1
|
S A, R V, Sivakumar K, Dash S. Effect of antidiabetic drug metformin hydrochloride on micellization behavior of cetylpyridinium bromide in aqueous solution. J Biomol Struct Dyn 2024; 42:8969-8982. [PMID: 37667900 DOI: 10.1080/07391102.2023.2249113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
Herein, the interaction of an antidiabetic drug, metformin hydrochloride (MHCl), and a cationic surfactant, cetylpyridinium bromide (CPB) is investigated in an aqueous medium. The critical micellar concentration (CMC) of CPB is estimated through conductivity experiments and found to be reduced on adding MHCl and further decreased in the presence of NaCl. The reduced CMC is attributed to the solubilization of MHCl by CPB through micellization and the micellization is found to be thermodynamically spontaneous that experiences an augmentation in the presence of NaCl. This is identified from the negative value of standard free energy (Δ G0m). The higher negative value of Δ G0m (-55.41 kJ mol-1) for CPB + MHCl + NaCl than CPB (-37.89 kJ mol-1) and CPB + MHCl (-34.08 kJ mol-1) is suggestive of the above phenomenon. The positive values of Δ S0m in all three cases confirm that the micellization is entropy driven. The binding of MHCl on CPB is quantified by estimating binding constant using the Benesi-Hildebrand (B-H) plot through UV-visible spectral methods. The binding constant values were calculated to be 2.70 M-1 for CPB + MHCl + NaCl compared to 1.258 M-1 for CPB + MHCl predicting a favoring of micellization in the presence of NaCl which is higher than that in the presence of co-solvents. The molecular interaction of MHCl and CPB is justified using FT-IR and NMR techniques. The surface properties of drug surfactant interactions are assessed using SEM techniques. The point of interaction between the drug and surfactant is visualized through the molecular docking approach. The results suggest that CPB would be an effective solubilizer for developing MHCl drug formulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anjali S
- Department of chemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Vigneshwari R
- Department of chemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| | - K Sivakumar
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University) [SCSVMV University], Kanchipuram, Tamil Nadu, India
| | - Sasmita Dash
- Department of chemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| |
Collapse
|
2
|
Kotha AA, Ahmad SU, Dewan I, Bhuiyan MA, Rahman FI, Naina Mohamed I, Reza MS. Metformin Hydrochloride Loaded Mucoadhesive Microspheres and Nanoparticles for Anti-Hyperglycemic and Anticancer Effects Using Factorial Experimental Design. Drug Des Devel Ther 2023; 17:3661-3684. [PMID: 38084128 PMCID: PMC10710808 DOI: 10.2147/dddt.s432790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Background Metformin hydrochloride (HCl) microspheres and nanoparticles were formulated to enhance bioavailability and minimize side effects through sustained action and optimized drug-release characteristics. Initially, the same formulation design with different ratios of metformin HCl and Eudragit RSPO was used to formulate four batches of microspheres and nanoparticles using solvent evaporation and nanoprecipitation methods, respectively. Methods The produced formulations were evaluated based on particle size and shape (particle size distribution (PSD), scanning electron microscope (SEM)), incompatibility (differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR)), drug release pattern, permeation behavior, in vivo hypoglycemic effects, and in vitro anticancer potential. Results Compatibility studies concluded that there was minimal interaction between metformin HCl and the polymer, whereas SEM images revealed smoother, more spherical nanoparticles than microspheres. Drug release from the formulations was primarily controlled by the non-Fickian diffusion process, except for A1 and A4 by Fickian, and B3 by Super case II. Korsmeyer-Peppas was the best-fit model for the maximum formulations. The best formulations of microspheres and nanoparticles, based on greater drug release, drug entrapment, and compatibility characteristics, were attributed to the study of drug permeation by non-everted intestinal sacs, in vivo anti-hyperglycemic activity, and in vitro anticancer activity. Conclusion This study suggests that the proposed metformin HCl formulation can dramatically reduce hyperglycemic conditions and may also have anticancer potential.
Collapse
Affiliation(s)
- Amina Alam Kotha
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shihab Uddin Ahmad
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Irin Dewan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Fahad Imtiaz Rahman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Md Selim Reza
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
3
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Venkatesh DN, Meyyanathan SN, Kovacevic A, Zielińska A, Fonseca J, Eder P, Dobrowolska A, Souto EB. Effect of Hydrophilic Polymers on the Release Rate and Pharmacokinetics of Acyclovir Tablets Obtained by Wet Granulation: In Vitro and In Vivo Assays. Molecules 2022; 27:6490. [PMID: 36235026 PMCID: PMC9572380 DOI: 10.3390/molecules27196490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to evaluate the feasibility of producing acyclovir-containing modified release matrix tablets by a wet granulation method based on the type and concentration of two pharmaceutical-grade hydrophilic matrix polymers (i.e., hydroxypropyl methylcellulose (HPMC), carbomers, and their combinations) commonly used in biomedical applications. The mechanical properties of the tablets and in vitro and in vivo performance were studied. The physicochemical properties of the raw materials and corresponding physical mixtures were characterized by differential scanning calorimetry, showing that the hydrophilic polymers did not influence the physicochemical properties of the drug. The wet granulation process improved the flow and compression properties of the obtained granules. This method enabled the preparation of the matrix tablets of acyclovir with appropriate mechanical properties concerning hardness and friability. The drug release kinetics was governed by the type and concentration of the hydrophilic polymers composing the matrices. The study has proven that HPMC-composed tablets were superior in modified drug release properties compared to carbomer- and HPMC/carbomer-based tablets. Mathematical analysis of the release profiles, determined in a medium adjusted to pH 1.2 followed by pH 7.4, revealed that the drug released from the hydrophilic tablets followed non-Fickian first-order kinetics. An optimal HPMC-based formulation submitted to accelerated stability studies (40 °C, 75% RH) was stable for three months. A complete cross-over bioavailability study of the selected acyclovir-loaded sustained release tablets and marketed immediate-release tablets were compared in six healthy male volunteers. The extent of drug absorption from the sustained release tablets was significantly greater than that from immediate-release pills, which may improve the drug's antiviral properties attributed to the lower elimination rate and enhanced acyclovir half-life.
Collapse
Affiliation(s)
- D. Nagasamy Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Post Box. No. 20, Elk Hill Road, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Subramanianainar N. Meyyanathan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Post Box. No. 20, Elk Hill Road, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Andjelka Kovacevic
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznan, Poland
| | - Joel Fonseca
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Han JK, Kim JY, Choi DH, Park ES. A formulation development strategy for dual-release bilayer tablets: An integrated approach of quality by design and a placebo layer. Int J Pharm 2022; 618:121659. [PMID: 35292397 DOI: 10.1016/j.ijpharm.2022.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Although dual-release mechanism bilayer tablets containing one drug in both immediate- and sustained-release layers are widely used to improve therapeutic efficiency, studies quantitatively analyzing the drug amount released from each layer and the mutual effect of each layer's mechanical properties on drug product quality are limited. Here, the formulation of a dual-release bilayer tablet containing sarpogrelate HCl was optimized with a placebo layer and quality by design (QbD) approach. The placebo layer was developed to replace the active pharmaceutical ingredient and its mechanical properties were evaluated. The formulation was developed using the placebo layer to quantitatively analyze the drug released from each layer. The mixture design and Monte Carlo simulation enabled robust design space identification. The mutual effect of each layer's mechanical properties on drug product quality was confirmed by multivariate analysis using the optimal settings in the design space. The optimized formulation was characterized by comparison with a reference drug for various quality attributes and in vivo pharmacokinetic parameters, which ensured the bioequivalence of the optimized bilayer tablet with the reference drug. This study shows that the integration of QbD and a placebo layer is an effective optimization strategy for dual-release bilayer tablets containing one drug in different layers.
Collapse
Affiliation(s)
- Jong Kwon Han
- School of Pharmacy, Sungkyunkwan University, Suwon-si 16419, Republic of Korea
| | - Ji Yeon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si 50819, Republic of Korea
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si 50819, Republic of Korea.
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon-si 16419, Republic of Korea.
| |
Collapse
|
6
|
Sun ML, Liu HJ, Luo XD, Wang Y, Zhang W, Liu C, Wang X. Bioequivalence and Safety Assessment of Two Formulations of Metformin Hydrochloride Sustained-Release Tablets (Yuantang® SR and Glucophage® XR) Under Fed Conditions in Healthy Chinese Adult Subjects: An Open-Label, Two-Way Crossover, Sequence Randomized Phase I Clinical Trial. Drugs R D 2022; 22:51-60. [PMID: 35061235 PMCID: PMC8885941 DOI: 10.1007/s40268-021-00377-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Objective The purpose of this single-center, randomized, open, two-period, two-sequence crossover, single-dose administration, bioequivalence research was to evaluate the bioequivalence and safety of the generic formulations of metformin hydrochloride sustained-release (MH-SR) 500 mg tablets (test preparation [T]: Yuantang® SR) and the original formulation (reference preparation [R]: Glucophage® XR) in 36 healthy Chinese volunteers under postprandial conditions. Methods Subjects received 500 mg T/R in each period, with a 7-day washout period. Venous blood samples of 4 mL each were collected from each subject 19 times spanning predose (0 h) to 36 h postdose. The metformin concentration in deproteinized plasma was determined by high-performance liquid chromatography–tandem mass spectrometry. Bioequivalence (80.00–125.00%) was assessed by adjusted geometric mean ratios (GMRs) and two-sided 90% confidence intervals (CIs) of the area under the curve (AUC) and maximum concentration (Cmax) for each component. SAS 9.4 software was used for statistical analysis and Phoenix WinNonlin software v7 was used to analyze the pharmacokinetic parameters. Results Thirty-four volunteers completed the clinical study. The 90% CIs (96.12–105.44% for AUC from time zero to the time of the last measurable concentration [AUCt], 96.22–105.54% for AUC extrapolated from time zero to infinity [AUC∞], and 98.42–105.00% for Cmax) of T/R adjusted GMRs were within the bioequivalence acceptance range of 80.00–125.00%, indicating that they are bioequivalent. No serious adverse events occurred in this study, indicating that the two formulations were effective and well tolerated. Conclusions Yuantang® SR was confirmed to be a well tolerated and bioequivalent alternative to Glucophage® XR when taken under postprandial conditions in healthy Chinese volunteers. The Clinical Trials Registry Platform used for this study was http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml. The trial registration numbers (TRNs) and dates of registrations were CTR20180476 (19 April 2018) for this clinical trial and CTR20171595 (11 January 2018) for the pilot trial.
Collapse
Affiliation(s)
- Ming-Li Sun
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Hui-Juan Liu
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Xiang-Dong Luo
- Department of Research and Development, Guangdong Sinocorp Pharmaceutical Co., Ltd, Xiang-er Road, Huizhou Industrial Transfer Park, Longmen County, Huizhou, Guangdong Province, 516800, People's Republic of China
| | - Yu Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Wei Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Chen Liu
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China.
| |
Collapse
|
7
|
Lu CH, Huang YF, Chu IM. Design of Oral Sustained-Release Pellets by Modeling and Simulation Approach to Improve Compliance for Repurposing Sobrerol. Pharmaceutics 2022; 14:pharmaceutics14010167. [PMID: 35057064 PMCID: PMC8777650 DOI: 10.3390/pharmaceutics14010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Sobrerol, an oral mucolytic agent, in a recent study showed promise for treating multiple sclerosis. A human equivalent dose of 486 mg of sobrerol administered thrice daily (i.e., 1459 mg of daily dose) demonstrated the highest therapeutic efficacy for repurposing use, which also points out the poor compliance of administration. In this study, oral sustained-release pellets of sobrerol were successfully developed with evaluated manufacturing conditions and drug release kinetics. For design of the target drug product, we used a modeling and simulation approach to establish a predictive model of oral pharmacokinetic profile, by exploring the characteristics and correlations corresponding to the pharmacokinetics and pharmacodynamics of sobrerol, such as absorption lag time (0.18 h), time-scaling in vitro–in vivo correlation (tin-vitro = 0.494 tin-vivo − 0.0904), gastrointestinal transit time (8 h), minimum effective concentration (1.61 μg/mL), and duration of action (12.8 h). Results showed that the frequency of administration and the daily dose remarkably reduced by 33.3% (i.e., from thrice to twice daily) and 22.8%, respectively, which indicates that this prototype approach can be adopted for rapidly developing a modified-release dosage form of sobrerol, with improvement of compliance of administration and therapeutic efficacy.
Collapse
Affiliation(s)
- Chu-Hsun Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan;
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (C.-H.L.); (I.-M.C.)
| | - Yu-Feng Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan;
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (C.-H.L.); (I.-M.C.)
| |
Collapse
|
8
|
Use of Eudragit RS PO, HPMC K100M, Ethyl Cellulose, and Their Combination for Controlling Nicorandil Release from the Bilayer Tablets with Atorvastatin as an Immediate-Release Layer. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09513-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Chogan F, Mirmajidi T, Rezayan AH, Sharifi AM, Ghahary A, Nourmohammadi J, Kamali A, Rahaie M. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater 2020; 113:144-163. [PMID: 32590170 DOI: 10.1016/j.actbio.2020.06.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Abnormal wound healing caused by the over-expression of collagen and fibronectin leads to fibrosis, the major complication of all treatment modalities. A three-layer nanofiber scaffold was designed, optimized, and fabricated. This scaffold comprised two supportive polycaprolactone (PCL)-chitosan layers on the sides and a polyvinyl alcohol (PVA)-metformin hydrochloride (metformin-HCl) in the middle. The physico-chemical properties of scaffold, such as mechanical characteristics, degradation, swelling, and in-vitro drug release, were evaluated. The biological tests, including cell viability in response to metformin-HCl and Tween 80, scaffold biocompatibility, cell attachment, and antibacterial activity, were further conducted. The wound healing effect of scaffold loaded with metformin-HCl (MSc+Met) was assessed in donut-shaped silicone splints in rats. Histopathological and immunohistochemical evaluation as well as mRNA expression levels of fibrosis markers were also studied. SEM images indicated a uniform, bead-less morphology and high porosity. Surface modification of scaffold by Tween 80 improved the surface hydrophilicity and enhanced the adhesion and proliferation of fibroblasts. The scar area on day 15 in MSc+Met was significantly lower than that of other groups. Histopathological and immunohistochemical evaluation revealed that group MSc+Met was the best, having significantly lower inflammation, higher angiogenesis, the smallest scar width and depth, maximum epitheliogenesis score, and the most optimal modulation of collagen density. Local administration of metformin-HCl substantially down-regulated the expression of fibrosis-involved genes: transforming growth factor (TGF-β1), collagen type 1 (Col-I), fibronectin, collagen type 3 (Col-III), and alpha-smooth muscle actin (α-SMA). Inhibiting these genes alleviates scar formation but delays wound healing; thus, an engineered scaffold was used to prevent delay in wound healing. These results provided evidence for the first time to introduce an anti-fibrogenic slow-releasing scaffold, which acts in a dual role, both alleviating fibrosis and accelerating wound healing.
Collapse
|
10
|
Dubey SK, Alexander A, Pradhyut KS, Agrawal M, Jain R, Saha RN, Singhvi G, Saraf S, Saraf S. Recent Avenues in Novel Patient-Friendly Techniques for the Treatment of Diabetes. Curr Drug Deliv 2020; 17:3-14. [DOI: 10.2174/1567201816666191106102020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/14/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
Background:
Diabetes is one of the most common chronic metabolic disorders which affect
the quality of human life worldwide. As per the WHO report, between 1980 to 2014, the number of
diabetes patients increases from 108 million to 422 million, with a global prevalence rate of 8.5% per
year. Diabetes is the prime reason behind various other diseases like kidney failure, stroke, heart disorders,
glaucoma, etc. It is recognized as the seventh leading cause of death throughout the world. The
available therapies are painful (insulin injections) and inconvenient due to higher dosing frequency.
Thus, to find out a promising and convenient treatment, extensive investigations are carried out globally
by combining novel carrier system (like microparticle, microneedle, nanocarrier, microbeads etc.) and
delivery devices (insulin pump, stimuli-responsive device, inhalation system, bioadhesive patch, insulin
pen etc.) for more precise diagnosis and painless or less invasive treatment of disease.
Objective:
The review article is made with an objective to compile information about various upcoming
and existing modern technologies developed to provide greater patient compliance and reduce the undesirable
side effect of the drug. These devices evade the necessity of daily insulin injection and offer a
rapid onset of action, which sustained for a prolonged duration of time to achieve a better therapeutic
effect.
Conclusion:
Despite numerous advantages, various commercialized approaches, like Afrezza (inhalation
insulin) have been a failure in recent years. Such results call for more potential work to develop a
promising system. The novel approaches range from the delivery of non-insulin blood glucose lowering
agents to insulin-based therapy with minimal invasion are highly desirable.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Faculty of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup- 781125, Guwahati (Assam), India
| | - K. Sai Pradhyut
- Department of Pharmacy, Faculty of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup- 781125, Guwahati (Assam), India
| | - Rupesh Jain
- Department of Pharmacy, Faculty of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayana Saha
- Department of Biotechnology, Faculty of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Faculty of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| |
Collapse
|
11
|
Pandey R, Selvamurthy W. Design and in vitro characterization of novel pulsatile delivery system of biguanide antidiabetic drug. J Pharm Bioallied Sci 2020; 12:356-368. [PMID: 33100797 PMCID: PMC7574743 DOI: 10.4103/jpbs.jpbs_203_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/07/2020] [Accepted: 03/14/2020] [Indexed: 11/30/2022] Open
Abstract
Aim: This work shows the development of pulsatile capsular pellets of metformin hydrochloride and its characterisation. Material and Methods: The novel drug delivery system consisted of hydroxy propyl cellulose Type H. It has a lag time modifier and Eudragit L-100 and Eudragit S-100 in different concentrations as pH-dependent release modifier in the gastrointestinal tract. The pellets were subjected to in vitro release studies using USP dissolution apparatus type-II in distilled water, phosphate buffer of pH 6.8, and 0.1 N HCl and methanol. Ultraviolet (UV), infrared (IR), high-performance liquid chromatography (HPLC), and mass spectroscopy were performed for active pharmaceutical ingredients and formulations. Result: The study was characterized by the complete release of the drug in pulses after a well-defined lag time of 6 h (±0.20) (period of no drug release) for the treatment of type II diabetes mellitus. Conclusion: The stability studies on the selected formulation of Metformin were found to be stable, with shelf life of 1.94 years. Hence it may be concluded that the newly formulated pulsatile drug delivery systems of Metformin Hydrochloride, when ingested at the bed time in the night, produce effective control of the increased blood glucose level after intake of meals by allowing the drug to release after a lag time of 6 h (after meals).
Collapse
|
12
|
Lee JY, Shin DH, Kim JS. Anticancer Effect of Metformin in Herceptin-Conjugated Liposome for Breast Cancer. Pharmaceutics 2019; 12:pharmaceutics12010011. [PMID: 31877620 PMCID: PMC7023063 DOI: 10.3390/pharmaceutics12010011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/27/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Metformin (MET) is an anti-diabetic drug effective against breast cancer, targeting breast cancer stem cells (BCSCs). MET-encapsulating liposome (LP-MET) and Herceptin-conjugated LP-MET (Her-LP-MET) were evaluated for their anti-cancer effect in vitro and in vivo. Size and zeta potentials of LP-MET and Her-LP-MET were suitable for enhanced permeability and retention effects. Her-LP-MET yielded greater inhibition of BCSC proliferation in vitro than free MET or LP-MET, as well as a dose-dependent long-term anti-proliferation effect. Further, the anti-migration effect of Her-LP-MET on BCSCs was superior to that of MET or LP-MET, and was enhanced when used in concert with doxorubicin (DOX). In a mouse model, Her-LP-MET combined with free DOX was more effective than free MET, free DOX, or Her-LP-MET. Moreover, Her-LP-MET combined with free DOX yielded tumor remission, whereas free DOX alone resulted in metastasis or death. As such, Her-LP-MET formulation is expected to provide a new therapeutic modality targeting BCSCs.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women’s University, Cheongparo 47 gil 100, Yongsan gu, Seoul 04310, Korea;
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women’s University, Cheongparo 47 gil 100, Yongsan gu, Seoul 04310, Korea;
- Correspondence: ; Tel.: +82-043-710-9574; Fax: +82-043-710-0032
| |
Collapse
|
13
|
Mendes TDC, Simon A, Menezes JCV, Pinto EC, Cabral LM, de Sousa VP. Development of USP Apparatus 3 Dissolution Method with IVIVC for Extended Release Tablets of Metformin Hydrochloride and Development of a Generic Formulation. Chem Pharm Bull (Tokyo) 2019; 67:23-31. [DOI: 10.1248/cpb.c18-00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | | | - Eduardo Costa Pinto
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| |
Collapse
|
14
|
Śmieszek A, Szydlarska J, Mucha A, Chrapiec M, Marycz K. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization. J Biomater Appl 2018; 32:570-586. [PMID: 29113566 DOI: 10.1177/0885328217738006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the pro-osteogenic properties of sol-gel-derived silica/zirconium dioxide coatings functionalized with 1 mM of metformin. The matrices were applied on 316L stainless steel using dip-coating technique. First of all, physicochemical properties of biomaterials were evaluated. Surface morphology and topography was determined using energy-dispersive X-ray spectroscopy and atomic force microscopy. The chemical composition was evaluated using Fourier transform infrared spectroscopy. Further, wettability and surface free energy were characterized. Cytocompatibility of biomaterials was tested in vitro using model of human multipotent mesenchymal stromal cells isolated from adipose tissue. The influence of biomaterials on cells morphology and proliferation was determined. Osteogenic effect of obtained biomaterials was evaluated in terms of their influence on secretory activity of human multipotent mesenchymal stromal cells isolated from adipose tissue and matrix mineralization. Analysis was performed in relation to the control cultures i.e. maintained on pure SS316L substrate and SS316L covered with silica/zirconium dioxide. Obtained results indicate that silica/zirconium dioxide_metformin coatings ameliorated metabolic and proliferative activity of human multipotent mesenchymal stromal cells isolated from adipose tissue, as well as promoted their proper growth and adhesion. The human multipotent mesenchymal stromal cells isolated from adipose tissue cultured on biomaterials were characterized by typical fibroblast-like morphology. The addition of metformin to the silica/zirconium dioxide coatings improved functional differentiation of human multipotent mesenchymal stromal cells isolated from adipose tissue. Osteogenic cultures on silica/zirconium dioxide_metformin were characterized by formation of well-developed osteonodules rich in calcium and phosphorous. Moreover, human multipotent mesenchymal stromal cells isolated from adipose tissue cultured on silica/zirconium dioxide_metformin synthesized increased amount of alkaline phosphatase, bone morphogenetic protein 2 and osteopontin, both on messenger RNA and protein level. Obtained biomaterials modulate cellular plasticity of human multipotent mesenchymal stromal cells isolated from adipose tissue promoting their osteogenic differentiation, thus may find application in broadly defined tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Śmieszek
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.,2 Wroclaw Research Centre EIT+, Stablowicka 147, Wroclaw, Poland
| | - Joanna Szydlarska
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Aleksandra Mucha
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Martyna Chrapiec
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Krzysztof Marycz
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.,2 Wroclaw Research Centre EIT+, Stablowicka 147, Wroclaw, Poland
| |
Collapse
|
15
|
Choonara BF, Choonara YE, Kumar P, du Toit LC, Pillay V. Design of an In Situ Cross-Linked Eutectic Tablet for Enhanced Delivery of Gastro-Sensitive Proteins and Peptides. J Pharm Sci 2016; 105:2086-98. [DOI: 10.1016/j.xphs.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/11/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
|
16
|
Choonara BF, Choonara YE, Kumar P, du Toit LC, Tomar LK, Tyagi C, Pillay V. A menthol-based solid dispersion technique for enhanced solubility and dissolution of sulfamethoxazole from an oral tablet matrix. AAPS PharmSciTech 2015; 16:771-86. [PMID: 25549792 PMCID: PMC4508297 DOI: 10.1208/s12249-014-0271-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/10/2014] [Indexed: 11/30/2022] Open
Abstract
A menthol-based solid dispersion was designed to improve the intrinsic solubility of the poorly soluble sulfamethoxazole- a class II drug molecule of Biopharmaceutics Classification System (BCS) displaying widespread antibacterial activity. Solid dispersions of menthol and sulfamethoxazole were compressed with hydroxypropyl methylcellulose (HPMC) into suitable sulfamethoxazole-loaded matrix tablets for oral drug delivery. The sulfamethoxazole-loaded solid dispersions and compressed tablets were characterized for their physicochemical and physicomechanical properties such as changes in crystallinity, melting point, molecular transitions, and textural analysis for critical analysis of their effects on the solubility and dissolution of sulfamethoxazole. The formulations were further evaluated for swelling, degradation, solubility, and in vitro drug release behavior. In vitro drug release from the sulfamethoxazole-loaded matrix tablets displayed a minimum and maximum fractional release of 0.714 and 0.970, respectively. The tablets further displayed different release rate profiles over the study periods of 12, 16, 48, and 56 h which were attributed to the varying concentrations of menthol within each formulation. Menthol was determined as a suitable hydrophilic carrier for sulfamethoxazole since it functioned as a solubilizing and release-retarding agent for improving the solubility and dissolution of sulfamethoxazole as well as controlling the rate at which it was released.
Collapse
Affiliation(s)
- Bibi F. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193 South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193 South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193 South Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193 South Africa
| | - Lomas K. Tomar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193 South Africa
| | - Charu Tyagi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193 South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193 South Africa
| |
Collapse
|
17
|
Hu J, Prabhakaran MP, Tian L, Ding X, Ramakrishna S. Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility. RSC Adv 2015. [DOI: 10.1039/c5ra18535a] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Emulsion electrospun drug–PCL nanofibrous mats were demonstrated as better drug delivery substrates and tissue engineering scaffold compared to PHBV nanofibers.
Collapse
Affiliation(s)
- Jue Hu
- College of Textiles
- Donghua University
- Shanghai 201620
- China
- START-Thrust 3
| | | | - Lingling Tian
- START-Thrust 3
- National University of Singapore
- Singapore 138602
| | - Xin Ding
- College of Textiles
- Donghua University
- Shanghai 201620
- China
| | | |
Collapse
|