1
|
Wang L, Lu D, Wang X, Wang Z, Li W, Chen G. The effects of nitric oxide in Alzheimer's disease. Med Gas Res 2024; 14:186-191. [PMID: 39073326 DOI: 10.4103/2045-9912.385939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2023] [Indexed: 07/30/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent cause of dementia, is a progressive neurodegenerative condition that commences subtly and inexorably worsens over time. Despite considerable research, a specific drug that can fully cure or effectively halt the progression of AD remains elusive. Nitric oxide (NO), a crucial signaling molecule in the nervous system, is intimately associated with hallmark pathological changes in AD, such as amyloid-beta deposition and tau phosphorylation. Several therapeutic strategies for AD operate through the nitric oxide synthase/NO system. However, the potential neurotoxicity of NO introduces an element of controversy regarding its therapeutic utility in AD. This review focuses on research findings concerning NO's role in experimental AD and its underlying mechanisms. Furthermore, we have proposed directions for future research based on our current comprehension of this critical area.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Liu M, Jayaraman K, Norris AJ, Hussein A, Nelson JW, Mehla J, Diwan D, Vellimana A, Abu-Amer Y, Zipfel GJ, Athiraman U. Isoflurane Conditioning-Induced Delayed Cerebral Ischemia Protection in Subarachnoid Hemorrhage-Role of Inducible Nitric Oxide Synthase. J Am Heart Assoc 2023:e029975. [PMID: 37449587 PMCID: PMC10382105 DOI: 10.1161/jaha.123.029975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Background Recent evidence implicates inflammation as a key driver in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage (SAH). Inducible nitric oxide synthase (iNOS) is one of the known major mediators of inflammation. We previously showed that an inhalational anesthetic, isoflurane, provides strong protection against delayed cerebral ischemia after SAH. Our current study aims to define the role of iNOS in isoflurane conditioning-induced protection against delayed cerebral ischemia in a mouse model of SAH. Methods and Results The experiments used 10- to 14-week-old male wild-type (C57BL/6) and iNOS global knockout mice. Anesthetic conditioning was initiated 1 hour after SAH with isoflurane 2% for 1 hour. Isoflurane-induced changes in iNOS expression were measured. N-(3-(aminomethyl) benzyl) acetamidine, a highly selective iNOS inhibitor, was injected intraperitoneally immediately after SAH and then daily. Vasospasm, microvessel thrombosis, and neurological assessment was performed. Data were analyzed by 1-way ANOVA and 2-way repeated measures ANOVA followed by Student Newman Keuls comparison test. Statistical significance was set at P<0.05. Isoflurane conditioning downregulated iNOS expression in naïve and SAH mice. N-(3-(aminomethyl) benzyl) acetamidine attenuated large artery vasospasm and microvessel thrombosis and improved neurological deficits in wild-type animals. iNOS knockout mice were significantly resistant to vasospasm, microvessel thrombosis, and neurological deficits induced by SAH. Combining isoflurane with N-(3-(aminomethyl) benzyl) acetamidine did not offer extra protection, nor did treating iNOS knockout mice with isoflurane. Conclusions Isoflurane conditioning-induced delayed cerebral ischemia protection appears to be mediated by downregulating iNOS. iNOS is a potential therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Meizi Liu
- Department of Anesthesiology Washington University St. Louis MO USA
| | - Keshav Jayaraman
- Department of Anesthesiology Washington University St. Louis MO USA
| | - Aaron J Norris
- Department of Anesthesiology Washington University St. Louis MO USA
| | - Ahmed Hussein
- Department of Neurological Surgery Washington University St. Louis MO USA
| | - James W Nelson
- Department of Neurological Surgery Washington University St. Louis MO USA
| | - Jogender Mehla
- Department of Neurological Surgery Washington University St. Louis MO USA
| | - Deepti Diwan
- Department of Neurological Surgery Washington University St. Louis MO USA
| | - Ananth Vellimana
- Department of Neurological Surgery Washington University St. Louis MO USA
- Department of Radiology Washington University St. Louis MO USA
- Department of Neurology Washington University St. Louis MO USA
| | - Yousef Abu-Amer
- Department of Orthopedics Washington University St. Louis MO USA
- Department of Cell Biology & Physiology Washington University St. Louis MO USA
| | - Gregory J Zipfel
- Department of Neurological Surgery Washington University St. Louis MO USA
- Department of Neurology Washington University St. Louis MO USA
| | | |
Collapse
|
3
|
Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun J, Chatterjee AR, Athiraman U, Dhar R, Zipfel GJ. Early Brain Injury After Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke 2023; 54:1426-1440. [PMID: 36866673 PMCID: PMC10243167 DOI: 10.1161/strokeaha.122.040072] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Aneurysmal subarachnoid hemorrhage is a devastating condition causing significant morbidity and mortality. While outcomes from subarachnoid hemorrhage have improved in recent years, there continues to be significant interest in identifying therapeutic targets for this disease. In particular, there has been a shift in emphasis toward secondary brain injury that develops in the first 72 hours after subarachnoid hemorrhage. This time period of interest is referred to as the early brain injury period and comprises processes including microcirculatory dysfunction, blood-brain-barrier breakdown, neuroinflammation, cerebral edema, oxidative cascades, and neuronal death. Advances in our understanding of the mechanisms defining the early brain injury period have been accompanied by improved imaging and nonimaging biomarkers for identifying early brain injury, leading to the recognition of an elevated clinical incidence of early brain injury compared with prior estimates. With the frequency, impact, and mechanisms of early brain injury better defined, there is a need to review the literature in this area to guide preclinical and clinical study.
Collapse
Affiliation(s)
- David C. Lauzier
- Department of Neurological Surgery, Washington University School of Medicine
| | - Keshav Jayaraman
- Department of Neurological Surgery, Washington University School of Medicine
| | - Jane Y. Yuan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Ananth K. Vellimana
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Joshua Osbun
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Arindam R. Chatterjee
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | | | - Rajat Dhar
- Department of Neurology, Washington University School of Medicine
| | - Gregory J. Zipfel
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
| |
Collapse
|
4
|
Wang X, Ren XM, He H, Li F, Liu K, Zhao F, Hu H, Zhang P, Huang B, Pan X. Cytotoxicity and pro-inflammatory effect of polystyrene nano-plastic and micro-plastic on RAW264.7 cells. Toxicology 2023; 484:153391. [PMID: 36503103 DOI: 10.1016/j.tox.2022.153391] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Numerous studies have shown that exposure to micro- or nano-plastics led to the cell viability and function of macrophages in the intestine tissue might be one possible mechanism. This study investigated the cytotoxicity and pro-inflammatory effect of 80 nm polystyrene-nano-plastic (PS-NP) and 3 µm PS-micro-plastic (PS-MP) on mouse macrophages RAW264.7 cells. Our results showed that exposure to PS-NP or PS-MP induced apoptosis of cells at 5 or 10 μg/mL, respectively. Besides, PS-NP enhanced the secretion of inflammatory cytokines (Tumor necrosis factor-α, Interleukin-6 and Interleukin-10) with the lowest effective concentration (LOEC) of 1, 0.01, and 0.01 μg/mL, respectively. PS-MP enhanced secretion of TNF-α and IL-10 with the LOEC of 1 and 0.01 μg/mL, respectively. We further studied the possible mechanisms of the effects of PS-NP or PS-MP on RAW264.7 cells. We found they might cause cytotoxicity and inflammatory effects by producing reactive oxygen species and nitric oxide in the cells. Accordingly, our results demonstrated that PS-NP and PS-MP had cytotoxicity and pro-inflammatory effect on macrophages, which might further lead to intestinal inflammation. Moreover, we revealed that the PS-NP had more potent adverse impacts on macrophages than PS-MP.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiao-Min Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fenqing Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huixiang Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Pingping Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| |
Collapse
|
5
|
Ameliorative Effect of Citrus Lemon Peel Extract and Resveratrol on Premature Ovarian Failure Rat Model: Role of iNOS/Caspase-3 Pathway. Molecules 2022; 28:molecules28010122. [PMID: 36615313 PMCID: PMC9822383 DOI: 10.3390/molecules28010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Premature ovarian failure (POF) is described as a loss of oocytes and the absence of folliculogenesis and is considered an adverse effect of chemotherapeutic drugs, which leads to infertility. Subsequently, the existing inquiry was achieved by exploring the potential suspicious influences of lemon peel extract (LPE), and resveratrol (RES) on cyclophosphamide (CPA) induced-POF. The results showed that CPA-induced POF significantly decreased serum estradiol (E2) and progesterone levels, along with a considerable rise in serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels. Moreover, CPA administration to rats significantly increased the serum level of Malondialdehyde (MDA) and significantly lowered the levels of reduced glutathione (GSH) and superoxide dismutase (SOD); in addition, it increased nuclear factor kappa B (NF-κB) levels, tumor necrosis factor-α (TNF-α), as well as cyclooxygenase 2 (COX-2) with the spread expression of inducible nitric oxide synthase (iNOS) mRNA levels and caspase-3 (Casp3) levels in ovarian tissues versus the control rats. However, treatment with LPE and RES suppressed the triggering of NF- κB pathways, evidenced by a considerable reduction in Casp3 & iNOS mRNA expression level and significant ameliorative effects in all evaluated parameters, as confirmed by the histological and immunohistochemical investigation when comparing the model group. In overall findings, both lemon peel extract and resveratrol can mitigate the adverse effects of CPA-induced POF. Most crucially, its combination therapy is a promising pharmacological agent for this disease.
Collapse
|
6
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and in vitro. Brain Res Bull 2022; 183:184-200. [PMID: 35304287 DOI: 10.1016/j.brainresbull.2022.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a hemorrhagic stroke with a high mortality and disability rate. Nitric oxide (NO) can promote blood supply through vasodilation, leading to protein S-nitrosylation. However, the function of S-nitrosylation in neurons after SAH remains unclear. Excessive NO in the pathological state is converted into S-nitrosoglutathione (GSNO) and stored in cells, which leads to high S-nitrosylation of intracellular proteins and causes nitrosative stress. S-nitrosoglutathione reductase (GSNOR) promotes GSNO degradation and protects cells from excessive S-nitrosylation. We conducted an in vivo rat carotid puncture model and an in vitro neuron hemoglobin intervention. The results showed that SAH induction increased NO, GSNO, neuron protein S-nitrosylation, and neuronal apoptosis, while decreasing the level and activity of GSNOR. GSNOR overexpression by lentivirus decreased GSNO but had little effect on NO. GSNOR overexpression also improved short- and long-term neurobehavioral outcomes in rats and alleviated nitrosative stress. Furthermore, GSNOR reduced neuronal apoptosis and played a neuroprotective role by alleviating Drp1 S-nitrosylation, reducing mitochondrial division. Thus, the regulation of GSNOR in early brain injury and neuronal denitrosylation may play an important role in neuroprotection.
Collapse
|
8
|
Wu Q, Pan C, Hu Y, Li G, Chen S, Jing J, Yang J, Tang Z. Neuroprotective effects of adipose‐derived stem cells on ferrous sulfate‐induced neurotoxicity. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Ferrous ion, a degradation product of hematomas, induces inflammatory reactions and other secondary injuries after intracerebral hemorrhage (ICH). Our study aimed to investigate the specific neuroprotective mechanism of adipose‐derived stem cells (ADSCs) on ferrous ion‐induced neural injury in vitro. Methods: ADSCs were co‐cultured with primary cortical neurons in a transwell system treated with ferrous sulfate to generate an in vitro ICH model. ADSCs and cortical neurons were cultured in the upper and lower chambers, respectively. Neuron apoptosis was determined by flow cytometry. The levels of insulin‐like growth factor‐1 (IGF‐1), malondialdehyde (MDA) and nitric oxide synthase (NOS) activity in neuron culture medium were detected with commercial kits. In neurons, protein expression in phosphatidylinositol‐3‐kinase (PI3K)/protein kinase B (Akt) signaling pathway, nuclear factor erythroid 2‐related factor 2 (Nrf2)/heme oxygenase‐1 (HO‐1) signaling pathway and apoptosis‐related proteins were detected by western blot. Results: ADSCs attenuated neural apoptosis, reduced MDA levels and NOS activity induced by ferrous sulfate. In neurons, IGF‐1 was increased, as were p‐PI3K, p‐Akt, Nrf2, HO‐1, and Bcl‐2 while cleaved caspase 3 was down‐regulated. Conclusions: ADSCs exert neuroprotective effects against ferrous iron‐induced neuronal damage by secreting IGF‐1 and increasing the levels of Akt‐dependent Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Jing
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingfei Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Singh D, Yadav A, Singh C. Autonomous regulation of inducible nitric oxide synthase and cytochrome P450 2E1-mediated oxidative stress in maneb- and paraquat-treated rat polymorphs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104944. [PMID: 34446210 DOI: 10.1016/j.pestbp.2021.104944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Maneb (MB)- and paraquat (PQ)-induced oxidative stress in rat polymorphonuclear leukocytes (PMNs) is regulated in parallel by cytochrome P450 2E1 (CYP2E1) and inducible nitric oxide synthase (iNOS). However, mechanism underlying their regulation is not yet understood. The study investigated the role of nuclear factor- kappa B (NF-κB) and mitogen-activated protein kinase/extracellular signal regulated kinase/protein kinase C (MEK/ERK/PKC) pathway in the regulation of iNOS- and CYP2E1-induced oxidative stress in PMNs. MB + PQ-induced changes in nitrite content, lipid peroxidation (LPO), iNOS expression/activity and inflammatory mediators were alleviated by aminoguanidine (AG), an iNOS inhibitor, without any change in CYP2E1. Alternatively, diallyl sulphide (DAS), a CYP2E1 inhibitor, rescued from MB + PQ-induced changes in CYP2E1 activity/expression, free radical generation, superoxide dismutase (SOD) activity, LPO and pro-inflammatory cytokines without any alterations in nitrite content and iNOS activity/expression. Pyrrolidine dithiocarbamate (PDTC), NF-κB inhibitor, did not alter CYP2E1 but mitigated free radical generation, SOD activity, LPO, nitrite content, iNOS activity/expression and levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukine-1β and interleukine-4). Ex-vivo treatment with MEK inhibitor (PD98059), ERK1/2 inhibitor (AG126) or PKC inhibitor (rottlerin) ameliorated MB + PQ-induced increase in free radical generation and CYP2E1 activity/expression in PMNs. While PD98059 and AG126 abated MB + PQ-induced increase in ERK1/2, PKC-α/δ and CYP2E1 levels, rottlerin restored PKC-α/δ and CYP2E1 towards normalcy without affecting ERK1/2 level in MB + PQ-treated group. The results suggest that iNOS and CYP2E1 contributing to MB + PQ-induced oxidative stress in rat PMNs exhibit differential regulatory mechanisms. The inflammatory mediators regulate iNOS expression while CYP2E1 expression is triggered via MEK-ERK1/2-PKC pathway.
Collapse
Affiliation(s)
- Deepali Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Archana Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Chetna Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, Torbey MT, Divani AA. Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:106064. [PMID: 34464924 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is the most feared complication of aneurysmal subarachnoid hemorrhage (aSAH). It increases the mortality and morbidity associated with aSAH. Previously, large cerebral artery vasospasm was thought to be the sole major contributing factor associated with increased risk of DCI. Recent literature has challenged this concept. We conducted a literature search using PUBMED as the prime source of articles discussing various other factors which may contribute to the development of DCI both in the presence or absence of large cerebral artery vasospasm. These factors include microvascular spasm, micro-thrombosis, cerebrovascular dysregulation, and cortical spreading depolarization. These factors collectively result in inflammation of brain parenchyma, which is thought to precipitate early brain injury and DCI. We conclude that diagnostic modalities need to be refined in order to diagnose DCI more efficiently in its early phase, and newer interventions need to be developed to prevent and treat this condition. These newer interventions are currently being studied in experimental models. However, their effectiveness on patients with aSAH is yet to be determined.
Collapse
Affiliation(s)
- Asad Ikram
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Muhammad Ali Javaid
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Kelangi
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Michel T Torbey
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA.
| |
Collapse
|
11
|
Wan H, Brathwaite S, Ai J, Hynynen K, Macdonald RL. Role of perivascular and meningeal macrophages in outcome following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2021; 41:1842-1857. [PMID: 33444089 PMCID: PMC8327101 DOI: 10.1177/0271678x20980296] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The distribution and clearance of erythrocytes after subarachnoid hemorrhage (SAH) is poorly understood. We aimed to characterize the distribution of erythrocytes after SAH and the cells involved in their clearance. To visualize erythrocyte distribution, we injected fluorescently-labelled erythrocytes into the prechiasmatic cistern of mice. 10 minutes after injection, we found labelled erythrocytes in the subarachnoid space and ventricular system, and also in the perivascular spaces surrounding large penetrating arterioles. 2 and 5 days after SAH, fluorescence was confined within leptomeningeal and perivascular cells. We identified the perivascular cells as perivascular macrophages based on their morphology, location, Iba-1 immunoreactivity and preferential uptake of FITC-dextran. We subsequently depleted meningeal and perivascular macrophages 2 days before or 3 hours after SAH with clodronate liposomes. At day 5 after SAH, we found increased blood deposition in mice treated prior to SAH, but not those treated after. Treatment post-SAH improved neurological scoring, reduced neuronal cell death and perivascular inflammation, whereas pre-treatment only reduced perivascular inflammation. Our data indicate that after SAH, erythrocytes are distributed throughout the subarachnoid space extending into the perivascular spaces of parenchymal arterioles. Furthermore, meningeal and perivascular macrophages are involved in erythrocyte uptake and play an important role in outcome after SAH.
Collapse
Affiliation(s)
- Hoyee Wan
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Health Sciences Research Institute, Sunnybrook Hospital, Toronto, Canada
| | - Shakira Brathwaite
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada.,Sunnybrook Health Sciences Research Institute, Sunnybrook Hospital, Toronto, Canada
| | - Jinglu Ai
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada.,Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Health Sciences Research Institute, Sunnybrook Hospital, Toronto, Canada
| | - R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Canada.,Department of Neurological Surgery, University of California San Francisco, Fresno, CA, USA
| |
Collapse
|
12
|
Wang Q, Wills M, Han Z, Geng X, Ding Y. Mini Review (Part I): An Experimental Concept on Exercise and Ischemic Conditioning in Stroke Rehabilitation. Brain Circ 2021; 6:242-247. [PMID: 33506146 PMCID: PMC7821806 DOI: 10.4103/bc.bc_63_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Stroke remains a leading cause of adult death and disability. Poststroke rehabilitation is vital for reducing the long-term sequelae of brain ischemia. Recently, physical exercise training has been well established as an effective rehabilitation tool, but its efficacy depends on exercise parameters and the patient's capacities, which are often altered following a major cerebrovascular event. Thus, ischemic conditioning as a rehabilitation intervention was considered an “exercise equivalent,” but the investigation is still in its relative infancy. In this mini-review, we discuss the potential for physical exercise or ischemic conditioning and its relation to angiogenesis, neurogenesis, and plasticity in stroke rehabilitation. This allows the readers to understand the context of the research and the application of ischemic conditioning in poststroke rehabilitation.
Collapse
Affiliation(s)
- Qingzhu Wang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhenzhen Han
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
13
|
Hosmann A, Milivojev N, Dumitrescu S, Reinprecht A, Weidinger A, Kozlov AV. Cerebral nitric oxide and mitochondrial function in patients suffering aneurysmal subarachnoid hemorrhage-a translational approach. Acta Neurochir (Wien) 2021; 163:139-149. [PMID: 32839865 PMCID: PMC7778629 DOI: 10.1007/s00701-020-04536-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/11/2020] [Indexed: 01/15/2023]
Abstract
Background Cerebral ischemia and neuroinflammation following aneurysmal subarachnoid hemorrhage (SAH) are major contributors to poor neurological outcome. Our study set out to investigate in an exploratory approach the interaction between NO and energy metabolism following SAH as both hypoxia and inflammation are known to affect nitric oxide (NO) metabolism and NO in turn affects mitochondria. Methods In seven patients under continuous multimodality neuromonitoring suffering poor-grade aneurysmal SAH, cerebral metabolism and NO levels (determined as a sum of nitrite plus nitrate) were determined in cerebral microdialysate for 14 days following SAH. In additional ex vivo experiments, rat cortex homogenate was subjected to the NO concentrations determined in SAH patients to test whether these NO concentrations impair mitochondrial function (determined by means of high-resolution respirometry). Results NO levels showed biphasic kinetics with drastically increased levels during the first 7 days (74.5 ± 29.9 μM) and significantly lower levels thereafter (47.5 ± 18.7 μM; p = 0.02). Only during the first 7 days, NO levels showed a strong negative correlation with brain tissue oxygen tension (r = − 0.78; p < 0.001) and a positive correlation with cerebral lactate (r = 0.79; p < 0.001), pyruvate (r = 0.68; p < 0.001), glutamate (r = 0.65; p < 0.001), as well as the lactate-pyruvate ratio (r = 0.48; p = 0.01), suggesting mitochondrial dysfunction. Ex vivo experiments confirmed that the increase in NO levels determined in patients during the acute phase is sufficient to impair mitochondrial function (p < 0.001). Mitochondrial respiration was inhibited irrespectively of whether glutamate (substrate of complex I) or succinate (substrate of complex II) was used as mitochondrial substrate suggesting the inhibition of mitochondrial complex IV. The latter was confirmed by direct determination of complex IV activity. Conclusions Exploratory analysis of our data suggests that during the acute phase of SAH, NO plays a key role in the neuronal damage impairing mitochondrial function and facilitating accumulation of mitochondrial substrate; further studies are required to understand mechanisms underlying this observation.
Collapse
|
14
|
Mechanisms and therapeutic implications of RTA 408, an activator of Nrf2, in subarachnoid hemorrhage-induced delayed cerebral vasospasm and secondary brain injury. PLoS One 2020; 15:e0240122. [PMID: 33017422 PMCID: PMC7535038 DOI: 10.1371/journal.pone.0240122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives More and more evidence suggests oxidative stress and inflammation contribute importantly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and secondary brain injury. Recent evidence indicates Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) increases the expression of antioxidant genes and decreases the expression of pro-inflammatory genes. This study examines the effects of an activator of Nfr2, RTA 408, on SAH-induced cerebral vasospasm and possible mechanism underlying its effect in a two-hemorrhage rodent model of SAH. Methods We randomly assigned 60 Sprague-Dawley male rats (350 to 420g) to five groups twelve rats each: one control group (no SAH), one untreated SAH only group and three RTA-408 treatment groups (SAH+ RTA 408 0.5 mg/kg/day, SAH+RTA 408 1 mg/kg/day and a SAH+RTA 408 1.5 mg/kg/day). The treatment groups were administered RTA 408 by intraperitoneal injection thirty min following first induction of SAH for seven days starting with first hemorrhage. Cerebral vasospasm was determined by averaging the cross-sectional areas of basilar artery 7 days after first SAH. Expressions of Nrf2, NF-κB and iNOS in basilar artery and expressions of Nrf2, HO-1, NQO1 and Cleaved caspase-3 were evaluated. Tissue TNF-alpha was assessed by ELISA using the protein sampled from the dentate gyrus, cerebral cortex, and hippocampus. Results Prior to perfusion fixation, there were no significant physiological differences among the control and treated groups. RTA 408 treatment attenuated the morphological changes caused by cerebral vasospasm. It mitigated SAH-induced suppression of Nrf2 and increased expression of NF-κB and iNOS in the basilar artery. In dentate gyrus, it reversed SAH-decreases in Nrf2, HO-1, NQO-1 and cleaved caspase-3 and RTA 408 1.5 mg/kg/day reversed SAH increases in TNF-alpha. Conclusion It was concluded that RTA 408 reversal vasospasm was achieved via increases in Nrf2 and decreases in NF-κB and iNOS. It exerted a neuron-protection effect by decreasing the apoptosis-related protein cleaved caspase-3 and decreasing the information cytokine TNF-alpha expression, which it achieved by increasing HO-1 and NQO-1 protein found downstream from Nrf2 and Nrf2. We believe that RTA 408 can potentially be used to manage of cerebral vasospasm and secondary brain injury following SAH.
Collapse
|
15
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
16
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
17
|
Birla H, Minocha T, Kumar G, Misra A, Singh SK. Role of Oxidative Stress and Metal Toxicity in the Progression of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:552-562. [PMID: 31969104 PMCID: PMC7457422 DOI: 10.2174/1570159x18666200122122512] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the life-threatening neurodegenerative disorders in the elderly (>60 years) and incurable across the globe to date. AD is caused by the involvement of various genetic, environmental and lifestyle factors that affect neuronal cells to degenerate over the period of time. The oxidative stress is engaged in the pathogenesis of various disorders and its key role is also linked to the etiology of AD. AD is attributed by neuronal loss, abnormal accumulation of Amyloid-β (Aβ) and neurofibrillary tangles (NFTs) with severe memory impairments and other cognitive dysfunctions which lead to the loss of synapses and neuronal death and eventual demise of the individual. Increased production of reactive oxygen species (ROS), loss of mitochondrial function, altered metal homeostasis, aberrant accumulation of senile plaque and mitigated antioxidant defense mechanism all are indulged in the progression of AD. In spite of recent advances in biomedical research, the underlying mechanism of disruption of redox balance and the actual source of oxidative stress is still obscure. This review highlights the generation of ROS through different mechanisms, the role of some important metals in the progression of AD and free radical scavenging by endogenous molecule and supplementation of nutrients in AD.
Collapse
Affiliation(s)
| | | | | | | | - Sandeep Kumar Singh
- Address correspondence to this author at the Indian Scientific Education and Technology Foundation, Lucknow-226002, India;E-mails: ;
| |
Collapse
|
18
|
Geraghty JR, Davis JL, Testai FD. Neuroinflammation and Microvascular Dysfunction After Experimental Subarachnoid Hemorrhage: Emerging Components of Early Brain Injury Related to Outcome. Neurocrit Care 2019; 31:373-389. [PMID: 31012056 PMCID: PMC6759381 DOI: 10.1007/s12028-019-00710-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aneurysmal subarachnoid hemorrhage has a high mortality rate and, for those who survive this devastating injury, can lead to lifelong impairment. Clinical trials have demonstrated that cerebral vasospasm of larger extraparenchymal vessels is not the sole contributor to neurological outcome. Recently, the focus of intense investigation has turned to mechanisms of early brain injury that may play a larger role in outcome, including neuroinflammation and microvascular dysfunction. Extravasated blood after aneurysm rupture results in a robust inflammatory response characterized by activation of microglia, upregulation of cellular adhesion molecules, recruitment of peripheral immune cells, as well as impaired neurovascular coupling, disruption of the blood-brain barrier, and imbalances in endogenous vasodilators and vasoconstrictors. Each of these phenomena is either directly or indirectly associated with neuronal death and brain injury. Here, we review recent studies investigating these various mechanisms in experimental models of subarachnoid hemorrhage with special emphasis on neuroinflammation and its effect on microvascular dysfunction. We discuss the various therapeutic targets that have risen from these mechanistic studies and suggest the utility of a multi-targeted approach to preventing delayed injury and improving outcome after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA.
- Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.
| | - Joseph L Davis
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| |
Collapse
|
19
|
Shi X, Zhen L, Ding H, Chen J, Zhang S, Fu Y. Role of ATP-sensitive potassium channels and inflammatory response of basilar artery smooth muscle cells in subarachnoid hemorrhage of rabbit and immune-modulation by shikonin. Food Chem Toxicol 2019; 134:110804. [PMID: 31505234 DOI: 10.1016/j.fct.2019.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/17/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of inflammatory response, oxidative damage and changes of ATP-sensitive potassium channels (sKATP) in basilar artery (BA) smooth muscle cells (SMCS) of rabbits in subarachnoid hemorrhage (SAH) model. METHODS Time course studies on inflammatory response by real-time PCR, oxidative process and function of isolated basilar artery after SAH in New Zealand White rabbits were performed. Basilar artery smooth muscle cells (BASMCs) in each group were obtained and whole-cell patch-clamp technique was applied to record cell membrane capacitance and KATP currents. The morphologies of basal arteries were analyzed. Protective effect of shikonin were also determine by same parameters. RESULTS Inflammatory cytokines levels were highest at 24h compare to 72h after SAH whereas the oxidative damage and cell death marker were at highest peak at 72h. Oxidative damage peak coincided with significant alterations in cell membrane capacitance, KATP currents and morphological changes in basilar arteries. Shikokin pretreatment attenuated early inflammatory response at 24h and associated oxidative damage at 72h. Finally, shikonin attenuated morphological changes in basilar arteries and dysfunction. CONCLUSION Currents of ATP-sensitive potassium channels in basilar smooth muscle cells decreased after SAH by putative oxidative modification from immediate inflammatory response and can be protected by shikonin pretreatment.
Collapse
Affiliation(s)
- Xianqing Shi
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China.
| | - Lirong Zhen
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Hao Ding
- Intensive Care Unit, Guizhou Provincial Orthopedics Hospital, Guiyang, Guizhou Province, 550007, China
| | - Jing Chen
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Songsong Zhang
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Yongjian Fu
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| |
Collapse
|
20
|
Abstract
Haemoglobin is released into the CNS during the breakdown of red blood cells after intracranial bleeding. Extracellular free haemoglobin is directly neurotoxic. Haemoglobin scavenging mechanisms clear haemoglobin and reduce toxicity; these mechanisms include erythrophagocytosis, haptoglobin binding of haemoglobin, haemopexin binding of haem and haem oxygenase breakdown of haem. However, the capacity of these mechanisms is limited in the CNS, and they easily become overwhelmed. Targeting of haemoglobin toxicity and scavenging is, therefore, a rational therapeutic strategy. In this Review, we summarize the neurotoxic mechanisms of extracellular haemoglobin and the peculiarities of haemoglobin scavenging pathways in the brain. Evidence for a role of haemoglobin toxicity in neurological disorders is discussed, with a focus on subarachnoid haemorrhage and intracerebral haemorrhage, and emerging treatment strategies based on the molecular pathways involved are considered. By focusing on a fundamental biological commonality between diverse neurological conditions, we aim to encourage the application of knowledge of haemoglobin toxicity and scavenging across various conditions. We also hope that the principles highlighted will stimulate research to explore the potential of the pathways discussed. Finally, we present a consensus opinion on the research priorities that will help to bring about clinical benefits.
Collapse
|
21
|
Bai Y, Jiang Y, Liu T, Li F, Zhang J, Luo Y, Zhang L, Yan G, Feng Z, Li X, Wang X, Hu W. Xinjiang herbal tea exerts immunomodulatory activity via TLR2/4-mediated MAPK signaling pathways in RAW264.7 cells and prevents cyclophosphamide-induced immunosuppression in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 228:179-187. [PMID: 30268651 DOI: 10.1016/j.jep.2018.09.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A multi-herb Chinese medicinal formula consisting of a variety of medicinal and edible materials has long been consumed as a hot drink and immune enhancer for its efficiency to increase disease resistance in Xinjiang, China. However, no fundamental data has been collected associated with traditional consumption. The present work was designed to evaluate the immunostimulatory role of Xinjiang herbal tea (XMT-WE) in RAW 264.7 macrophages and cyclophosphamide (CTX)-induced immunosuppression mice model. MATERIALS AND METHODS RAW 264.7 cells were treated with various concentrations of XMT-WE. Nitric oxide (NO) levels were determined using Griess reagents, and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α were investigated with a cytometric bead array kit. The effects on mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and TNF-α were investigated. Furthermore, activation of nuclear factor (NF)-κB and AP-1 mitogen-activated protein kinase (MAPK) signaling pathways was investigated. RESULTS Pre-treatment with XMT-WE significantly increased secretion of NO, IL-6, and TNF-α. In addition, XMT-WE markedly increased expression of iNOS, COX-2, and TNF-α as well as AP-1 and NF-κB translocation from the cytoplasm into the nucleus, which was associated with an increase of phosphorylated ERK, JNK, and p38 as well as membrane receptors such as toll-like receptor (TLR) 2 and TLR4. Moreover, XMT-WE promoted the secretion of interleukin-2 (IL-2) and interferon-γ (IFN-γ) in cyclophosphamide (CTX)-induced immunosuppressive mice. CONCLUSION These results indicated that XMT-WE at 50 µg/ml exerts immunomodulatory activity via TLR2/4-mediated MAPK signaling pathways in RAW 264.7 cells. Furthermore, in vivo experiments revealed that XMT-WE at the dose of 50 and 100 mg/kg strongly stimulated inflammatory cytokines.
Collapse
Affiliation(s)
- Yujia Bai
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Yunyao Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Tingwu Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Fu Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jianmei Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Yanyan Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Liang Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Guilong Yan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Zuoshan Feng
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xueqin Li
- Department of Gerontology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huanghe West Road, Huaian 223300, China.
| | - Xinfeng Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Weicheng Hu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| |
Collapse
|
22
|
Wu C, Wu D, Chen J, Li C, Ji X. Why not Intravenous Thrombolysis in Patients with Recurrent Stroke within 3 Months? Aging Dis 2018; 9:309-316. [PMID: 29896419 PMCID: PMC5963351 DOI: 10.14336/ad.2017.0406] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/06/2017] [Indexed: 01/14/2023] Open
Abstract
Acute ischemic stroke continues to be a very severe disorder that has significant impact on human health. Its treatment options are limited and alteplase remains the only American Food and Drug Administration-approved drug for patients with acute ischemic stroke. Furthermore, intravenous thrombolysis remains substantially underutilized, because it has rigorous indications and contraindications. Most patients simply do not meet these criteria and cannot receive thrombolytic treatment. Guidelines in many countries currently include a history of stroke within months as one of the exclusion criteria for intravenous thrombolysis. Although this is based on previous data, it lacks strong evidentiary support. Several recent studies suggested that intravenous thrombolysis may be beneficial for this patient population. We reviewed relevant publications of intravenous thrombolysis or repeated intravenous thrombolysis in patients with a history of stroke in the past 3 months. We found that intravenous thrombolysis in these patients is not as hazardous as previously believed. Among patients with relatively small infarctions and a good prognosis, intravenous thrombolysis may be a good treatment option. We hope that more research will be carried out on this topic to reexamine the criteria for intravenous thrombolysis to allow more patients to benefit from treatment.
Collapse
Affiliation(s)
- Chuanjie Wu
- 1Department of neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Di Wu
- 2China-America Institute of Neuroscience, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jian Chen
- 3Department of neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Chuanhui Li
- 3Department of neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xunming Ji
- 3Department of neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Henriet E, Abou Hammoud A, Dupuy JW, Dartigues B, Ezzoukry Z, Dugot-Senant N, Leste-Lasserre T, Pallares-Lupon N, Nikolski M, Le Bail B, Blanc JF, Balabaud C, Bioulac-Sage P, Raymond AA, Saltel F. Argininosuccinate synthase 1 (ASS1): A marker of unclassified hepatocellular adenoma and high bleeding risk. Hepatology 2017. [PMID: 28646562 DOI: 10.1002/hep.29336] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Hepatocellular adenomas (HCAs) are rare benign tumors divided into three main subgroups defined by pathomolecular features, HNF1A (H-HCA), mutated β-catenin (b-HCA), and inflammatory (IHCA). In the case of unclassified HCAs (UHCAs), which are currently identified by default, a high risk of bleeding remains a clinical issue. The objective of this study was to explore UHCA proteome with the aim to identify specific biomarkers. Following dissection of the tumoral (T) and nontumoral (NT) tissue on formalin-fixed, paraffin-embedded HCA tissue sections using laser capture methodology, we performed mass spectrometry analysis to compare T and NT protein expression levels in H-HCA, IHCA, b-HCA, UHCA, and focal nodular hyperplasia. Using this methodology, we searched for proteins which are specifically deregulated in UHCA. We demonstrate that proteomic profiles allow for discriminating known HCA subtypes through identification of classical biomarkers in each HCA subgroup. We observed specific up-regulation of the arginine synthesis pathway associated with overexpression of argininosuccinate synthase (ASS1) and arginosuccinate lyase in UHCA. ASS1 immunohistochemistry identified all the UHCA, of which 64.7% presented clinical bleeding manifestations. Interestingly, we demonstrated that the significance of ASS1 was not restricted to UHCA, but also encompassed certain hemorrhagic cases in other HCA subtypes, particularly IHCA. CONCLUSION ASS1 + HCA combined with a typical hematoxylin and eosin stain aspect defined a new HCA subgroup at a high risk of bleeding. (Hepatology 2017;66:2016-2028).
Collapse
Affiliation(s)
- Elodie Henriet
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France
| | - Aya Abou Hammoud
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Benjamin Dartigues
- Centre de Bioinformatique de Bordeaux, Centre de Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Zakaria Ezzoukry
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France
| | | | | | - Nestor Pallares-Lupon
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France
| | - Macha Nikolski
- Centre de Bioinformatique de Bordeaux, Centre de Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France.,LaBRI, CNRS UMR 5800, Université de Bordeaux, Bordeaux, France
| | - Brigitte Le Bail
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France.,Service de Pathologie, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Jean-Frédéric Blanc
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France.,Service Hépato-Gastroentérologie et oncologie digestive, centre médico-chirurgical Magellan, Hôpital Haut-Lévêque, CHU de Bordeaux, Bordeaux, France
| | - Charles Balabaud
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France
| | - Paulette Bioulac-Sage
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France.,Service de Pathologie, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Anne-Aurélie Raymond
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France.,Oncoprot, INSERM 1053, TBM-Core US 005, Bordeaux, France
| | - Frédéric Saltel
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France.,Oncoprot, INSERM 1053, TBM-Core US 005, Bordeaux, France
| |
Collapse
|
24
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
25
|
Baicalin Attenuates Subarachnoid Hemorrhagic Brain Injury by Modulating Blood-Brain Barrier Disruption, Inflammation, and Oxidative Damage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1401790. [PMID: 28912935 PMCID: PMC5587966 DOI: 10.1155/2017/1401790] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
In subarachnoid hemorrhagic brain injury, the early crucial events are edema formation due to inflammatory responses and blood-brain barrier disruption. Baicalin, a flavone glycoside, has antineuroinflammatory and antioxidant properties. We examined the effect of baicalin in subarachnoid hemorrhagic brain injury. Subarachnoid hemorrhage was induced through filament perforation and either baicalin or vehicle was administered 30 min prior to surgery. Brain tissues were collected 24 hours after surgery after evaluation of neurological scores. Brain tissues were processed for water content, real-time PCR, and immunoblot analyses. Baicalin improved neurological score and brain water content. Decreased levels of tight junction proteins (occludin, claudin-5, ZO-1, and collagen IV) required for blood-brain barrier function were restored to normal level by baicalin. Real-time PCR data demonstrated that baicalin attenuated increased proinflammatory cytokine (IL-1β, IL-6, and CXCL-3) production in subarachnoid hemorrhage mice. In addition to that, baicalin attenuated microglial cell secretion of IL-1β and IL-6 induced by lipopolysaccharide (100 ng/ml) dose dependently. Finally, baicalin attenuated induction of NOS-2 and NOX-2 in SAH mice at the mRNA and protein level. Thus, we demonstrated that baicalin inhibited microglial cell activation and reduced inflammation, oxidative damage, and brain edema.
Collapse
|
26
|
Heparin and Heparin-Derivatives in Post-Subarachnoid Hemorrhage Brain Injury: A Multimodal Therapy for a Multimodal Disease. Molecules 2017; 22:molecules22050724. [PMID: 28468328 PMCID: PMC6154575 DOI: 10.3390/molecules22050724] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Pharmacologic efforts to improve outcomes following aneurysmal subarachnoid hemorrhage (aSAH) remain disappointing, likely owing to the complex nature of post-hemorrhage brain injury. Previous work suggests that heparin, due to the multimodal nature of its actions, reduces the incidence of clinical vasospasm and delayed cerebral ischemia that accompany the disease. This narrative review examines how heparin may mitigate the non-vasospastic pathological aspects of aSAH, particularly those related to neuroinflammation. Following a brief review of early brain injury in aSAH and heparin’s general pharmacology, we discuss potential mechanistic roles of heparin therapy in treating post-aSAH inflammatory injury. These roles include reducing ischemia-reperfusion injury, preventing leukocyte extravasation, modulating phagocyte activation, countering oxidative stress, and correcting blood-brain barrier dysfunction. Following a discussion of evidence to support these mechanistic roles, we provide a brief discussion of potential complications of heparin usage in aSAH. Our review suggests that heparin’s use in aSAH is not only safe, but effectively addresses a number of pathologies initiated by aSAH.
Collapse
|
27
|
Li F, Pendy JT, Ding JN, Peng C, Li X, Shen J, Wang S, Geng X. Exercise rehabilitation immediately following ischemic stroke exacerbates inflammatory injury. Neurol Res 2017; 39:530-537. [PMID: 28415917 DOI: 10.1080/01616412.2017.1315882] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fengwu Li
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - John T. Pendy
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jessie N. Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaorong Li
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Jiamei Shen
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sainan Wang
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China–America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|