1
|
Singh S, Patil VM, Paliwal SK, Masand N. Nanotechnology-based Drug Delivery of Topical Antifungal Agents. Pharm Nanotechnol 2024; 12:185-196. [PMID: 37594096 DOI: 10.2174/2211738511666230818125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Among the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.
Collapse
Affiliation(s)
- Sumita Singh
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan, India
- Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India
| | | | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
2
|
Padaraju A, Dwivedi F, Kumar G. Microemulsions, nanoemulsions and emulgels as carriers for antifungal antibiotics. Ther Deliv 2023; 14:721-740. [PMID: 38014430 DOI: 10.4155/tde-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
According to estimates, up to 25% of the world's population has fungal skin diseases, making them the most prevalent infectious disease. Several chemical classes of antifungal drugs are available to treat fungal infections. However, the major challenges of conventional formulations of antifungal drugs include poor pharmacokinetic profiles like solubility, low permeability, side effects and decreased efficacy. Novel drug delivery is a promising approach for overcoming pharmacokinetic limitations and increasing the effectiveness of antibiotics. In this review, we have shed light on microemulsions, nanoemulsions, and emulgels as novel drug delivery approaches for the topical delivery of antifungal antibiotics. We believe these formulations have potential translational value and could be developed for treating fungal infections in humans.
Collapse
Affiliation(s)
- Annapurna Padaraju
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Falguni Dwivedi
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
3
|
Khalid A, Arshad MU, Imran A, Haroon Khalid S, Shah MA. Development, stabilization, and characterization of nanoemulsion of vitamin D 3-enriched canola oil. Front Nutr 2023; 10:1205200. [PMID: 37693243 PMCID: PMC10484710 DOI: 10.3389/fnut.2023.1205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
In this study, the oil-in-water nanoemulsion (NE) was prepared and loaded with vitamin D3 in food-grade (edible) canola oil and stabilized by Tween 80 and Span 80 by using a water titration technique with droplet sizes of 20 to 200 nm. A phase diagram was established for the influence of water, oil, and S-Mix concentration. The outcomes revealed that the particle size of blank canola oil nanoemulsion (NE) ranged from 60.12 to 62.27 (d.nm) and vitamin D3 NE ranged from 93.92 to 185.5 (d.nm). Droplet size and polydispersity index (PDI) of both blank and vitamin D3-loaded NE results were less than 1, and zeta potential results for blank and vitamin D3 loaded NE ranged from -9.71 to -15.32 mV and -7.29 to -13.56 mV, respectively. Furthermore, the pH and electrical conductivity of blank NE were 6.0 to 6.2 and 20 to 100 (μs/cm), respectively, whereas vitamin D3-loaded NE results were 6.0 to 6.2 and 30 to 100 (μs/cm), respectively. The viscosity results of blank NE ranged from 0.544 to 0.789 (mPa.s), while that of vitamin D3-loaded NE ranged from 0.613 to 0.793 (mPa.s). In this study, the long-term stability (3 months) of canola oil NE containing vitamin D3 at room temperature (25 C) and high temperature (40 C) was observed.
Collapse
Affiliation(s)
- Aafia Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Ali Imran
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Government College University, Faisalabad, Pakistan
| | - Mohd Asif Shah
- School of Business, Woxsen University, Hyderabad, Telangana, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Economics, Kabridahar University, Somali, Ethiopia
| |
Collapse
|
4
|
Topical hydrophilic gel with itraconazole-loaded polymeric nanomicelles improves wound healing in the treatment of feline sporotrichosis. Int J Pharm 2023; 634:122619. [PMID: 36682505 DOI: 10.1016/j.ijpharm.2023.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Sporotrichosis is a superficial fungal disease that can affect animals and humans. The high number of infected cats has been associated with zoonotic transmission and contributed to sporotrichosis being considered by the World Health Organization as one of the main neglected tropical fungal diseases for 2021-2030. Oral administration of itraconazole (ITZ) is the first choice for treatment, but it is expensive, time-consuming, and often related to serious adverse effects. As a strategy to optimize the treatment, we proposed the development of a hydrophilic gel with nanomicelles loaded with ITZ (HGN-ITZ). The HGN-ITZ was developed using an I-optimal design and characterized for particle size, Zeta potential, drug content, microscopic aspects, viscosity, spreadability, in vitro drug release, in vitro antifungal activity, and clinical evaluation in cats. The HGN-ITZ showed a high content of ITZ (97.3 ± 2.1 mg/g); and characteristics suitable for topical application (viscosity, spreadability, globules size, Zeta potential, controlled drug release). In a pilot clinical study, cats with disseminated sporotrichosis were treated with oral ITZ or HGN-ITZ + oral ITZ. A mortality rate of 21.3% was observed for the oral ITZ group compared to 5.3% for the HGN-ITZ + oral ITZ group. In a cat with a single lesion, topical treatment alone (HGN-ITZ) provided complete healing of the lesion in 45 days. No signs of topical irritation were observed during the treatments, suggesting that HGN-ITZ can be a promising strategy in the treatment of sporotrichosis.
Collapse
|
5
|
Promjan S, Boonme P. Itraconazole-loaded microemulsions: formulation, characterization, and dermal delivery using shed snakeskin as the model membrane. Pharm Dev Technol 2023; 28:51-60. [PMID: 36547258 DOI: 10.1080/10837450.2022.2162082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microemulsions (MEs) were developed for dermal delivery of 1% w/w itraconazole (ITZ). Solubility of ITZ in various oils was investigated and clove oil was selected as oil phase. Pseudoternary phase diagrams were constructed by titration method. The system containing clove oil as oil phase, Tween®80 as surfactant, and 1:1 mixture of water and polyethylene glycol 400 as aqueous phase provided the largest ME region. It was selected for the formulation development of ITZ-loaded MEs. Physicochemical stability was evaluated at 4 °C, room temperature (25 °C), and 45 °C for three months. In vitro permeation and retention studies were assessed using shed snakeskin as a model membrane. Antifungal activity was investigated by agar diffusion method. Results indicated that incorporation of ITZ in the selected MEs did not affect physical properties. Physicochemical data after storage periods revealed that the most suitable storage temperature was 4 °C. Skin permeation and retention data indicated that water-in-oil (w/o) ITZ-loaded MEs had superior dermal delivery of ITZ than oil-in-water (o/w) ITZ-loaded ME and ITZ-oily solution. Moreover, w/o ITZ-loaded MEs showed larger inhibition zones against C. albicans and T. rubrum than a commercial gel. Therefore, w/o ITZ-loaded MEs possibly provided effective dermal delivery and antifungal activity to treat superficial fungal infections.
Collapse
Affiliation(s)
- Saratsanan Promjan
- Department of Pharmaceutical Technology and Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Prapaporn Boonme
- Department of Pharmaceutical Technology and Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
6
|
Daryab M, Faizi M, Mahboubi A, Aboofazeli R. Preparation and Characterization of Lidocaine-Loaded, Microemulsion-Based Topical Gels. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123787. [PMID: 35765506 PMCID: PMC9191217 DOI: 10.5812/ijpr.123787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023]
Abstract
Microemulsion-based gels (MBGs) were prepared for transdermal delivery of lidocaine and evaluated for their potential for local anesthesia. Lidocaine solubility was measured in various oils, and phase diagrams were constructed to map the concentration range of oil, surfactant, cosurfactant, and water for oil-in-water (o/w) microemulsion (ME) domains, employing the water titration method at different surfactant/cosurfactant weight ratios. Refractive index, electrical conductivity, droplet size, zeta potential, pH, viscosity, and stability of fluid o/w MEs were evaluated. Carbomer® 940 was incorporated into the fluid drug-loaded MEs as a gelling agent. Microemulsion-based gels were characterized for spreadability, pH, viscosity, and in-vitro drug release measurements, and based on the results obtained, the best MBGs were selected and subsequently subjected to ex-vivo rat skin permeation anesthetic effect and irritation studies. Data indicated the formation of nano-sized droplets of MEs ranging from 20 - 52 nm with a polydispersity of less than 0.5. In-vitro release and ex-vivo permeation studies on MBGs showed significantly higher drug release and permeation in comparison to the marketed topical gel. Developed MBG formulations demonstrated greater potential for transdermal delivery of lidocaine and advantage over the commercially available gel product, and therefore, they may be considered as potential vehicles for the topical delivery of lidocaine.
Collapse
Affiliation(s)
- Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Aboofazeli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Mehrandish S, Mirzaeei S. Design of Novel Nanoemulsion Formulations for Topical Ocular Delivery of Itraconazole: Development, Characterization and In Vitro Bioassay. Adv Pharm Bull 2022; 12:93-101. [PMID: 35517876 PMCID: PMC9012932 DOI: 10.34172/apb.2022.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/09/2020] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose: The objective of this study was to design and develop nanoemulsion formulations of Itraconazole (ITZ), a water-insoluble, potent antifungal drug using the spontaneous emulsification method, to improve the ocular delivery and achieve a sustained release of the drug. Methods: The oil was selected on the basis of the ITZ solubility while the surfactant and co-surfactant were selected based on the thermodynamic stability and globule size. Following the selection of components, a pseudo-ternary phase diagram was constructed for the most promising formulation (F11) using benzyl benzoate (BB) as the oil, Eumulgin CO40 as the surfactant, and propylene glycol as the co-surfactant, by the design of experiments (DoE). Results: F7 and F11 formulations were found to have an average globule size of 223.5 ± 10.7 nm and 157.5 ± 14.2 nm, besides thermodynamic stability and suitable physicochemical properties. F11 possessed an almost seven-fold higher cumulative percentage of in vitro released ITZ, in comparison to ITZ aqueous suspension after 24 hours. The release data suggested that the best fitted kinetical model for F11 and F7 was the Higuchi and Korsmeyer-Peppas model. Conclusion: The extended-release of the drug beside an acceptable amount of loaded ITZ suggested that nanoemulsion is suitable for the delivery of the ITZ.
Collapse
Affiliation(s)
- Saba Mehrandish
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Suhail N, Alzahrani AK, Basha WJ, Kizilbash N, Zaidi A, Ambreen J, Khachfe HM. Microemulsions: Unique Properties, Pharmacological Applications, and Targeted Drug Delivery. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.754889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microemulsions, comprising oil, water and a surfactant, in association with some co-surfactant, are thermodynamically stable systems. They have found applications in a large number of chemical and pharmacological processes due to their unique properties such as large interfacial area, low interfacial tension, and most importantly, the ability to solubilize and deliver hydrophobic drugs. In addition to the oral and intravenous route, they are suitable for drug delivery through the ophthalmic, vaginal, pulmonary, dental, and topical routes. This review highlights the properties and several recent developments in the use of microemulsions for medical treatment purposes including targeted drug delivery.
Collapse
|
9
|
Nanostructured lipid carriers containing chitosan or sodium alginate for co-encapsulation of antioxidants and an antimicrobial agent for potential application in wound healing. Int J Biol Macromol 2021; 183:668-680. [PMID: 33930450 DOI: 10.1016/j.ijbiomac.2021.04.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022]
Abstract
The high incidence and costs of chronic wounds in the elderly have motivated the search for innovations to improve product performance and the healing process while reducing costs. In this study, bioadhesive nanostructured lipid carriers (NLC) were developed for the co-encapsulation of compounds with antioxidant (α-tocopherol and quercetin) and antimicrobial (tea tree oil) activity for management of wounds. The NLC was produced with shea butter and argan oil, and modified with sodium alginate or chitosan to confer bioadhesive properties. Spherical nanoparticles of ~307-330 nm and zeta potential varying from -21.2 to +11.8 mV were obtained. Thermal analysis demonstrated that the lipid matrix reduced tea tree oil thermal loss (~1.8-fold). Regardless of the type of polysaccharide employed, the NLCs promoted cutaneous localization of antioxidants in damaged (subjected to incision) skin, with a ~74 to 180-fold higher delivery into the skin compared to percutaneous delivery. This result is consistent with the similar bioadhesive properties of chitosan or sodium alginate-modified NLC. Nanoencapsulation of tea tree oil did not preclude its antimicrobial effects against susceptible and resistant strains of S. aureus and P. aeruginosa, while co-encapsulation of antioxidants increased the NLC-induced fibroblasts migration, supporting their potential usefulness for management of wounds.
Collapse
|
10
|
Mehrandish S, Mirzaeei S. A Review on Ocular Novel Drug Delivery Systems of Antifungal Drugs: Functional Evaluation and Comparison of Conventional and Novel Dosage Forms. Adv Pharm Bull 2021; 11:28-38. [PMID: 33747850 PMCID: PMC7961232 DOI: 10.34172/apb.2021.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
Ocular fungal infections affect more than one million people annually worldwide. They can lead to impaired vision or even complete blindness, so they should be treated immediately to prevent such consequences. Although topical administration has always been the most common route of ocular drug delivery owing to high patient acceptance, reduced side effects, and the possibility of self-administration, its limited ocular bioavailability poses a major challenge. As a result, attention has recently been drawn to the design and development of novel drug delivery systems (NDDS) that can overcome the challenges of conventional dosage forms. This research is the first to review and classify the studies which have designed and developed topical ocular NDDS with the aim to compare the performance and antifungal activity of these novel systems with conventional forms. According to the results, all studies seemed to confirm the superiority of NDDS over conventional forms in cases of released and permeated drug and antifungal activity. The NDDS were used specifically to improve ocular delivery by slowing down the release rate, increasing drug permeation, and subsequently increasing the antifungal effects of the active pharmaceutical ingredients. Hence, further studies on NDDS may aid the optimization of ocular drug delivery of antifungal drugs.
Collapse
Affiliation(s)
- Saba Mehrandish
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Sousa F, Ferreira D, Reis S, Costa P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals (Basel) 2020; 13:ph13090248. [PMID: 32942693 PMCID: PMC7558771 DOI: 10.3390/ph13090248] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023] Open
Abstract
The high incidence of fungal infections has become a worrisome public health issue, having been aggravated by an increase in host predisposition factors. Despite all the drugs available on the market to treat these diseases, their efficiency is questionable, and their side effects cannot be neglected. Bearing that in mind, it is of upmost importance to synthetize new and innovative carriers for these medicines not only to fight emerging fungal infections but also to avert the increase in drug-resistant strains. Although it has revealed to be a difficult job, new nano-based drug delivery systems and even new cellular targets and compounds with antifungal potential are now being investigated. This article will provide a summary of the state-of-the-art strategies that have been studied in order to improve antifungal therapy and reduce adverse effects of conventional drugs. The bidirectional relationship between Mycology and Nanotechnology will be also explained. Furthermore, the article will focus on new compounds from the marine environment which have a proven antifungal potential and may act as platforms to discover drug-like characteristics, highlighting the challenges of the translation of these natural compounds into the clinical pipeline.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| |
Collapse
|
12
|
Garg A, Sharma GS, Goyal AK, Ghosh G, Si SC, Rath G. Recent advances in topical carriers of anti-fungal agents. Heliyon 2020; 6:e04663. [PMID: 32904164 PMCID: PMC7452444 DOI: 10.1016/j.heliyon.2020.e04663] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/22/2019] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Fungal skin infections are the most common global issue for skin health. Fungal infections are often treated by topical or systemic anti-fungal therapy. Topical fungal therapy is usually preferred because of their targeted therapy and fewer side effects. Advanced topical carriers because of their distinct structural and functional features, overcome biopharmaceutical challenges associated with conventional drug delivery systems like poor retention and low bioavailability. Literature evidence indicated topical nanocarriers loaded with anti-fungal agents display superior therapeutic response with minimum toxicity. Nanocarriers often used for topical anti-fungal medication includes Solid-Lipid nanoparticles, Microemulsions, Liposomes, Niosomes, Microsponge, Nanogel, Nanoemulsion, Micelles etc. This review summarizes recent advances in novel strategies employed in topical carriers to improve the therapeutic performance of anti-fungal drugs.
Collapse
Affiliation(s)
- Abhinava Garg
- Department of Pharmaceutics, I.S.F.College of Pharmacy, Moga, Punjab, India
| | - Ganti S. Sharma
- Department of Pharmaceutics, I.S.F.College of Pharmacy, Moga, Punjab, India
| | - Amit K. Goyal
- School of Chemical Sciences and. Pharmacy, Central University of Rajasthan, India
| | - Goutam Ghosh
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudam Chandra Si
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Sharma P, Tailang M. Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00035-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present study aimed to design, optimize, and evaluate primaquine loaded nanoemulgel for malaria treatment. Nanoemulgel was prepared with the help of different components such as castor oil, Tween 80:Transcutol P (Smix ratio), and polymers. Pseudoternary phase diagram was constructed to optimize Smix ratio. Response surface methodology was used for the optimization of nanoemulsion preparation based on characterization parameters such as droplet size (nm), zeta potential (mv), polydispersity index (PDI), viscosity (mPa·S), conductivity (mS/cm), and percent drug release. Based on these parameter results, F5 formulation was selected as an optimized formulation. F5 formulation was loaded in hydrogel preparation which was developed by using hydroxypropyl methylcellulose (HPMC K15M) 1-2% concentrations. The prepared nanoemulgel was evaluated with the following parameters: percent drug content, in vitro drug release, ex vivo skin permeation, pH determination, spreadability determination, and viscosity measurement.
Results
The droplets of primaquine loaded nanoemulsion were nanosized (10–200 nm) in the transmission electron microscope (TEM) images. Zeta potential for all formulations (F1-F9) was observed as − 0.7 ± 0.02 to 2.12 ± 0.04 mv. Response surface curves were plotted for optimization of perfect nanoemulsion preparation. Nanoemulgels (F5, F5a, F5b, and F5c) were evaluated for their different parameters such as pH (F5, 5.2 ± 0.2; F5a, 5.3 ± 0.1; F5b, 5.3 ± 0.1; and F5c, 5.4 ± 0.1), viscosity (mPa·S) (F5, 9876 ± 0.61; F5a, 14,564.6 ± 0.42; F5b, 14,841.9 ± 0.82; and F5c, 16,872.1 ± 0.921), spreadability (g.cm/s) (F5, 7.89 ± 0.10; F5a, 5.09 ± 0.03; F5b, 4.30 ± 0.02; and F5c, 3.13 ± 0.01), and percent drug content (F5, 100 ± 0.46; F5a, 98.10 ± 0.38; F5b, 99.70 ± 0.41; and F5c, 97.34 ± 0.51), and ex vivo skin flux of F5b was evaluated for 24 h. Ex vivo skin permeability was found ~ 70% within 12 h and ~ 86% within 24 h.
Conclusion
The nanoemulsion loaded hydrogel of primaquine with optimum viscosity was prepared for transdermal application. Nanoemulgel was prepared by using HPMC K15M into nanoemulsion because HPMC K15M was responsible for significant viscosity. The permeation rate of nanoemulgel was greater than other drug solutions. The great permeation rate was achieved by the incorporation of Transcutol P (cosurfactant). The optimized formulation was justified by using statistics. Stability studies confirmed that nanoemulgel is a promising carrier for the delivery of primaquine.
Collapse
|
14
|
Ebenazer A, Franklyne JS, Tiwari N, Raj.Ch PA, Mukherjee A, Chandrasekaran N. In Vivo Testing and Extended Drug Release of Chitosan-Coated Itraconazole Loaded Microemulsion Using Volatile Oil Thymus vulgaris. REVISTA BRASILEIRA DE FARMACOGNOSIA 2020; 30:279-289. [DOI: 10.1007/s43450-020-00042-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/03/2020] [Indexed: 10/26/2023]
|
15
|
Passos JS, Martino LCD, Dartora VFC, Araujo GLBD, Ishida K, Lopes LB. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur J Pharm Sci 2020; 149:105296. [PMID: 32151706 DOI: 10.1016/j.ejps.2020.105296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 11/20/2022]
Abstract
Considering the increased incidence of sporotrichosis and other fungal infections in rural and urban areas, and the limitations and adverse effects of oral itraconazole therapy, we studied nanostructured lipid carriers (NLC) as topical delivery systems to increase itraconazole localization in skin lesions and associate efficacy with reduced systemic exposure. Unloaded and itraconazole-loaded NLC showed nanometric size (~216-340 nm), negative zeta potential (~ -17 mV), and high entrapment efficiency (~97%). NLC treatment decreased transepidermal water loss, an index of cutaneous barrier function, in intact skin and in tissues damaged with a linear incision (to mimic lesions) by 23-36%, and reduced drug transdermal delivery by ~2-fold, demonstrating its ability to localize itraconazole within the skin. The unloaded and itraconazole-loaded NLC were considered safe, as indicated by scores of 0.5 and 0.6 in HET-CAM models, respectively, and lack of toxicity (measured by survival and health index) on the Galleria mellonella larvae. The values obtained for minimum inhibitory concentration and minimum fungicidal concentration on Sporothrix brasiliensis yeasts were 0.25 and 32 μg/mL, respectively. The drug in solution displayed similar values, indicating that encapsulation does not hinder itraconazole antifungal effect. NLC treatment improved the survival rate and health index of G. mellonella larvae infected with S. brasiliensis yeasts and C. albicans, demonstrating antifungal efficacy. Taken together, itraconazole encapsulation in NLC represents a viable strategy to optimize cutaneous localization without compromising its efficacy against fungal infections.
Collapse
Affiliation(s)
- Julia Sapienza Passos
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Luiza Capello de Martino
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | | | - Gabriel L B de Araujo
- School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana B Lopes
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Drug loaded essential oil microemulsions enhance photostability and evaluation of in vitro efficacy. Photodiagnosis Photodyn Ther 2020; 29:101638. [PMID: 31904549 DOI: 10.1016/j.pdpdt.2019.101638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023]
|
17
|
Okur ME, Ayla Ş, Yozgatlı V, Aksu NB, Yoltaş A, Orak D, Sipahi H, Üstündağ Okur N. Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats. Saudi Pharm J 2020; 28:338-348. [PMID: 32194336 PMCID: PMC7078556 DOI: 10.1016/j.jsps.2020.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/29/2020] [Indexed: 01/26/2023] Open
Abstract
The objective of the present research was to examine the possible usage of microemulsion based gel for fusidic acid (FA) dermal application as burn wound treatment. During the preparation of microemulsion, ethyl oleate as oil phase, tween 80 as a surfactant, ethanol as co-surfactant, water as aqueous phase were used. The prepared microemulsions were evaluated for clarity, pH, viscosity and FA content. Moreover, stability, sterility, antibacterial activity, in vitro release of the formulations were also evaluated. The results showed that the FA loaded microemulsion and microemulsion based gel formation and characteristics were related to many parameters of the components. The performed optimized microemulsion-based gel showed good stability over a period of 3 months. The antibacterial activity of microemulsion-based gel was found to be comparable with marketed cream. RAW 264.7 macrophages were used to determine cell viability (MTT assay) and nitric oxide production. MBG and FA-MBG significantly inhibit the production of the inflammatory mediator NO in LPS-stimulated RAW 264.7 cells in a concentration-dependent manner. The wound healing property was evaluated by histopathological examination and by measuring the wound contraction. The % of wound area in rats treated with FA (2%) loaded microemulsion based gel ranged from 69.30% to 41.39% in the period from 3 to 10 days. In conclusion, FA loaded microemulsion based gel could be offered as encouraging strategy as dermal systems for the burn wound treatment.
Collapse
Affiliation(s)
- Mehmet Evren Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, İstanbul, Turkey
| | - Şule Ayla
- Istanbul Medipol University, School of Medicine, Department of Histology and Embryology, Beykoz, 34810 Istanbul, Turkey
| | - Vildan Yozgatlı
- Ege University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Bornova, 35100 Izmir, Turkey
| | - Neşe Buket Aksu
- Altınbas University, School of Pharmacy, Department of Pharmaceutical Technology, 34217 Istanbul, Turkey
| | - Ayşegül Yoltaş
- Ege University, Faculty of Science, Department of Biology, Fundamental and Industrial Microbiology Division, Bornova, Izmir, Turkey
| | - Duygu Orak
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey.,Yeditepe University, Faculty of Engineering, Genetics and Bioengineering Department, Istanbul, Turkey
| | - Hande Sipahi
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey
| |
Collapse
|
18
|
Ferreira PG, Noronha L, Teixeira R, Vieira I, Borba-Santos LP, Viçosa A, de Moraes M, Calil-Elias S, de Freitas Z, da Silva FC, Rozental S, Futuro DO, Ferreira VF. Investigation of a Microemulsion Containing Clotrimazole and Itraconazole for Transdermal Delivery for the Treatment of Sporotrichosis. J Pharm Sci 2019; 109:1026-1034. [PMID: 31604084 DOI: 10.1016/j.xphs.2019.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 01/29/2023]
Abstract
The aim of this study was to develop a microemulsion (ME) formulation containing an association of itraconazole (ITC) and clotrimazole (CLT) as a transdermal delivery system for the treatment of sporotrichosis. Pseudoternary phase diagrams were constructed to optimize the ME formulation. The ME formulation selected contained 1% (w/w) ITC and 1% (w/w) CLT and was composed of 23.07% Tween® 60 (surfactant), 23.07% propylene glycol (cosurfactant/cosolvent), 30.77% benzyl alcohol (oil), and 21.09% water. The ITC/CLT-loaded ME (ITC/CLT-ME) had a droplet size value of 217 ± 0.9 nm, with a polydispersity index of 0.5 ± 0.1. Permeation experiments on pig ear skin were conducted for ITC/CLT-ME, and the results indicated that the drug permeation performance was influenced by CLT, indicating that CLT acts as a promoter enhancer. In the in vitro antifungal activity assay using Sporothrix brasiliensis yeast, the inhibition halo produced by ITC/CLT-ME exhibited a mean diameter of 43.67 ± 2.31 mm. The ITC/CLT-ME formulation did not cause skin irritation in mice. The results suggest that ITC/CLT-ME is a promising tool for the transdermal treatment of sporotrichosis.
Collapse
Affiliation(s)
- Patricia G Ferreira
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24210-141, Brazil; Universidade Federal Fluminense, Faculdade de Farmácia, 24241-000 Niterói, RJ, Brazil
| | - Letícia Noronha
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24210-141, Brazil; Universidade Federal Fluminense, Faculdade de Farmácia, 24241-000 Niterói, RJ, Brazil
| | - Rafaela Teixeira
- Universidade Federal Fluminense, Faculdade de Farmácia, 24241-000 Niterói, RJ, Brazil
| | - Italo Vieira
- Universidade do Estado do Rio de Janeiro, Instituto de Química, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Luana P Borba-Santos
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Filho, Laboratório de Biologia Celular de Fungos, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Alessandra Viçosa
- Fundação Oswaldo Cruz (FIOCRUZ), Farmanguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Marcela de Moraes
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24210-141, Brazil
| | - Sabrina Calil-Elias
- Universidade Federal Fluminense, Faculdade de Farmácia, 24241-000 Niterói, RJ, Brazil
| | - Zaida de Freitas
- Universidade Federal do Rio de Janeiro, Farmácia Universitária, 21941-170 Rio de Janeiro, RJ, Brazil
| | - Fernando C da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24210-141, Brazil
| | - Sônia Rozental
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Filho, Laboratório de Biologia Celular de Fungos, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Débora O Futuro
- Universidade Federal Fluminense, Faculdade de Farmácia, 24241-000 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, 24241-000 Niterói, RJ, Brazil.
| |
Collapse
|
19
|
Choi DH, Kim YS, Kim DD, Jeong SH. QbD based development and evaluation of topical microemulsion-based hydrogel against superficial fungal infections. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0386-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Mathur M, Devi VK. Potential of novel drug delivery systems in the management of topical candidiasis. J Drug Target 2017; 25:685-703. [DOI: 10.1080/1061186x.2017.1331352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahima Mathur
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, India
| | - V. Kusum Devi
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, India
| |
Collapse
|
21
|
Radwan SAA, ElMeshad AN, Shoukri RA. Microemulsion loaded hydrogel as a promising vehicle for dermal delivery of the antifungal sertaconazole: design, optimization and ex vivo evaluation. Drug Dev Ind Pharm 2017; 43:1351-1365. [DOI: 10.1080/03639045.2017.1318899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Shaimaa Ali Ali Radwan
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aliaa Nabil ElMeshad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Raguia Aly Shoukri
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Kumar R, Kumar S, Sinha VR. Evaluation and Optimization of Water-in-Oil Microemulsion Using Ternary Phase Diagram and Central Composite Design. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1038351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Kumar N, Shishu. D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats. Eur J Pharm Sci 2015; 67:97-112. [DOI: 10.1016/j.ejps.2014.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/03/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
|
24
|
Utilization of microfluidic V-junction device to prepare surface itraconazole adsorbed nanospheres. Int J Pharm 2014; 472:339-46. [DOI: 10.1016/j.ijpharm.2014.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 11/21/2022]
|
25
|
Songkro S, Lo NL, Tanmanee N, Maneenuan D, Boonme P. In vitro release, skin permeation and retention of benzophenone-3 from microemulsions (o/w and w/o). J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50140-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Rehman K, Zulfakar MH. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm 2013; 40:433-40. [PMID: 23937582 DOI: 10.3109/03639045.2013.828219] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transdermal drug delivery systems are a constant source of interest because of the benefits that they afford in overcoming many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Gels are semisolid formulations, which have an external solvent phase, may be hydrophobic or hydrophilic in nature, and are immobilized within the spaces of a three-dimensional network structure. Gels have a broad range of applications in food, cosmetics, biotechnology, pharmatechnology, etc. Typically, gels can be distinguished according to the nature of the liquid phase, for example, organogels (oleogels) contain an organic solvent, and hydrogels contain water. Recent studies have reported other types of gels for dermal drug application, such as proniosomal gels, emulgels, bigels and aerogels. This review aims to introduce the latest trends in transdermal drug delivery via traditional hydrogels and organogels and to provide insight into the latest gel types (proniosomal gels, emulgels, bigels and aerogels) as well as recent technologies for topical and transdermal drug delivery.
Collapse
Affiliation(s)
- Khurram Rehman
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | | |
Collapse
|
27
|
Kumar L, Verma S, Bhardwaj A, Vaidya S, Vaidya B. Eradication of superficial fungal infections by conventional and novel approaches: a comprehensive review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:32-46. [DOI: 10.3109/21691401.2013.769446] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Prasanthi D, Lakshmi PK. Terpenes: Effect of lipophilicity in enhancing transdermal delivery of alfuzosin hydrochloride. J Adv Pharm Technol Res 2013; 3:216-23. [PMID: 23378942 PMCID: PMC3560127 DOI: 10.4103/2231-4040.104712] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transdermal drug delivery has attracted much attention as an alternative to intravenous and oral methods of delivery. But the main barrier is stratum corneum. Terpenes classes of chemical enhancers are used in transdermal formulations for facilitating penetration of drugs. The aim of the study is to evaluate terpenes as skin penetration enhancers and correlate its relationship with permeation and lipophilicity. In this study, alfuzosin hydrochloride (AH) hydrogels were prepared with terpenes using Taguchi orthogonal array experimental design. The formulations contained one of eight terpenes, based on their lipophilicity (log P 2.13-5.36). The percutaneous permeation was studied in rat skin using diffusion cell technique. Flux, cumulative amount, lag time and skin content of AH were measured over 24 hours and compared with control gels. Nerolidol with highest lipophilicity (log P 5.36 ± 0.38) showed highest cumulative amount (Q24) of 647.29 ± 18.76 μg/cm2 and fluxrateof 28.16 ± 0.64 μg/cm2/hour. It showed decreased lag time of 0.76 ± 0.15 hours. Fenchone (2.5%) (log P 2.13 ± 0.30) produced the longest lag time 4.8 ± 0.20 hours. The rank order of enhancement effect was shown as nerolidol > farnesol > limonene > linalool > geraniol > carvone > fenchone > menthol. Lowest skin content was seen with carvone. Increase in lipophilicity of terpenes showed increase in flux, cumulative amount (Q24), and enhancement ratio which was significant with P < 0.000. But lag time was decreased and no correlation was found between lipophilicity and skin content. Histological studies showed changes in dermis which can be attributed to disruption of lipid packing of stratum corneum due to effect of nerolidol within lipid lamellae. It was found that small alcoholic terpenes with high degree of unsaturation enhance permeation of hydrophilic drugs, liquid terpenes enhance better than solid terpenes and terpenes with high lipophilicity are good penetration enhancers.
Collapse
Affiliation(s)
- D Prasanthi
- Department of Pharmaceutics, G. Pulla Reddy College of Pharmacy, Osmania University, Hyderabad, India
| | | |
Collapse
|
29
|
Sabale V, Vora S. Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharm Investig 2013; 2:140-9. [PMID: 23373005 PMCID: PMC3555009 DOI: 10.4103/2230-973x.104397] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Materials and Methods: Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 32 factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. Results: The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. Conclusion: The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical delivery of ibuprofen.
Collapse
Affiliation(s)
- Vidya Sabale
- Department of Pharmaceutics, Baroda College of Pharmacy, At and P. O. Limda, Ta. Waghodia, Dist, Vadodara, Gujarat, India
| | | |
Collapse
|
30
|
Sharma P, Chawla A, Arora S, Pawar P. Novel drug delivery approaches on antiviral and antiretroviral agents. J Adv Pharm Technol Res 2012; 3:147-59. [PMID: 23057001 PMCID: PMC3459444 DOI: 10.4103/2231-4040.101007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections.
Collapse
Affiliation(s)
- Pooja Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Anuj Chawla
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Pravin Pawar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| |
Collapse
|
31
|
Prabhu P, Shah S, Gundad S. Formulation development and investigation of domperidone transdermal patches. Int J Pharm Investig 2011; 1:240-6. [PMID: 23071950 PMCID: PMC3465151 DOI: 10.4103/2230-973x.93008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AIM AND BACKGROUND Domperidone is a dopamine antagonist with antiemetic properties having a plasma half life of 7-9 h with 15% oral bioavailability. In the present work transdermal patches of domperidone were prepared with the objective to improve its therapeutic efficacy, patient compliance and to reduce the frequency of dosing and side effects, as well as to avoid its extensive first pass metabolism of the drug. MATERIALS AND METHODS THE PATCHES WERE PREPARED USING ETHYL CELLULOSE (EC): Poly vinyl pyrrolidone (PVP), poly vinyl alcohol (PVA): Poly vinyl pyrrolidone (PVP) and hydroxypropylmethylcellulose (HPMC): Sodium (carboxy methyl cellulose) CMC as polymers in combination. The physicochemical parameters like thickness, drug content, weight variation, moisture absorption and drug permeation studies were evaluated for the prepared patches. No significant difference in thickness, average weight and in the drug content among the patches. RESULTS It was observed that from hydrophilic polymers the drug release was found to be faster compared to (F5 and F6 & F3 and F4) combination of hydrophilic and lipophilic polymers used in the study. Patches containing HPMC and Sodium CMC (F5 and F6) showed faster release as the patches showed maximum percentage amount moisture absorption. The in vitro release data was treated with kinetic equations and it followed Higuchi's diffusion mechanism. The in vivo bioavailability study was performed in rats and observed that, drug reached to the peak in approximately 60 min (16%) after oral route of administration. However, approximately same amount of drug was found in the serum from transdermal formulation in 6 h and further increase in the amount of drug in the serum, indicated that the drug 5 bioavailability could be better and hence the hepatic metabolism can be avoided, as it is evident from the data. Further, the decrease in the amount of drug present in the serum 45 min after oral administration also indicated that major amount of drug might have got metabolized and the bioavailability is reduced. However, the transdermal patch released further amount of drug (33%) at the end of 24 h. CONCLUSION The present study can be concluded that transdermal patch can extend the release of drug for many hours with better bioavailability and also can avoid the first pass effect.
Collapse
Affiliation(s)
- Prabhakar Prabhu
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, Mangalore, India
| | - Samip Shah
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, Mangalore, India
| | - Shankar Gundad
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, Mangalore, India
| |
Collapse
|