated based on the analysis of 1D and 2D NMR and MS data. Piperbonin A, (+)-trans-acuminatin, (+)-cis-acuminatin, (+)-kadsurenone, and pipernonaline showed weak activity against platelet aggregation with IC50 values of 118.2, 108.5, 90.02, 107.3, and 116.3 μM, respectively, as compared with the positive control, tirofiban, with an IC50 value of 5.24 μM. Piperbonamides A-F were inactive against five tumor cell lines at concentrations up to 40 μM.
Collapse
Affiliation(s)
- Duo-Duo Ding
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ya-Hui Chen
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ren-Qiang Mei
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ji-Feng Luo
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chun-Lin Long
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China.
| | - Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
32
|
de Souza Grinevicius VMA, Kviecinski MR, Santos Mota NSR, Ourique F, Porfirio Will Castro LSE, Andreguetti RR, Gomes Correia JF, Filho DW, Pich CT, Pedrosa RC. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:139-147. [PMID: 27178634 DOI: 10.1016/j.jep.2016.05.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurvedic and Chinese traditional medicine and tribal people use herbal preparations containing Piper nigrum fruits for the treatment of many health disorders like inflammation, fever, asthma and cancer. In Brazil, traditional maroon culture associates the spice Piper nigrum to health recovery and inflammation attenuation. AIMS OF THE STUDY The aim of the current work was to evaluate the relationship between reactive oxygen species (ROS) overproduction, DNA fragmentation, cell cycle arrest and apoptosis induced by Piper nigrum ethanolic extract and its antitumor activity. METHODS The plant was macerated in ethanol. Extract constitution was assessed by TLC, UV-vis and ESI-IT-MS/MS spectrometry. The cytotoxicity, proliferation and intracellular ROS generation was evaluated in MCF-7 cells. DNA damage effects were evaluated through intercalation into CT-DNA, plasmid DNA cleavage and oxidative damage in CT-DNA. Tumor growth inhibition, survival time increase, apoptosis, cell cycle arrest and oxidative stress were assessed in Ehrlich ascites carcinoma-bearing mice. RESULTS Extraction yielded 64mg/g (36% piperine and 4.2% piperyline). Treatments caused DNA damage and reduced cell viability (EC50=27.1±2.0 and 80.5±6.6µg/ml in MCF-7 and HT-29 cells, respectively), inhibiting cell proliferation by 57% and increased ROS generation in MCF-7 cells (65%). Ehrlich carcinoma was inhibited by the extract, which caused reduction of tumor growth (60%), elevated survival time (76%), cell cycle arrest and induced apoptosis. The treatment with extract increased Bax and p53 and inhibited Bcl-xL and cyclin A expression. It also induced an oxidative stress in vivo verified as enhanced lipid peroxidation and carbonyl proteins content and increased activities of glutathione reductase, superoxide dismutase and catalase. GSH concentration was decreased in tumor tissue from mice. CONCLUSION The ethanolic extract has cytotoxic and antiproliferative effect on MCF-7 cells and antitumor effect in vivo probably due to ROS overproduction that induced oxidative stress affecting key proteins involved in cell cycle arrest at G1/S and triggering apoptosis. Finally, the overall data from this study are well in line with the traditional claims for the antitumor effect of Piper nigrum fruits.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/metabolism
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/genetics
- Carcinoma, Ehrlich Tumor/metabolism
- Carcinoma, Ehrlich Tumor/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Proteins/metabolism
- DNA Damage
- Dose-Response Relationship, Drug
- Ethanol/chemistry
- Female
- HT29 Cells
- Humans
- Lipid Peroxidation/drug effects
- MCF-7 Cells
- Male
- Mice, Inbred BALB C
- Oxidants/isolation & purification
- Oxidants/pharmacology
- Oxidative Stress/drug effects
- Phytotherapy
- Piper nigrum/chemistry
- Piperidines/isolation & purification
- Piperidines/pharmacology
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Protein Carbonylation/drug effects
- Reactive Oxygen Species/metabolism
- Solvents/chemistry
- Time Factors
- Tumor Burden/drug effects
- Up-Regulation
Collapse
Affiliation(s)
| | - Maicon Roberto Kviecinski
- Programa de Pós-Graduação em Ciências da Saúde da Universidade do Sul de Santa Catarina (UNISUL), SC, Brazil
| | - Nádia Sandrini Ramos Santos Mota
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabiana Ourique
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Rafaela Rafognato Andreguetti
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Francisco Gomes Correia
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Danilo Wilhem Filho
- Departamento de Ecologia e Zoologia,Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Claus Tröger Pich
- NITBIO, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Rozangela Curi Pedrosa
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
33
|
Yadav V, Chatterjee SS, Majeed M, Kumar V. Preventive potentials of piperlongumine and a Piper longum extract against stress responses and pain. J Tradit Complement Med 2015; 6:413-423. [PMID: 27774429 PMCID: PMC5067934 DOI: 10.1016/j.jtcme.2015.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/16/2015] [Accepted: 11/13/2015] [Indexed: 10/27/2022] Open
Abstract
AIM To compare stress resistance increasing and analgesic activities of piperlongumine and a methanolic Piper longum fruit extract (PLE). METHODS Efficacies of a single and repeated daily oral doses (1-256 mg/kg/day) of PLE, piperlongumine, and 50 mg/kg/day doxycycline against foot shock stress triggered alteration in body weights and core temperatures, and of their 11 daily doses on antidepressants like activity in tail suspension test and on pentobarbital induced sedation in male mice were compared. In another experiment, analgesic activities of single and repeated daily 5 mg/kg oral doses of piperlongumine and PLE in mice hot plate test and in acetic acid induced writing tests were compared with those of aspirin and doxycycline. RESULTS After their single oral doses no effects of piperlongumine or PLE or doxycycline were observed in the footshock stress induced hyperthermia test or in hot plate test. However, significant effects of piperlongumine and PLE in both the tests were observed after their 5 or more daily doses. Both of them also dose dependently suppressed daily handling and repetitive testing triggered alterations in body weights and core temperatures. Their doxycycline like antidepressant activity in tail suspension test and aspirin like analgesic effects in acetic acid writhing test were observed after their 11 daily 5 mg/kg oral dose. CONCLUSION Piperlongumine is another bioactive secondary metabolite of P. longum and other plants of piper species with stress response suppressing, analgesic, and anti-inflammatory activities. Its bactericidal activities can also contribute to its therapeutically interesting bio-activity profile.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neuropharmacology Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | | | - Muhammed Majeed
- Sami Labs Limited, 19/1, 19/2 1st Main, II Phase, Peenya Industrial Area, Bengaluru, 560058, Karnataka, India
| | - Vikas Kumar
- Neuropharmacology Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| |
Collapse
|
34
|
Hoff Brait DR, Mattos Vaz MS, da Silva Arrigo J, Borges de Carvalho LN, Souza de Araújo FH, Vani JM, da Silva Mota J, Cardoso CAL, Oliveira RJ, Negrão FJ, Kassuya CAL, Arena AC. Toxicological analysis and anti-inflammatory effects of essential oil from Piper vicosanum leaves. Regul Toxicol Pharmacol 2015; 73:699-705. [PMID: 26545326 DOI: 10.1016/j.yrtph.2015.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
This study assessed the anti-inflammatory effects of the essential oil from Piper vicosanum leaves (OPV) and evaluated the toxicological potential of this oil through acute toxicity, genotoxicity and mutagenicity tests. The acute toxicity of OPV was evaluated following oral administration to female rats at a single dose of 2 g/kg b.w. To evaluate the genotoxic and mutagenic potential, male mice were divided into five groups: I: negative control; II: positive control; III: 500 mg/kg of OPV; IV: 1000 mg/kg of OPV; V: 2000 mg/kg of OPV. The anti-inflammatory activity of OPV was evaluated in carrageenan-induced pleurisy and paw edema models in rats. No signs of acute toxicity were observed, indicating that the LD50 of this oil is greater than 2000 mg/kg. In the comet assay, OPV did not increase the frequency or rate of DNA damage in groups treated with any of the doses assessed compared to that in the negative control group. In the micronucleus test, the animals treated did not exhibit any cytotoxic or genotoxic changes in peripheral blood erythrocytes. OPV (100 and 300 mg/kg) significantly reduced edema formation and inhibited leukocyte migration analyzed in the carrageenan-induced edema and pleurisy models. These results show that OPV has anti-inflammatory potential without causing acute toxicity or genotoxicity.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/toxicity
- Carrageenan
- Chemotaxis, Leukocyte/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Edema/chemically induced
- Edema/immunology
- Edema/prevention & control
- Erythrocytes/drug effects
- Erythrocytes/pathology
- Female
- Lethal Dose 50
- Male
- Mice
- Micronucleus Tests
- Oils, Volatile/administration & dosage
- Oils, Volatile/isolation & purification
- Oils, Volatile/pharmacology
- Oils, Volatile/toxicity
- Phytotherapy
- Piper/chemistry
- Piper/toxicity
- Plant Extracts/administration & dosage
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plant Extracts/toxicity
- Plant Leaves
- Plant Oils/administration & dosage
- Plant Oils/isolation & purification
- Plant Oils/pharmacology
- Plant Oils/toxicity
- Plants, Medicinal
- Pleurisy/chemically induced
- Pleurisy/immunology
- Pleurisy/prevention & control
- Rats
- Rats, Wistar
- Risk Assessment
- Time Factors
Collapse
Affiliation(s)
| | | | | | | | | | - Juliana Miron Vani
- Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | | | | | | | - Fábio Juliano Negrão
- School of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | | | - Arielle Cristina Arena
- School of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil; Department of Morphology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
35
|
Longato GB, Fiorito GF, Vendramini-Costa DB, de Oliveira Sousa IM, Tinti SV, Ruiz ALTG, de Almeida SMV, Padilha RJR, Foglio MA, de Carvalho JE. Different cell death responses induced by eupomatenoid-5 in MCF-7 and 786-0 tumor cell lines. Toxicol In Vitro 2015; 29:1026-33. [PMID: 25882683 DOI: 10.1016/j.tiv.2015.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 11/15/2022]
Abstract
Natural products remain an important source of new drugs, including anticancer drugs. Recently, our group reported the anticancer activity of eupomatenoid-5 (eup-5), a neolignan isolated from Piper regnellii (Miq.) C. DC. var. regnellii leaves. In vitro studies demonstrated that MCF-7 (breast) and 786-0 (kidney) were among the cancer cell lines most sensitive to eup-5 treatment. The current results demonstrate that mitochondrial membrane depolarization and generation of reactive oxygen species are implicated in eup-5-mediated cytotoxic effects on these cancer cells lines. In MCF-7 cells, eup-5 led to phosphatidylserine externalization and caspase activation, whereas the same did not occur in 786-0 cells. Scanning electron microscopy revealed a reduction of microvilli density, as well as cell morphology alterations. Moreover, treated MCF-7 cells exhibited well-characterized apoptosis alterations, while treated 786-0 cells exhibited characteristics of programmed necroptosis process. These findings support the possibility that different mechanisms may be targeted by eup-5 in cell death response.
Collapse
Affiliation(s)
- Giovanna Barbarini Longato
- Programa de Pós-graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil; Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil.
| | - Giovanna Francisco Fiorito
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Débora Barbosa Vendramini-Costa
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | | | - Sirlene Valério Tinti
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Ana Lúcia Tasca Gois Ruiz
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA) e Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Universidade de Pernambuco (UPE), Garanhuns 55290-000, PE, Brazil
| | - Rafael José Ribeiro Padilha
- Laboratório de Imunopatologia Keizo Asami (LIKA) e Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Mary Ann Foglio
- Divisão de Fitoquímica, CPQBA, UNICAMP, Campinas 13083-970, SP, Brazil
| | - João Ernesto de Carvalho
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil; Faculdade de Ciências Farmacêuticas, UNICAMP, Campinas 13083-872, SP, Brazil
| |
Collapse
|
36
|
Dayan FE, Owens DK, Watson SB, Asolkar RN, Boddy LG. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action. FRONTIERS IN PLANT SCIENCE 2015; 6:222. [PMID: 25904929 PMCID: PMC4389368 DOI: 10.3389/fpls.2015.00222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 05/11/2023]
Abstract
Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in response between plants treated with sarmentine and herbicidal soaps such as pelargonic acid (nonanoic acid). However, little was known about the mechanism of action leading to the rapid desiccation of foliage treated by sarmentine. In cucumber cotyledon disc-assays, sarmentine induced rapid light-independent loss of membrane integrity at 100 μM or higher concentration, whereas 3 mM pelargonic acid was required for a similar effect. Sarmentine was between 10 and 30 times more active than pelargonic acid on wild mustard, velvetleaf, redroot pigweed and crabgrass. Additionally, the potency of 30 μM sarmentine was greatly stimulated by light, suggesting that this natural product may also interfere with photosynthetic processes. This was confirmed by observing a complete inhibition of photosynthetic electron transport at that concentration. Sarmentine also acted as an inhibitor of photosystem II (PSII) on isolated thylakoid membranes by competing for the binding site of plastoquinone. This can be attributed in part to structural similarities between herbicides like sarmentine and diuron. While this mechanism of action accounts for the light stimulation of the activity of sarmentine, it does not account for its ability to destabilize membranes in darkness. In this respect, sarmentine has some structural similarity to crotonoyl-CoA, the substrate of enoyl-ACP reductase, a key enzyme in the early steps of fatty acid synthesis. Inhibitors of this enzyme, such as triclosan, cause rapid loss of membrane integrity in the dark. Sarmentine inhibited the activity of enoyl-ACP reductase, with an I 50app of 18.3 μM. Therefore, the herbicidal activity of sarmentine appears to be a complex process associated with multiple mechanisms of action.
Collapse
Affiliation(s)
- Franck E. Dayan
- Natural Products Utilization Research Unit, US Department of Agriculture-Agricultural Research Service, Thad Cochran Center, University of MississippiMS, USA
| | - Daniel K. Owens
- Natural Products Utilization Research Unit, US Department of Agriculture-Agricultural Research Service, Thad Cochran Center, University of MississippiMS, USA
| | - Susan B. Watson
- Natural Products Utilization Research Unit, US Department of Agriculture-Agricultural Research Service, Thad Cochran Center, University of MississippiMS, USA
| | | | | |
Collapse
|
37
|
Liu HX, Tan HB, He MT, Li L, Wang YH, Long CL. Isolation and synthesis of two hydroxychavicol heterodimers from Piper nudibaccatum. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Anticancer and Anti-Inflammatory Activities of a Standardized Dichloromethane Extract from Piper umbellatum L. Leaves. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:948737. [PMID: 25713595 PMCID: PMC4332971 DOI: 10.1155/2015/948737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 01/02/2023]
Abstract
Despite the advances in anticancer drug discovery field, the worldwide cancer incidence is remarkable, highlighting the need for new therapies focusing on both cancer cell and its microenvironment. The tumor microenvironment offers multiple targets for cancer therapy, including inflammation. Nowadays, almost 75% of the anticancer agents used in chemotherapy are derived from natural products, and plants are an important source of new promising therapies. Continuing our research on Piper umbellatum species, here we describe the anticancer (in vitro antiproliferative activity and in vivo Ehrlich solid tumor model) and anti-inflammatory (carrageenan-induced paw edema and peritonitis models) activities of a standardized dichloromethane extract (SDE) from P. umbellatum leaves, containing 23.9% of 4-nerolidylcatechol. SDE showed in vitro and in vivo antiproliferative activity, reducing Ehrlich solid tumor growth by 38.7 and 52.2% when doses of 200 and 400 mg/kg, respectively, were administered daily by oral route. Daily treatments did not produce signals of toxicity. SDE also reduced paw edema and leukocyte migration on carrageenan-induced inflammation models, suggesting that the anticancer activity of SDE from Piper umbellatum leaves could involve antiproliferative and anti-inflammatory effects. These findings highlight P. umbellatum as a source of compounds against cancer and inflammation.
Collapse
|
39
|
Bissinger R, Malik A, Warsi J, Jilani K, Lang F. Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 2014; 6:2975-88. [PMID: 25317837 PMCID: PMC4210880 DOI: 10.3390/toxins6102975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca²⁺-activity ([Ca²⁺]i), formation of ceramide, oxidative stress and activation of p38 kinase. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca²⁺]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 h exposure to piperlongumine (30 µM) was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca²⁺]i and the effect was not dependent on presence of extracellular Ca²⁺. Piperlongumine significantly increased ROS formation and ceramide abundance. CONCLUSIONS Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca²⁺ but at least partially due to ROS and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
40
|
Wang YH, Goto M, Wang LT, Hsieh KY, Morris-Natschke SL, Tang GH, Long CL, Lee KH. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues. Bioorg Med Chem Lett 2014; 24:4818-21. [PMID: 25241925 DOI: 10.1016/j.bmcl.2014.08.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/28/2014] [Indexed: 11/27/2022]
Abstract
Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype.
Collapse
Affiliation(s)
- Yue-Hu Wang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Li-Ting Wang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kan-Yen Hsieh
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chun-Lin Long
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40447, Taiwan.
| |
Collapse
|